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Abstract—Malicious apps use various methods to spread
viruses, take control of computers and/or IoT devices, and
steal sensitive data such as credit card numbers or other
personal information. Despite the numerous existing means of
intrusion detection, malware code is not easily detectable. The
primary issue with current malware detection approaches is
their inability to identify novel attacks and obfuscated malware,
as they rely on static bases of malware examples, making
them susceptible to new unseen malware behaviors. To address
this, we propose a new method for malware recognition, which
consists of two processes: the first process creates new instances
of malware using a memetic algorithm, and the second process
detects these new instances of attacks through solid detectors
produced by an artificial immune system-based algorithm. Our
new malware recognition method has proven its merits through
thorough experiments on widely used datasets and evaluation
metrics, and has been compared to prominent state-of-the-art
methods.

Index Terms—Malware, Memetic algorithms, Artificial im-
mune systems

I. Introduction

Malware is malicious software created to access a
computer or any other device and cause damages to it.
Malicious programs try to find their way to the targeted
systems, which are usually connected to Internet most
of the time, either for work or for personal use, with
the widespread of IoT technology. We can easily notice
that IoT technology is vulnerable to malware attacks
especially due to the fact that IoT devices lack robust
security measures [1]. In this concern, different methods
were proposed which try to detect malware programs
relying on specific features within the apps. Those features
can be classified with regards to their type either as static
or dynamic, which depends on the nature of the used
detection method [2] (i.e., signature-based, behavioral-
based or heuristic-based method). Various methods and
techniques were proposed in literature to enhance the
array of computer security means where the use of (deep)
neural networks [3] and evolutionary algorithms (EAs)
[4], [5], was particularly present in recent works. Those
methods showed interesting results in detecting malware
when assessed using static stored malicious samples which
is no longer the case when tested against new unknown
variants of malware. This can be explained by the lack of

diversity of the malware samples. In another perspective,
many works relied on machine learning classifiers [6]
to set new detection rules but those rules led to high
percentages of false positives. In this paper, we propose a
two-step detection approach, named IMMU-Det, which is
distinguished by the combination of a Memetic Algorithm
(MA) and an Artificial Immune system (AIS) based
algorithm relying on a clonal selection process to generate
a diverse population of immune cells (detectors in our
case). The first step is the one that will generate a new
set of "memes", those are the malicious variants (vectors
of Application Programming Interface (API) calls) that
will serve, in the following step, as input (antigens) to
the AIS based algorithm which, in turn, will produce
detectors. Those detectors will help reveal the true nature
of unknown applications.

Let us mention that an API is a collection of protocols,
procedures, and functions that enables data exchange
between numerous programs and gadgets. An analysis of
the API calls invoked within an app’s running process
regarding their number or their nature (i.e., sensitive or
not) will greatly help anti-malware producers to examine
the app’s behavior and categorize it afterwards as a safe
or a dangerous app. The key contributions of our work
are as follows:

1) The suggestion of a new malware detection process
based on AIS combined with MA, where the AIS-
based clonal selection algorithm generates a set of
effective and reliable detectors capable of detecting
new malicious codes generated by a MA.

2) The MA-based schema serves as an excellent exam-
ple of the advantages of genetic algorithm extended
by a local search module which optimizes the search
space of potential generated malicious codes (i.e.,
memes). It helps selecting the most challenging
memes which will have impact on the detection
quality of the detectors, output of the AIS-based
clonal selection algorithm.

3) The advantages of coupling a MA and an AIS-based
clonal selection algorithm are highlited in the exper-
imental results showing a more accurate prediction



of the nature of new apps and a consequent decrease
in erroneous decisions.

4) Our IMMU-Det approach has outperformed a num-
ber of malware detection techniques and engines
in terms of accuracy maximization and false alarm
decrease.

