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Abstract—Memetic Algorithms are traditionally composed of
an evolutionary framework and one or more local search el-
ements. However, modern generation Memetic Algorithms do
not necessarily follow a pre-established scheme and are hybrid
structures of various types. By following these modern trends, the
present paper proposes an original and unconventional adaptive
memetic structure generated by the hybridisation of a set of
theoretical computational models, namely P Systems, and an
evolutionary algorithm employing adaptation rules and moving
operators inspired by Evolution Strategies. The resulting memetic
algorithm, namely Adaptive Optimisation Spiking Neural P
System (AOSNPS), is a tailored algorithm to solve optimisation
problems with binary encoding.

More specifically AOSNPS is composed of a family of parallel
spiking neural P systems, each of them generating a binary
vector representing a candidate solution on the basis of internal
probability parameters and an adaptive Evolutionary Guider
Algorithm that evolves the probabilities encoded in each P system.
Numerical result shows that the proposed approach is effective
to solve the 0/1 knapsack problem and outperforms various
algorithms proposed in the literature to solve the same class
of problems.

Index Terms—Memetic Algorithms, P Systems, Membrane
Computing, Evolutionary Algorithms, Knapsack Problem

I. INTRODUCTION

In their early implementations, Memetic Algorithms (MAs)
were identified with an evolutionary algorithm employing a
local search [1], [2]. Subsequently, MAs no longer referred
to a specific algorithmic structure but progressively became a
strategy about the design of algorithms by using multiple and
diverse search operators, see [3].

This fact has been emphasised in the review paper [4] which
categorises MAs into three major groups
• Simple Hybrids: this category includes hybrid algorithms

generated by two or more algorithms (usually one global
and at least one local) combined together in a synergistic
manner, see [1]. Some hybridisations belonging to this
category can be very efficient to address specific domains,
see e.g. [5]–[8].

• Adaptive Hybrids: this category includes hybrid algo-
rithms where multiple local search algorithms are co-
ordinated by a supervising adaptive mechanism e.g.
performance-based like hyperheuristics [9] and meta-
Lamarckian learning [10], diversity-based [11], [12] or
self-adaptation, see [13].

• (Future) Memetic Automation: this category is a vi-
sionary idea that sees memetic algorithms fully self-
generated by machines as a combination of “agents”,
see e.g. [14], [15]. Although this design approach is
still under investigation, some interesting domain-specific
frameworks [16], [17] and prototypes [18] have been
proposed.

Thus, simple and adaptive hybrids tend to have a prear-
ranged structure composed of an evolutionary framework and
one or more local searches (possibly adaptively activated)
that enhance upon the performance of one solution [19].
Conversely, modern MAs are thought as algorithms resulting
from any hybridisation as long as they are capable to efficiently
address a class of problems.

By following this consideration, this paper proposes an
MA based on an unconventional hybridisation to solve bi-
nary problems and focuses on the 0/1 knapsack problem.
More specifically, the proposed algorithm makes use of an
adaptive evolutionary framework which includes an adaptive
variation operator inspired by Evolutionary Strategy (ES) and
another mutation operator that re-samples the points on the
basis of the diversity and historical data. This evolutionary
framework, namely Evolutionary Guider Algorithm, does not
vary the solutions of the knapsack problem but varies the
probabilities of the neurons of a family of Spiking Neural
P Systems (SNPSs) [20], [21]. A SNPS is a general purpose
computational structure belonging to the field of Membrane
Computing, see [22]–[24]. In the context of the proposed MA,
the SNPSs arranged in a family are used as number generators



to generate strings of binary numbers (the candidate solutions
of the 0/1 knapsack problem). Hence, the Evolutionary Guider
Algorithm modifies and detects the parameters that control the
generation of the candidate solutions.

The resulting algorithm namely Adaptive Optimisation
Spiking Neural P System (AOSNPS) enhances a previous
simpler algorithm based on a family of P systems proposed in
[25].

The remainder of this article is organised in the following
way. Section II briefly introduces the 0/1 knapsack problem,
provides the basic definition of P systems (Subsections II-A)
and describes the algorithm in [25] (Subsections II-B and
II-C). Section III describes the proposed AOSNPS. Section
IV displays the numerical results of the proposed approach
in different scenarios and against multiple algorithms used to
solve this problem. Finally, Section V provides the conclusions
of this study.

