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Abstract—NeuroEvolution automates the generation of Artifi-
cial Neural Networks through the application of techniques from
Evolutionary Computation. The main goal of these approaches
is to build models that maximize predictive performance, some-
times with an additional objective of minimizing computational
complexity. Although the evolved models achieve competitive
results performance-wise, their robustness to adversarial exam-
ples, which becomes a concern in security-critical scenarios,
has received limited attention. In this paper, we evaluate the
adversarial robustness of models found by two prominent Neu-
roEvolution approaches on the CIFAR-10 image classification
task: DENSER and NSGA-Net. Since the models are publicly
available, we consider white-box untargeted attacks, where the
perturbations are bounded by either the L2 or the L∞-norm.
Similarly to manually-designed networks, our results show that
when the evolved models are attacked with iterative methods,
their accuracy usually drops to, or close to, zero under both
distance metrics. The DENSER model is an exception to this
trend, showing some resistance under the L2 threat model,
where its accuracy only drops from 93.70% to 18.10% even
with iterative attacks. Additionally, we analyzed the impact of
pre-processing applied to the data before the first layer of the
network. Our observations suggest that some of these techniques
can exacerbate the perturbations added to the original inputs,
potentially harming robustness. Thus, this choice should not be
neglected when automatically designing networks for applications
where adversarial attacks are prone to occur.

Index Terms—Adversarial Examples, Convolutional Neural
Networks, NeuroEvolution, Robustness.

I. INTRODUCTION

The design of Artificial Neural Networks (ANNs) is a time-
consuming trial-and-error process that requires domain exper-
tise. The design choices affect one another and this interde-
pendence must be considered when dealing with increasingly
complex models which often reach thousands or millions of
parameters. To alleviate these issues, NeuroEvolution (NE)
uses evolutionary approaches to automate the search for better
topologies and parametrization of ANNs.

Models designed through NE achieve competitive results in
comparison with manually-designed ANNs, sometimes even
surpassing their performance [1], [2], [3], [4], [5]. Thus, it
is reasonable to consider that these models can be applied
in real-world scenarios. However, their adoption in such cases
means that concerns other than predictive performance must be
addressed. In the particular case of security-critical systems,
such as autonomous vehicles or malware detectors, one of
such concerns is the models’ vulnerability to adversarial ex-
amples [6], [7]. These malicious examples are usually crafted
by adding small perturbations to the original inputs causing
the attacked model to produce an incorrect output [8], [9].
Restrictions are often imposed on the maximum perturbation
that can be added so as to try to keep the adversarial example
and the original input indistinguishable [8], [9]. In the image
domain, the perturbations are often bounded by some Lp-
norm [8], [10]. ANNs designed by humans have been widely

studied and are known to be vulnerable to these attacks, but
it is still unclear the extent to which ANNs obtained through
the application of NE suffer from this vulnerability.

Our goal is to empirically evaluate the resistance of ANNs
designed by NE to adversarial examples, with a focus on
image classification tasks and Convolutional Neural Networks
(CNNs). We consider threat models where the attacker’s goal
is simply to cause a misclassification of a given instance,
i.e., we perform untargeted attacks, and has full access to the
models, i.e., we perform white-box attacks. Similar to previous
work in adversarial machine learning, we consider L2 and L∞-
bounded perturbations [11], and white-box attacks that maxi-
mize the loss function while constraining the perturbations to
a pre-defined budget under each distance metric.

Our analysis is performed by attacking pre-trained models
for the CIFAR-10 dataset [12], made publicly available by
the authors of the corresponding NE approaches. We consider
DENSER [1] and two variants of NSGA-Net models [3], all
of which achieving an accuracy above 93% on clean images.
These models, and their training, do not incorporate any
defense mechanism against adversarial examples. Thus, any
robustness that is shown can be likely attributed to architec-
tural aspects of the ANNs. Moreover, the NE approaches only
seek to maximize predictive performance, while directly or
indirectly minimizing computational complexity.