The rest of this paper is organized as follows: Section
III-A presents the essential descriptions tied to MA and
AIS-based clonal selection algorithm used in this work.
Section II presents related previous works. Section III
describes our proposed approach. The experimental setup
and the results of the performance analysis are given in
Section IV, and the conclusion is given in Section V.

II. Related work
In this section we will present recent related works that

essentially focus on malware detection.
For instance, we can refer to the work of [7] where

authors designed three self-supervised attack techniques:
(1) the first technique considers the IoT input data
and the adversarial sample generation in real-time. (2)
The second technique builds a generative adversarial
network model to generate adversarial samples in the self-
supervised structure. Finally, the third technique utilises
three well-known perturbation sample techniques to de-
velop adversarial malware and inject it over the self-
supervised architecture. Also, authors applied a defense
method to mitigate these attacks, namely, adversarial
self-supervised training, to protect the malware detection
architecture against injecting the malicious samples. The
method showed good detection rates when assessed using
a known dataset but we can expect lower detection rates
as the detection task and the generation task are done
separately. In another work [8], authors suggested to
consider the detection rules generation process as a bi-
Level optimization problem, where an inner optimization
task is embedded within the outer one. The goal of the
outer task is to generate a set of detection rules in the
form of trees of combined patterns. The inner task aims to
generate a set of artificial malicious patterns that escape
the rules of the outer task. The main limitation of the
method is the existence of irrelevant malicious patterns
which lead to produce detection rules with consequent
rate of false alarms. In the work of [9] authors proposed
a hybrid deep generative model that exploits global and
local features together to detect the malware variants.
They first transformed malware into an image to represent
global features with pre-defined latent space, then, they
extract local features using the binary code sequences. The
two features extracted from the data with their respective
characteristics are concatenated and entered into the
malware detector. While achieving interesting detection
results, we can notice that the transformation phase can
cause data loss. The study of [10] investigated whether
genetic algorithm-based feature selection helps Android
malware detection. Authors applied nine machine learning

algorithms with genetic algorithm-based feature selection.
In fact, experiments were conducted to select permission
and API method information features to apply machine
learning classification algorithms. The main flaws within
this method are: (1) the use of only static features and,
(2) the run-time needed is relatively important (approxi-
mately 15 hours). Authors in [11] proposed an approach
that combines global search and local search heuristics,
through a memetic evolutionary search process. The tabu-
search algorithm is used as the local search technique,
to improve the quality and fitness of solutions through
scouring the neighbourhood of each solution for better
individuals. Even so, the overall method needs to improve
the ability of the search technique in order to converge
towards high-quality solutions. Also, we can refer to the
work of [12] where authors proposed an approach, called
MDEA, an Adversarial Malware Detection model that
uses evolutionary optimization to create attack samples
to make the network robust against evasion attacks. The
proposed model suffers from overfitting shortcomings and
the generation of dead species of malware patterns. In
the work of [13], authors used an ensemble classifier
consisting of multiple one-class classifiers to detect known
and unknown malware misusing registry keys and vаlues
for malicious intent. The main limitation is that they relied
only on the benign programs to build the registry model.

Among the works that relied on AIS to detect malicious
codes, we can cite [5] where authors developed a virus-
oriented computer defense immune system (CDIS) bаsed
on biological strаtegies. The model showed its limits when
confronted to unknown malware bases.

Generally, the main limitation in these models lies in
the fact that their training phase relies on particular
datasets that might fast become outdated as new viral
types continue to emerge.

III. Memetic - AIS - based detection method: IMMU-Det
A. Preliminaries

a) Memetic Algorithms: Memetic algorithms [14] are
a type of optimization algorithms that combine elements
of genetic algorithms and local search techniques. They
are named "memetic" because they are inspired by the
concept of memes, which are self-replicating ideas or
behaviors that can spread and evolve within a population.