II. BACKGROUND: 0/1 KNAPSACK PROBLEM AND
OPTIMISATION BY P SYSTEMS

In this paper we aim at solving the 0/1 Knapsack Problem
which is formulated as follows. Given a group of items, each
item with its own weight and price, and a knapsack of limited
capacity, the problem consists of selecting the items to make
the total price of the knapsack as high as possible without
violating its maximum capacity. If we indicate with m the
total number of items available and we label each item with
a number j = 1 . . .m, we may represent the selection of the
items as a vector

x = (x1, x2, . . . xm)

of binary numbers.
Then, the 0/1 Knapsack problem can be expressed as the

maximisation of the function

f (x) =

m∑
j=1

pjxj

subject to
m∑
j=1

ωjxj ≤ C

where pj and ωj are price and weight of the jth item,
respectively and C is the capacity of the knapsack. The
parameters of the problem have been set in following way.
The weights ωj have been sampled from the interval [1,Ω],
with Ω = 50, pj = ωj+

1
2Ω and the average knapsack capacity

C is applied:

C =
1

2

m∑
j=1

ωj .

In the following subsections, we briefly summarise the
relevant theory about P systems and present the Optimisation
Spiking Neural P System (OSNPS) introduced in [25] to solve
the 0/1 knapsack problem.

A. Spiking Neural P System

The SNPS [20], [26] is an automaton represented by the
tuple

Π = (O, σ1, · · · , σm, syn, σout)

where
1) O = {a} is the singleton alphabet, a is called spike
2) σ1, · · · , σm are neurons, where each neuron σi is a pair

σi = (ni, Ri)

with
(a) ni ≥ 0 initial number of spikes contained in σi, e.g.

if the neuron σi has an initial numbers of spikes
ni = 5, it contains the work aaaaa = a5

(b) Ri set of the two following rules:
(i) spiking rule: E/ac → a; d where E is a reg-

ular expression over O, and c ≥ 1, d ≥ 0. The
spiking rule means that a neuron containing a
word ani may lose c < ni spikes after a delay
of d steps

(ii) forgetting rule: as → λ, for some s ≥ 1, with
the restriction that for each rule E/ac → a; d
of type (i) from Ri, we have as /∈ L (E). The
forgetting rule means that a neuron can lose
all its s spikes as long as as does not belong
to the language L (E) identified by the regular
expression E.

3) the connections between neurons are described by the
synapses syn where syn ⊆ {σ1, . . . σm}×{σ1, . . . σm}
with (σi, σi) /∈ syn for i = 1, . . . ,m. The synapses
govern the propagation of the spikes, if the neuron σi
spikes and (σi, σj) ∈ syn then the same spiking action
is repeated on the neuron σj

4) the output neuron σout ∈ {σ1, . . . σm}.
The distinguishing feature of SNPS is that an input causes

a nondeterministic spike train in the output, see [27]. If the
output neuron spikes, then we code this behaviour as a 1 and
otherwise we code it as a 0. Hence, the spike train can be
represented by a sequence of ones and zeros. Details about
the architecture of SNPS are described and discussed in detail
in [20], [25], [28].

B. Extended Spiking Neural P System

In [25], in order to exploit the potentials of SNPSs for
addressing an optimisation problem, the SNPS has been ex-
tended and slightly modified. The resulting implementation of
P system, namely Extended Spiking Neural P System (ESNPS)
is a tuple of the type

Π = (O, σ1, . . . , σm, σm+1, σm+2, syn, I0),

where
1) O = {a} is the singleton alphabet, a is called spike
2) σ1, . . . , σm are neurons of the form

σi = (1, Ri, Pi).



Further comments on the neurons are

(a) in each neuron σi, there is only 1 initial spike (ni =
1,∀i)

(b) Ri = {r1i , r2i } is a set of rules, spiking r1i : a→ a
and forgetting r2i : a→ λ, respectively

(c) Pi = {p1i , p2i } is a finite set of probabilities, where
p1i and p2i are the selection probabilities of rules r1i
and r2i , respectively, and satisfy p1i+p2i=1.

3) The two additional neurons, σm+1 = σm+2 = (1, a →
a), work as a step by step supplier of spikes to neurons
σ1, σ2, . . . , σm.

4) syn = {(σi, σj)|(1 ≤ i ≤ m + 1 AND j = m +
2) OR (i = m+ 2 AND j = m+ 1)}.

5) I0 = {1, 2, . . . ,m} is a finite set of output neurons, i.e.,
the output is a spike train formed by concatenating the
outputs of σ1, σ2, . . . , σm.

The structure of an ESNPS is shown in Fig. 1.
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Fig. 1. Logical and functioning scheme of ESNPS

C. Optimisation Spiking Neural P System

The OSNPS is composed of multiple parallel ESNPSs and
a Guider Algorithm, that supervises the family of ESNPSs, as
shown in Fig. 2.

Each ESNPSi, with 1 ≤ i ≤ H , has the structure shown
in Fig. 1. The Guider Algorithm in Fig. 2 is used to adjust
the probabilities Pi of each ESNPSi. The input of the Guider
Algorithm is a spike train Ts, that is a set of H binary
strings/candidate solutions of length m (a binary matrix of
H ×m elements) produced by each ESNPSi. The output of
the Guider Algorithm is the rule probability matrix PR =

Fig. 2. Structure of OSNPS (and AOSNPS)

[p1ij ]H×m, which is composed of the spiking rule probabilities
of H ESNPSs, i.e.,

PR =


p111 p112 . . . p11m
p121 p122 . . . p12m

...
...

. . .
...

p1H1 p1H2 . . . p1Hm

 .

The probabilities are fed back to the ESNPSs which are
updated accordingly.

Algorithm 1 provides the details of the Guider Algorithm
used in OSNPS [25]. The basic idea is that one current best
solution (binary vector)

x = (x1, x2, . . . xm)

is stored in memory and two candidate solutions xk1 and
xk2 are randomly selected, with a certain probability paj , and
compared on the basis of a fitness (objective function) f that
measures the value/profit of the knapsack. At each objective
function call, in order to handle the case when the total weight
of all selected items exceeds the capacity C, we implemented
the random chromosome repair technique suggested in [29]–
[31].

If xk1 and xk2 are generated, for each design variable
xj , the current solution is perturbed (x inherits the design
variable of the winning candidate solution). Then, the proba-
bility associated with the most successful solution is increased
by a constant learning rate ∆. Conversely, the probability
associated with the candidate solution displaying a lower
performance is reduced. If xk1 and xk2 are not generated, the
binary variable of xj is directly used to affect the probability,
see lines 19-24 of Algorithm 1. More details on OSNPS can
be found in [25].

III. ADAPTIVE OPTIMISATION SPIKING NEURAL P
SYSTEM

The proposed AOSNPS employs the same structure of OS-
NPS depicted in Fig. 2 but hybridises the theoretical computer
science logic of ESNPSs with that of Evolutionary Algorithms
(EAs) [32] to manipulate the probability matrix PR. More
specifically, the Guider Algorithm is an EA embedding two el-
ements inspired by Evolution Strategies (ES) [33], [34] within
it: 1) an adaptive learning rate ∆; 2) an adaptive mutation.
The novel mechanisms are described in Subsections III-A
and III-B, respectively. The new Guider Algorithm embedding
these two elements is outlined in Subsection III-C.

A. Adaptive Learning Rate

The learning rate ∆ is the step size of probability adjustment
for the elements of the probability matrix PR:

p1ij = p1ij + ∆
p1ij = p1ij −∆

with 1 ≤ i ≤ H and 1 ≤ j ≤ m. In [25], ∆ is a
random number between 0.005 and 0.02 set at the beginning
of the optimisation and kept constant throughout the OSNPS
execution.



Algorithm 1 The Guider Algorithm of OSNPS
Require: Spike train Ts, probabilities paj , learning rate ∆,

number of ESNPS H and the current best solution x =
(x1, x2, . . . xm) of length m

1: Rearrange Ts as matrix PR

2: i = 1
3: while (i ≤ H) do
4: j=1
5: while (j ≤ m) do
6: if

(
rand() < paj

)
then

7: k1, k2 = ceil (rand() ∗H), k1 6= k2 6= i and
correct xk1 and xk2 if violate the constraint

8: if (f (xk1) > f (xk2)) then
9: xj = xk1

10: else
11: xj = xx2

12: end if
13: if (xj == 1) then
14: p1ij = p1ij + ∆
15: else
16: p1ij = p1ij −∆
17: end if
18: else
19: if (xj == 1) then
20: p1ij = p1ij + ∆
21: else
22: p1ij = p1ij −∆
23: end if
24: end if
25: if (p1ij > 1) then
26: p1ij = p1ij −∆
27: else
28: if (p1ij < 0) then
29: p1ij = p1ij + ∆
30: end if
31: end if
32: j = j + 1
33: end while
34: i = i+ 1
35: end while
Ensure: Rule probability matrix PR

We propose here a variable and adaptive learning rate ∆. In
order to better explain the rationale of the proposed adaptation,
let us revisit the role of p1i of ESNPS presented in Section II-B.