In memetic algorithms, a population of solutions to a
problem is evolved through a process of selection, mu-
tation, and recombination, similar to genetic algorithms.
However, in addition to these genetic operators, memetic
algorithms also incorporate local search procedures that
can fine-tune individual solutions and improve their
quality. The general steps for implementing a memetic
algorithm are as follows:

1) Define the optimization problem and determine the
parameters of the memetic algorithm, such as the
population size, the number of generations, and the
crossover and mutation rates.



2) Initialize the population with a set of random solu-
tions.

3) Evaluate the fitness of each solution in the popula-
tion.

4) Apply genetic operators (e.g., crossover and muta-
tion) to the population to generate new solutions.

5) Apply local search to each solution in the population
to improve its quality.

6) Repeat steps 3-5 for the specified number of gener-
ations or until a satisfactory solution is found.

7) Return the best solution found by MA.
It is important to note that the specific steps for im-
plementing a memetic algorithm may vary depending on
the problem being solved and the specific requirements
of the algorithm. In fact, memetic algorithms have been
applied to a variety of optimization problems, including
combinatorial optimization, continuous optimization, and
multiobjective optimization [15].

In the context of malware detection, memetic algorithms
could eventually be used to search for patterns or features
that are indicative of malware. The genetic operators could
be used to explore different combinations of features, while
the local search procedures could be used to fine-tune
the selection of features and improve the accuracy of the
detection model. An adaptation of MA is adopted within
our proposed method which can be found in Section III.

b) Artificial immune systems and clonal selection:
Artificial immune systems (AIS) are computational models
inspired by the immune system of living organisms. They
are used for various tasks such as pattern recognition,
novelty detection, and anomaly detection. AIS have been
applied to the task of detecting malware. In fact, in the
context of malware detection, the immune cells in the
AIS population may be trained to recognize patterns or
features that are indicative of malware. These patterns
may include specific code sequences, file header values, or
other characteristics that are commonly found in malware
but not in benign software. When the AIS-based detection
method is presented with a new file, it can use the immune
cells to search for these patterns and determine whether
the file is likely to be malware. If the file is deemed to
be malicious, the AIS-based method can take appropriate
actions, such as quarantining the file or alerting the
user. One advantage of using AIS for malware detection
is that it can adapt to new types of malware as they
emerge, by creating new immune cells to recognize them.
This can make it more effective at detecting zero-day
vulnerabilities, which are vulnerabilities that have not yet
been identified and patched.

One approach to implementing AIS is to use a Clonal
Selection Algorithm (CSA) [16], which involves creating a
population of "immune cells" that are trained to recognize
certain patterns or anomalies. These cells are then used to
search for and identify similar patterns in new data. The
principles of clonal selection are based on the following
concepts:

1) Initializаtion: Rаndomly initialize a populаtion of
individuаls (N ).

2) Evaluаtion: Given a set of patterns to be recognized
(P), for each pattern, determine its affinity (match)
with each element of the population.

3) Selection and cloning: Select a number (n) of the best
highest аffinity elements of N and generаte copies of
these individuаls proportionаlly to their affinity with
the аntigen.

4) Hypermutation: Mutаte all the copies with a rаte
proportional to their affinity with the input pattern.

5) Receptor editing: Add the mutated individuals to
the population and reselect a number (d) of the
mаturated (optimized) individuаls as memory.

6) Repeаt steps 2–5 until a termination criterion is met.
In this work, a new method for Android malware

detection based on MA and a clonal selection based
algorithm, referred to as "IMMU-Det", is proposed and
Figure 1 shows its overall process.

From Figure 1, we cаn distinguish two main phases:
the first phase is based on a MA and is responsible
for the diversification of malware variants whereas the
second phase is responsible for the detection process by
adapting an AIS-based clonal selection algorithm, i.e., an
adapted version of the clonal selection algorithm. More
precisely, in the first part (phase 1), we use a MA in
order to generate new variants, called memes, of malware.
Those memes will be fed to ac based algorithm (phase 2)
to produce efficient set of detectors capable of revealing
unseen malware behaviors.

B. Memes generation
Let us recall that the aim of our MA is to produce

"memes" assessed during the generation process in order
to keep the "best" ones (Figure 2). To be able to perform
this generation process, we need to precise that the
individuals processed by the MA are vectors composed of a
succession of API calls (i.e., sequence of API calls) coupled
with their respective weights as illustrated in Figure 3.

The weight of a given API call is its appearance
frequency in a specific API call sequence and is used
to determine the Quality (Equation 2) of a meme. This
calculated Quality, together with the affinity of a specific
meme (Equation 3), will determine the fitness of the
generated meme. In order to be more accurate, the
computation of a meme’s affinity is based on the difference
between two measures: the similarity measure, given by
the Jaccard index [18], of a meme compared to the input
set of individuals (vectors of API calls) and the penalty
measure (Equation 4) which could be considered as the
average similarity distance between the generated meme
and all the other generated memes.

More precisely, and as detailed in Algorithm 1, the
evolutionary step (Algorithm 1, line 1) generates the
memes which will go through (1) an evaluation process
(Algorithm 1, lines 2-4) followed by (2) a solution variation



Fig. 1. IMMU-Det’s overview.

Fig. 2. The process of generating individuals. Inspired by [17].

Fig. 3. Representation of an individual (vector of API calls).

process relying on evolutionary operators (crossover –
create new candidate individuals by merging information
contained in selected parents– and mutation –modifying
one individual at a time–) (Algorithm 1, lines 5-11).
The evolutionary step is then extended by a local search
(Algorithm 1, lines 12 and 15) which could be seen as
performing local refinements to the produced memes.

a) Fitness function: The evaluation process relies
on a fitness function, Equation 1, that mainly uses two
metrics for the memes’ evaluation process. These metrics
are introduced in Equations 2 and 3 where the first one
(Equation 2) measures the quality of a meme based on the
API calls composing it and their corresponding weight.
The weight (wk) of an API call (Vk) is the normalized
number of its occurrence in the corresponding meme. The

Algorithm 1 Evolving Individuals Algorithm
Inputs:N : Population size, G: Number of generations, MS:
Malicious input set (individuals)
Output: MeM : Solutions (memes)
1: P0 ← Initial-Population(MS)
2: For each I0 in P0 do
3: I0 ← Evaluation(P0)
4: End For
5: g ← 1
6: While g < G do
7: Cg ← Variation(Pg−1)
8: Cg ← Evaluation(Cg,MS)
9: Comg ← Cg ∪ Pg−1

10: Pg ← Selection(N , Comg)
11: FP ← BestSelection(Pg)
12: BL ← LocalSearch(Pg)
13: g ← g + 1
14: End While
15: MeM ← LocalSearch(BL)

second metric (Equation 3) measures the affinity between
the generated meme and the initial set of individuals (i.e.,
the malicious input set) while guaranteeing an overlapping
factor which denotes the overlap distance between a meme
Mi and other memes.

FitnessM =

∑n
i=1 Quality(Mi)

|M | +
∑n

i=1 aff(Mi,I)

|I|

2
(1)

Quality(Mi) =

m∑
k=1

Vkwk (2)

aff(Mi, I) =

l∑
j=1

S(Mi, Ij)− Pty(Mi) (3)

Pty(Mi) =

∑
Mj ,i̸=j S(Mi,Mj)

|M |
(4)



For more easiness regarding the reading of Equations 1
to 4, Table I gives the variables’ signification.

TABLE I
Variables signification. (Equations 1;2;3;4)

Variable Signification
Mi Generated meme (i ∈ [1,n]; n is the total number

of generated memes).
Ij Initial set of malicious individuals i.e., malicious input

vectors; j ∈ [1,l]; l is the total number of malicious
input vectors).

Vk ID of an API call. (Figure 2).
wk The corresponding weight of an API call Vk.