The term p1i is the selection probability of rule r1i while r1i
is the spiking rule in each neuron. If the value of p1i is large,
the rule r1i has a high probability of execution and the rule r2i
has a low probability of execution since p1i + p2i = 1. If the
output neuron spikes, a 1 is written in the candidate solution,
otherwise a 0 is written. Thus, if we want to get 1, p1i should
be large (ideally p1i = 1 ) and if we want to get 0, p1i should
be small (ideally p1i = 0).

This paper proposes an adaptive probability adjustment step
size for each neuron. At each time unit, the adaptive updating

rule of probability is

p1ij = p1ij + ∆a
ij

where ∆a
ij (a stands for “adaptive”) is the step size and is

defined as

∆a
ij =

Pb − p1ij
2

.

∆a
ij is designed to take the middle point of the distance

between the current probability p1ij and the ideal probability.
The ideal probability Pb = {0, 1} is the lower or upper bound
of the probability of p1ij (the pedex b stands for “bound”). For
Pb = 1 the update rule is

p1ij = p1ij +
1− p1ij

2
= 0.5 + 0.5p1ij

while for Pb = 0 the update rule is

p1ij = p1ij +
0− p1ij

2
= 0.5p1ij .

Compared with the learning rate ∆ defined in OSNPS, the
adaptive learning rate ∆a

ij proposed in this paper presents the
following advantages.
• ∆a

ij changes for each neuron at each time unit during the
algorithm execution by following the learning needs. If
the distance between the current probability p1ij and the
ideal probability Pb is big, the learning rate ∆a

ij is big.
On the other hand, if the distance between the current
probability p1ij to the ideal probability Pb is small, the
learning rate is also small.

• The adaptive learning rate allows a quick achievement of
the desired probability. For example, if we want to get
1 from a neuron, from an initial probability p1ij = 0.1
the proposed adaptive learning rate ∆a

ij enables to reach
0.9 < p1ij < 1 after four steps whereas with a constant
∆ over 40 steps are needed.

• The probability of p1ij does not overflow. In OSNPS, it
may result p1ij > 0 or p1ij < 0. In this case, an extra
mechanism is required. The use of the proposed adaptive
learning rate ensures that the probability overflow never
occurs.

B. Adaptive Mutation

The proposed AOSNPS makes also use of an adaptive
mutation strategy. Two dynamic parameters Pm1 and Pm2 are
defined to characterise and monitor the evolutionary state of
AOSNPS. The parameter Pm1 is the first mutation probability
which varies between 0 and 1 and is defined as follows:

if Gbf (gen) > Gbf (gen− 1) then
Pm1 = 0

end if
if Gbf (gen) = Gbf (gen− 1) then
Pm1 = Pm1 + 1

Nmax

end if



where Gbf (gen) is the best fitness value ever computed at
the generation time of the execution and Gbf (0) is the best
fitness at the initialization. The parameter Nmax determines a
stopping criterion: if the global best fitness does not improve
for consecutive Nmax generations the algorithm stops.

The parameter Pm2 is the second mutation probability and
is defined as follows:

Pm2 =
DPa(gen)

DPa(0)

where DPa (gen) is an aggregated metric representing the
diversity (of probabilities) at the current generation gen, see
[11], [12]. This value is calculated as:

DPa (gen) = 2
(H−1)(H−2)

H−1∑
i=1

(
H∑

j=i+1

1
m

m∑
k=1

∣∣∣pgenik − p
gen
jk

∣∣∣) .
The value DPa(0) is the average probability at the initializa-
tion.

The triggering rule for adaptive mutation is defined as

rand1() < Pm1 AND rand2() > Pm2

where rand1() and rand2() are two random numbers in the
range [0 1].