As already mentioned, the similarity between two indi-
viduals X and Y is S(X,Y) and is calculated using Jaccard
coefficient which measures similarity between finite sample
sets, two vectors of API calls (memes) in our case, and is
defined as the size of the intersection divided by the size
of the union of the memes.

b) Local search: An important aspect to consider
when using a MA is the determination of a local search
algorithm to improve the quality of each individual in
a given population as fast as possible. In our study Hill-
climbing [19] is implemented as it uses very little memory,
and can often find reasonable solutions in large or infinite
state spaces. Let us briefly recall that Hill-climbing is
an iterative process that starts with a randomly chosen
solution to a problem and then makes small adjustments
to the solution in an effort to find a better one. Other
local search algorithms could be possibly used but this is
beyond the scope of this paper.

C. Detectors generation
In this section, we present how an AIS-based clonal

selection algorithm could be applied to detect malware.
We propose to protect an operating system from malware
intrusions by modeling a detection system that generates
a set of detectors which will serve to reveal potential
malicious behaviors of given apps.

Algorithm 2 Detectors generation process
Inputs:SMI: Set of malicious individuals
Output: SD: Set of final detectors
1: D0 ← Initial-Detectors(SMI)
2: For each MI0 in SMI do
3: D0 ← Evaluation(SMI)
4: g ← 1
5: While g < G do
6: Dg ← Evaluation-Sort(Dg−1,SMI)
7: SDg ← Aff-Prunning(SDg,)
8: SDg ← Aff-Insertion(SMI)
9: SDg ← Maturation(SDg)
10: g ← g + 1
11: End While
12: End For
13: SD ← Prunning(SDg)

The generation of detectors’ step, as shown in Algorithm
2, starts by gathering the antigens (vectors of API calls
also referred to as malicious individuals (SMI)). A new
population of detectors (SD) is produced from the antigen
group (Algorithm 2, line 1). The detectors set’s size
is equal to the number of original antigens. Then, the
population of detectors is exposed to each antigen, and for
each detector, an affinity value to the antigen is computed.
After that, the detectors are sorted according to decreasing
affinity (Algorithm 2, lines 2-6). Detectors with better
affinity value are selected and other detectors are deleted
(Algorithm 2, lines 7-8). Afterwards, the maturation
operation (Algorithm 2, line 9) takes a detector as an
input and with a change on that detector generates a new
sample. In fact this operator is the substitute operator of
mutation operator in genetic algorithms and is responsible
for creating diversity in a population. Each detector is
exposed to a new antigen, and detectors use their affinity
to compete with one another and the detector that has
more affinity value is allowed to copy more samples of
itself.

Euclidean distance (Equation 5) was employed in our
study to quantify the affinity between the set of malicious
individuals (SMI) and the detectors.

dist(Dk,MIu) =

√√√√ Q∑
i=1

(Dk
i −MIui )

2 (5)

where SD = {D1,D2,. . . ,Dnd} is the set of detectors,
and SMI = {MI1,MI2,. . . ,MIns} is the set of mali-

cious individuals.
The detection task is about predicting an input vector

(IV) of API calls which is either malicious or normal.
Expression 6 is used for such prediction:

Classify(IV, θ, dist, SD) =

{
malicious if dist(SD, IV ) < θ
normal else.

(6)
where θ is a threshold value that reflects the minimum

similarity value beyond which the input vector cannot be
considered as malicious. In this study, the value of 0.5 is
adopted for θ.

IMMU-Det’s detection process can classify application,
either as malicious or normal, based on a set of detectors
which are non other than the final output of the AIS-based
clonal selection algorithm. Figure 1 shows the classification
process.

IV. Experimental analysis
The goal of our analysis is to assess our proposed detec-

tion method and to give an insight about the registered
results specially when compared to the most recent state-
of-the-art methods. In order to do that, we need to answer
the following research questions (RQs):

• RQ1: To which extent can our detection method
unmask malicious code? To answer RQ1, we will



discuss the registered detection rates and the metrics
used for this purpose.

• RQ2: Can our detection method be considered com-
petitive among the existing state-of-the-art detection
methods? To answer RQ2 a set of comparisons to
most recent state-of-the-art methods is conducted
relying on different evaluation metrics.

• RQ3: How can our method score low false alarms
rates? To answer RQ3, we will show the added value
of the use of the MA in enhancing the quality of the
produced detectors and its role in reducing the false
alarms rates.

Samples from the Canadian Institute for Cybersecurity
were used in our experimental study: CIC-MalMem-2022
(58 596 records) used to produce the detectors, and CCCS-
CIC- AndMal-2020 (400 000 Android static/dynamic mal-
ware samples)1 used for the evaluation of our method.
To show that our method is not fitting the base of
samples, we selected a dataset that is distinct from the one
used for training. In https://www.unb.ca/cic/datasets/
andmal2020.html, the datasets are described in depth. In
all of the conducted experiments, a 10-fold cross validation
test is performed, and are run on an Intel

®
Xeon

®

Processor CPU E5-2620 v3, 16 GB RAM.

A. Evaluation metrics, results and comparisons to state-
of-the-art methods

In order to answer RQ1 and to assess our method a set
of evaluation metrics were used. These are the recall (RC),
the specificity (SP), the accuracy (AC), the precision
(PR), the F_score (FS), the area under curve (AUC),
the false positive rate (FPR) and the false negative rate
(FNR). Also, for the sake of running the MA and AIS-
based algorithm, a set of parameters need to be fixed.
Table II shows the values set to run our algorithm. From

TABLE II
Used parameters.

IMMU-Det
MA AIS-based algorithm

Population size 200 100
Generation size 6000 1000
Mutation rate 0.05 0.01 0.05 0.1
Crossover rate 0.8 – – –

Accuracy – 97.67 97.29 97.65
Precision – 97.31 97.01 97.29

Training time – 49h43mn 50h29mn 76h01mn
03s 00s 34s

Table II, we can conclude that the mutation value of
0.01 helped the AIS-based clonal algorithm reach the
best accuracy and precision rates (97.67% and 97.31%
respectively) with a reasonable training time. This can be
explained by the fact that high mutation rates can cause
a premature convergence of the algorithm and also a high
computational cost.

1https://www.unb.ca/cic/datasets/andmal2020.html

TABLE III
Comparison between IMMU-Det and a set of different classifiers.

Classifier/ RC SP AC PR FS AUC FPR FNRapproach
IMMU-Det 97.79 97.32 97.67 97.31 97.65 85.12 01.09 01.13

LR 79.49 77.46 78.44 76.66 78.05 60.62 02.31 03.34
NB 49.89 50.11 50.78 49.22 50.33 55.11 05.01 04.92
RF 75.38 73.48 74.39 72.45 73.38 72.94 02.752 02.36
J48 70.11 70.96 71.03 70.86 70.98 63.90 03.91 03.87

k-NN 70.50 70.44 70.47 70.39 70.45 60.44 03.96 03.94
SVM 95.59 94.79 95.35 94.73 95.32 71.88 01.27 01.05

Light GBM 92.29 89.73 90.97 89.41 90.83 69.96 02.18 01.70
SGA 96.06 89.73 95.74 95.90 95.73 95.89 04.27 03.92

J48: Decision Tree; NB: Naive Bayes; k-NN: k-Nearest Neighbours;
LR: Logistic Regression; SVM: Support Vector Machine;RF: Random
Forest; Light GBM: Light Gradient-Boosting Machine; SGA: Simple
Genetic Algorithm.