The logic of the mutation probabilities Pm1 and Pm2 is
summarised in the following points.
• If a new current best solution has been detected at the

current generation (Gbf (gen) > Gbf (gen− 1)), then the
mutation is not triggered (Pm1 = 0). Conversely, if the
current best solution has not been updated (Gbf (gen) =
Gbf (gen− 1)), the probability of triggering the mutation
is increased (Pm1 = Pm1 + 1

Nmax
).

• If the diversity DPa(gen) is larger than that at initial-
ization DPa(0)), the probability for the mutation to be
triggered is low.

• If the current best solution is not updated for many
generations ((Gbf ) remains the same), and the diversity
DPa(gen) of the probability matrix PR is low, the
mutation is performed with a high probability (Pm1 is
large, Pm2 is small).

When triggered the mutation of the matrix PR is performed
in the following way:

for i = 1, 2, · · · , H with i 6= Rbestfit do
for j = 1, 2, · · · ,m do

if rand3() < Pmj then
p1ij = rand()

end if
end for

end for

where rand3() and rand() are two random numbers in the
range [0 1]. The mutation probability Pmj is a parameter
sampled in the range [0 0.1] at the beginning of the Guider
Algorithm’s execution. Rbestfit ∈ [1 H] is the row coordinate
of the best candidate solution found at the current generation.
This means that the best candidate solution, in an elitist
fashion, does not participate to the mutation.

C. The Evolutionary Guider of Adaptive Optimisation Spiking
Neural P System

Based on the adaptive learning rate and the adaptive mu-
tation rule, the Guider Algorithm is an EA operating on the
learning probabilities to support the generation of successful
solution for the 0/1 knapsack problem.

One current best solution x is stored in memory and modi-
fied by crossover with other candidate solutions. The candidate
solutions are generated by the parallel ESNPSs (one solution
by each ESNPSj) and processed in pairs by the Evolutionary
Guider Algorithm that evaluates and compare their fitness
values. The evaluation of these candidate solutions are used
to modify the probability matrix PR and hence generate
solutions with a higher performance. Like for OSNPS, the
constraint is handled by means of the random chromosome
repair technique, see [29]–[31].

The evolution of the PR matrix is handled by two mecha-
nisms: the update of the adaptive learning rate which happens
every time two candidate solutions are sampled and described
in Subsection III-A, the re-initialisation of the neuron prob-
ability which is triggered only by the satisfaction of the
conditions described in Subsection III-B. Hence, we may
consider AOSNPS as a co-evolutionary memetic algorithm,
see [8], [35], [36], where the candidate solutions of the 0/1
knapsack problem evolve with the probabilities of the neurons
in each of the P systems. Each P system can be seen as an
a local search algorithm (each of them depends on different
probabilities). In this unconventional memetic algorithm, the
probabilities are directly manipulated by an adaptive EA,
the Evolutionary Guider Algorithm, while the fitness refers
only to the solutions generated by the P systems. The latter
have the role of searching the decision space on the basis
of the probabilities determined by the Evolutionary Guider
Algorithms.

The pseudocode of the proposed Evolutionary Guider is
shown in Algorithm 2.

IV. NUMERICAL RESULTS

In order to validate the proposed AOSNPS, we tested it
against the following algorithms designed/used in the literature
to solve the 0/1 kanpsack problem
• Genetic Quantum Algorithm (GQA) [37]
• Novel Quantum Evolutionary Algorithm (NQEA) [38]
• Optimisation Spiking Neural P System (OSNPS) [25]

For each algorithm we used the recommended parameter
setting used in the original paper. The proposed AOSNPS
has been run with H = 50 ESNPS with 1002 neurons each.
Regarding the Evolutionary Guider Algorithm, the learning
probability paj (j = 1, . . . ,m) uses the same value used in
OSNPS (a random number in the range [0.05, 0.2]), the muta-
tion probabilities pmj = 0.01 (j = 1, . . . ,m) and Nmax = 500.

The 0/1 knapsack problem has been run in
different scenarios (problem instances), i.e. m =
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000.
Each algorithm in this paper has been run for 30 independent



Algorithm 2 The Evolutionary Guider Algorithm of AOSNPS
Require: Spike train Ts, probabilities paj , mutation probability Pm

j ,
number of ESNPS H and the current best solution x =
(x1, x2, . . . xm) of length m

1: Rearrange Ts as matrix PR, initialise gen = 0 and Pm1 = 0
and then calculate Gbf (0) and DPa(0)

2: while (Pm1 ≤ 1) do
3: gen = gen+ 1
4: i = 1
5: while (i ≤ H) do
6: j=1
7: while (j ≤ m) do
8: if (rand () < paj ) then
9: k1, k2 = ceil(rand ∗ H), k1 6= k2 6= i and correct

xk1 and xk2 if violate the constraint
10: if (f (xk1) > f (xk2)) then
11: xj = xk1

12: else
13: xj = xk2

14: end if
{Adaptive Learning Rate}

15: if (xj == 1) then
16: p1ij = 0.5 + 0.5p1ij
17: else
18: p1ij = 0.5p1ij
19: end if
20: else
21: if (xmax

j == 1) then
22: p1ij = 0.5 + 0.5p1ij
23: else
24: p1ij = 0.5p1ij
25: end if
26: end if
27: j = j + 1
28: end while
29: i = i+ 1
30: end while

{Adaptive Mutation}
31: calculate Gbf (gen), DPa(gen) and Rbestfit

32: if (Gbf (gen) > Gbf (gen− 1)) then
33: Pm1 = 0
34: else
35: Pm1 = Pm1 +

1
Nmax

36: end if
37: Pm2 = DPa(gen)

DPa(0)

38: if (rand1() < Pm1 AND rand2() > Pm2) then
39: i = 1
40: while (i ≤ H) do
41: if i 6= Rbestfit then
42: j = 1
43: while (j ≤ m) do
44: if rand3() < Pm

j then
45: p1ij = rand()
46: end if
47: j = j + 1
48: end while
49: end if
50: i = i+ 1
51: end while
52: end if
53: end while
Ensure: Rule probability matrix PR

runs. Each run has been continued for 400000 function calls,
that 8000 generations for the AOSNPS. Table I displays
the numerical results in terms of mean value µ ± standard
deviation σ of the knapsack cost f (x). The best results for
each problem instance are highlighted in bold.

Furthermore, the statistical significance of the results has
been enhanced by the application of the Wilcoxon rank sum
test, see [39]. A “+” indicates that AOSNPS significantly
outperforms competitor, a “-” indicates that the competitor
significantly outperforms AOSNPS, and a “=” indicates that
there is no significant difference in performance.

Numerical results in Table I show that the proposed memetic
implementation is very efficient to address the 0/1 knapsack
problem since AOSNPS achieves the best results in nine
cases out of the ten considered. In only one scenario (with
the smallest number of items m = 1000) NQEA achieves
slightly better results than AOSNSP. The effectiveness of
the Evolutionary Guider appears from the direct comparison
against OSNPS: AOSNPS systematically outperforms OSNPS.

In order to further strengthen the statistical analysis of the
presented results, we performed the Holm-Bonferroni [40]
procedure for the eight algorithms (NA = 4) and ten problem
instances (Np = 10). The rank Rk for k = 1, . . . , NA by
assigning, for each problem instance has been calculated. For
each problem instance, a score NA is assigned to the best
algorithm, a score NA − 1 to the second best, . . ., 1 to the
worst algorithm. The ranks Rk are the scores averaged over
all the problem instances. Let us indicate with R0 the ranking
of AOSNPS. For the remaining NA − 1 algorithm the score
zk is calculated as the values zk have been calculated as:

zk =
Rk −R0√
NA(NA+1)

6Np

.

By means of the zk values, the corresponding cumulative
normal distribution values pk have been calculated, see [41]:

pk =
2√
π

∫ ∞
−zk√

2

e−t
2

dt.

These pk values have then been compared with the corre-
sponding δ/k where δ is the level of confidence, set to 0.05
in this case.

These pk values have then been compared with the cor-
responding δ/k where δ is the level of confidence, set to
δ = 0.05 in this case. Table II displays the ranks, zk values,
pk values, and corresponding δ/k obtained. Moreover, it is
indicated whether the null-hypothesis (that the two algorithms
have indistinguishable performances) is “Rejected”, i.e. the
algorithms have statistically different performance, or “Ac-
cepted” if the distribution of values can be considered the
same (there is no outperformance).

The Holm-Bonferroni procedure in Table II shows that
AOSNPS achieves the best performance over all the algorithms
taken into account. It can be observed that AOSNPS achieves
the best ranking and significantly outperforms GQA and
OSNPS.