Table III represents the obtained results of IMMU-Det
and compares them to other classifiers. This can show the
performance of our model when confronted to new data
and also to answer RQ2. Concerning IMMU-Det’s results
and their comparison to the state-of-the-art methods,
IMMU-Det achieved an accuracy of 97.67%, a recall of
97.79%, a precision of 97.31% and a false positive and a
flase negative rates of 01.09% and 01.13 %, respectively.
Also, SGA, SVM and Light GBM performed better than
the other classifiers while ranking below IMMU-DET.
In fact, SGA, SVM and Light GBM registered 95.90%,
95.35% and 90.97% of accuracy respectively, and 95.73%,
94.73% and 89.41% of precision. Also, SGA registered
04.27% of false positive rate whereas SVM and Light
GBM reached respectively 01.27% and 02.18% of false
positive rate. The IMMU-Det obtained interesting values
of true positives and true negatives can be explained by
the quality of detectors produced by the clonal selection
algorithm. We can thus conclude that our model was
capable of accurately determining the true nature of the
unknown apps.

Table IV shows the classification performance of all
compared classifiers to IMMU-Det in terms of CPU time
consumption in the training and the prediction processes.
In fact, IMMU-Det required important time for training
but is comparable in terms of execution time for prediction
to other methods. For instance, IMMU-Det required about
50mn to predict the unknown samples which can be
considered reasonable when compared to the time required
by Light GBM and SGA (about 48mn) and the RF
classifier (approximately 1h 33 mn). The fastest prediction
time was obtained with K-NN classifier which needed
about 30mn to perform the prediction task. The training
time consumption can be explained by the required time
to run the MA and the AIS-based algorithm.

Figure 4 shows the TPR-FPR ROC curve of IMMU-Det
and the different classifiers used for the sake of compar-
isons. The Naive Bayes approach has the lowest curve
when compared to IMMU-Det and all other classifiers,
when we rely on the AUC values of all the models to

https://www.unb.ca/cic/datasets/andmal2020.html
https://www.unb.ca/cic/datasets/andmal2020.html


TABLE IV
Performance of the classifiers during training and prediction

processes.

Classifier CPU time
Training process Prediction process

IMMU-Det 49h43mn03s 00h52mn30s
LR 03h03mn12s 00h31mn54s
NB 00h59mn01s 00h28mn42s
RF 30h45mn35s 01h32mn15s
J48 01h42mn23s 00h31mn00s

k-NN 01h12mn08s 00h29mn54s
SVM 82h33mn41s 89h02mn00s

Light GBM 64h03mn00s 00h48mn23s
SGA 63h45mn23s 00h48mn02s

measure their ability to differentiate classes. Also, Figure
4 shows the models’ PRC (Precision-Recall Curve) graph.
It can be seen that when the Naive Bayes algorithm’s recall
values rise, the precision value quickly falls after a certain
point and is below the 0.7 precision threshold. There is
some variation in the precision numbers when the recall
levels of the J48 and k-NN algorithms drop. However, it
may be claimed that SVM and Light GBM have the ideal
balance over the rest of the classifiers. Finally, IMMU-
Det produced the least amount of misclassifications while
performing good classification results.

B. Importance of MA and the clonal selection algorithm
In order to rate IMMU-Det’s performance and to answer

RQ3, a comparison to recent works is performed. We
compared our work to six state-of-the-art works. Two
among them use either a MA or an AIS-based algorithm
and those are the methods of [5] and [13] and were
previously introduced in Section II. And the four other
methods are more recent ones ( [20] [3] [10] [12]). The
work of [20] proposed to use an algebraic topological
approach called topological-based data analysis (TDA) to
analyze and detect malware patterns. Authors compared
the different TDA techniques (i.e., persistence homology,
tomato, TDA Mapper) and existing techniques (i.e., PCA,
UMAP, t-SNE) using different classifiers. Also, the work
of [3] suggested to use data obtained through memory
analysis to provide insights into the behavior and patterns
of malware based on the fact that malware leave traces
on memories relying on different classifiers as well. The
works of [10], [12] were previously presented in Section II
as well.