TABLE I
MEAN VALUE ± STANDARD DEVIATION OF THE KNAPSACK COST FOR THE ALGORITHMS AND PROBLEM INSTANCES UNDER CONSIDERATION

m GQA NQEA OSNPS AOSNPS
µ σ W µ σ W µ σ W µ σ

1000 26340.617 162.941 + 29273.757 131.036 = 28089.664 311.094 + 29225.319 186.584
2000 52908.434 208.761 + 58515.548 293.090 + 56150.321 535.740 + 58561.778 385.807
3000 78059.658 276.459 + 85886.637 502.8594 + 82745.029 692.8688 + 86738.048 586.712
4000 103801.413 422.955 + 113690.579 666.608 + 109458.886 724.4787 + 114706.678 831.661
5000 131224.181 342.227 + 142077.755 713.820 + 137927.802 835.4819 + 143601.783 1328.339
6000 157119.187 415.339 + 169516.775 577.702 + 164674.207 730.2888 + 171543.765 1515.563
7000 182669.798 440.894 + 196377.110 873.184 + 191659.447 849.2236 + 200107.477 1218.512
8000 208561.466 322.213 + 223674.462 953.050 + 217577.959 1128.401 + 227193.619 1531.739
9000 233945.639 570.136 + 249931.187 916.934 + 244397.767 1129.060 + 254551.819 1162.772
10000 259881.277 541.028 + 276903.178 1159.924 + 270663.831 769.233 + 282101.492 1774.430

TABLE II
HOLM-BONFERRONI PROCEDURE WITH AOSNPS AS REFERENCE (RANK

3.9000E+00)

Rk zk pk
δ
k Test

NQEA 3.1e+00 -1.3856e+00 1.6586e-01 5.00e-02 Accepted
OSNPS 2.0e+00 -3.2909e+00 9.9869e-04 2.50e-02 Rejected
GQA 1.0e+00 -5.0229e+00 5.0884e-07 1.67e-02 Rejected
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Fig. 3. Average performance trend (best cost detected Gbf over the genera-
tions) for OSNPS and AOSNPS.

In order to emphasise the advantages of the proposed
memetic approach over the version [25], we present in Fig.
3 the performance trend of OSNPS and AOSNPS. The trends
clearly show the superiority of the newly proposed AOSNPS
throughout the entire evolution.

Finally, in order to illustrate how the concept of convergence
can be exported to the context of P systems, we plotted the
average Hamming distance Dhm calculated over all binary
strings produced by the H ESNPSs at each generation gen:

Dhm =
2

H(H − 1)

H∑
i=1

H∑
j=i+1

1

m

m∑
k=1

(xik ⊕ xjk)

where, xik and xjk are the kth bits in the ith and jth binary
solutions, respectively; m is the number of bits in a binary
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Fig. 4. Average Hamming distance Dhm (measurement of the population
diversity) for OSNPS and AOSNPS.

solution; H is the number of individuals (number of ESNPSs);
the symbol ⊕ represents the OR operator.

It can be noticed that a large value of Dhm indicates a high
variety between each pair of (binary) candidate solutions in a
population. The plot in Fig. 4 shows that AOSNPS achieves
and maintains much higher population diversity values than
OSNPS. Higher diversity values appear to be beneficial to
overcome suboptimal basins of attraction and enhance upon
the current best solution.

V. CONCLUSION

This paper proposes a novel MA generated by the com-
bination multiple spiking neural P systems and an adaptive
Evolutionary Guider Algorithm for solving the 0/1 knapsack
problem. Each neural P systems generates a (binary) candidate
solution on the basis of the probabilities encoded in its neurons
while the Evolutionary Guider Algorithm supervises the search
by optimising the functioning of the spiking neural P systems.

The resulting algorithm, Adaptive Optimisation Spiking
Neural P Systems (AOSNPS), has been thoroughly tested over
multiple problem instances and against various algorithms
used to solve the 0/1 knapsack problems. Numerical results
show that this unconventional approach is indeed powerful and



is able to outperform its competitors for most of the problems
under consideration. Furthermore, a direct comparison with
another algorithm based on a similar structure shows the
superiority of AOSNPS in terms of both solution detected and
population diversity.

A further important contribution of this study is the novel
memetic logic that successfully combines theoretical computer
science and metaheuristic optimisation.
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