As reported from Table V, we can deduce that, when
compared to the state-of-the-art methods, IMMU-Det
outperformed the work of [20], [3], [12] and also the work
of [10] in terms of registered accuracy using the CIC-
MalMem-2022 dataset. For instance, [20] registered an
accuracy value ranging between 80% and 100% when using
the Persistence Diagram whereas [3] and [12] reached an
accuracy of 97.67% and 94.00% respectively. Also, [10]
registered 88.40% of accuracy when using AdaBoostM1.
IMMU-det’s interesting results show its ability to reveal
the true nature of unknown apps and that can be explained
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Fig. 4. IMMU-Det’s obtained ROC curves with different classifiers.

by the fact that the memetic algorithm helped produce a
set of unseen malware behaviors that, in turn, helped the
AIS clonal selection algorithm in its task of producing
reliable detectors. More precisely, the clonal selection
algorithm when fed with challenging malicious codes
succeeded in improving the quality of the detectors. For
instance, those detectors succeeded in registering 97.67%
of accuracy when tested against the CIC-MalMel-2022
dataset. Also, when compared to methods relying on
MA [13] or AIS [5], IMMU-Det showed high performance
in terms of accuracy and that can confirm the fact
that the MA helped produce better malicious samples.
Those malicious samples, when fed to the clonal selection
algorithm helped produce more effective detectors. So, we
can say that by improving the quality of the input dataset
(input malicious vectors) of the clonal selection algorithm,



TABLE V
IMMU-Det’s detection results compared to state-of-the-art

methods on the CIC-MalMem-2022. (except [5], [10], [12], [13])

Anti-malwareAccuracy (%)
IMMU-Det 97.67%
[20] approximately 80% with Persistence Diagram
[3] 97.67 %(with MLP)
[5] 89% (using TIMID virus and EICAR)
[13] 96.99% (using Windows samples)

[10] 98.10%(using MultilayerPerceptron)
88.40% (using AdaBoostM1)

[12] 94.00%

we succeeded in producing better quality detectors.

V. Conclusion, discussion and future directions
The fundamental problem with current malware de-

tection methods is their limitation when tested against
unseen malware due to their use of static datasets of
malware behaviors during the training phase. To overcome
such problems, in this paper, an innovative malware detec-
tion method, IMMU-Det, is proposed. IMMU-Det’s overall
process is composed of two steps. The first one relies on
a MA to produce "memes", malicious API call vectors,
that mimic the behaviour of the real API calls extracted
from malware but are at the same time characterized
by their new unseen behavior, and will hence serve as
input for the clonal selection algorithm which, in turn,
produces "detectors". Those detectors are used to unmask
malicious unknown apps. IMMU-Det brought important
contributions: (1) a detection process combining a MA
with an AIS-based clonal selection algorithm, (2) leverage
the benefits of both algorithms when combined together,
(3) improvement of the detection rates and decrease of
false alarms rates (4) assessment using various evaluation
metrics and comparison to the most recent state-of-the-
art detection methods. IMMU-Det succeeded to register
97.67% of accuracy and only 01.09% of FPR.

Despite the good registered detection rates, we came
to realize that IMMU-Det could be improved in four
main aspects. The first aspect focuses on the increase of
diversity of Android sample attributes utilized to construct
the detection model. More specifically, we want to rely
on additional Android features (i.e., permissions) and not
just be limited to API calls when it comes to the task
of conceptualizing both the detectors and the memes.
We also want to investigate additional feature selection
techniques that might, for example, rely on Reinforcement
learning. A second aspect is to address the amount of time
the model needs to train. In fact, designing an adaptive
parameter tuning technique that attempts to approximate
the optimal parameter values for the EAs could be an
interesting option to optimize the training time utilized in
the system’s training process. Also, the third aspect could
be the search for an alternative component to produce new
malicious codes. Varying the malicious codes used to build
the detection model could improve the detection rates.

Finally, the fourth aspect will mainly focus on expanding
the scope of the current work to other operating systems.
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