Our results show that these evolved models are susceptible
to adversarial attacks, similar to hand-designed ANNs. Using
iterative methods, like the basic iterative method (BIM) [13]
and the projected gradient descent (PGD) attack [14], their
accuracy drops dramatically, to values below 0.25% under
both distance metrics. DENSER deviates from this behavior
and shows some resistance to L2 perturbations, keeping its
accuracy at 21.76% under a BIM attack with 100 iterations.
When reducing the iterations to 50 but incorporating 10 ran-
dom restarts, the accuracy falls further to 18.10%. On the other
hand, the models that use the architectures found by NSGA-
Net, especially when applied to the NASNet search space, are
more robust to the single-step attacks of our experiments. We
could also identify distinct patterns in the misclassifications
produced by the models, even under the same attack and
when the accuracy of all of them is zero. For instance, some
misclassify the adversarial examples of a class into a small
subset of classes, while the misclassifications of other models
are much more spread out.

Furthermore, we warn about the choice of data pre-
processing procedures and the effect of such transformations
on the perturbations added to the clean inputs. Certain tech-
niques can exacerbate these perturbations before the data
reaches the first layer of the network, which in a way makes it
easier for the attacker to succeed in generating an adversarial
example under a certain perturbation budget. For this reason, it
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might be worth including this component in the search process
of NE approaches. Moreover, all training conditions, including
any model-specific pre-processing step, should be clearly
specified when evaluating adversarial robustness, especially
when comparing models from different sources.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of NE approaches and ad-
versarial machine learning, and presents relevant work on
the intersection of the two fields. Section III describes our
experimental setup in terms of datasets, models, adversarial
attacks, and evaluation metrics. Section IV presents the results
of the experimental campaign and discusses our main findings.
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we overview key concepts and methods from
the fields of NeuroEvolution (NE) and adversarial machine
learning, after which we present relevant work on the intersec-
tion of these two areas of research. We mainly focus on image
classification and Convolutional Neural Networks (CNNs).

A. NeuroEvolution
Neural Architecture Search (NAS) is the field which deals

with designing the optimal architecture of an ANN in an
automated way. Different search strategies have been pro-
posed, including Reinforcement Learning [15], [16], [17],
Evolutionary Computation [1], [2], [3], [4], [5], [18], as well
as gradient-based methods [19].

NeuroEvolution (NE) approaches, which are the main focus
of this work, refer to those which apply techniques from
Evolutionary Computation. Especially since 2017, remarkable
results have been achieved by several NE approaches that
automate the search for CNNs [1], [2], [3], [4], [5], [18].
Two of such proposals, DENSER [1] and NSGA-Net [3], are
described in more detail in what follows.

In DENSER [1], each candidate solution is represented at
two levels, the genetic algorithm (GA) level and the dynamic
structured grammatical evolution (DSGE) [20] level. The
GA level encodes the macro structure of the ANN (layers
and order in which they are connected) and any additional
hyperparameters (learning strategy and data augmentation pro-
cedures, for instance) as a sequence of evolutionary units. Each
evolutionary unit stores a non-terminal symbol later used at the
DSGE level, as well as the minimum and maximum number of
times the unit can be used. At the DSGE level, the parameters
of the evolutionary units (e.g., layer type, number of filters,
filter size, activation functions) are encoded through a context-
free grammar. DENSER uses crossover and mutation operators
at both levels.

NSGA-Net [3] is explicitly designed to solve a multi-
objective optimization problem. It uses the NSGA-II algo-
rithm [21] to maintain a trade-off frontier between candi-
date solutions that maximize classification performance but
minimize computational complexity (defined by the number
of floating-point operations in the forward pass). Each can-
didate solution is represented by a bit string that encodes
computational blocks (referred to as phases). In turn, each
computational block can be regarded as a directed acyclic
graph of several nodes, with each node representing a single
operation (e.g., convolution, pooling, batch-normalization) or a
sequence of operations. This representation follows the method
from [18] with a minor modification. Similar to DENSER,
NSGA-Net also makes use of crossover and mutation oper-
ators. Additionally, at the end of the evolutionary process,

ANNs are designed by sampling phases from a Bayesian
Network which models the relationship between these com-
putational blocks as seen in the architectures found during the
search procedure.

In practice, NSGA-Net constrains the search space based
on prior knowledge of successful architectures. Namely, the
number of phases and the maximum number of nodes on each
phase are set to 3 and 6, respectively, and the changes in spatial
resolution between phases are also fixed. Moreover, each node
encompasses the same sequence of operations. When it comes
to DENSER, the main restriction is at the GA level in how
the different layers can be connected (i.e., layers are connected
sequentially without skip-connections). In the original work,
the search space includes CNNs of up to 40 hidden-layers
(30 convolution or pooling layers, at most, followed by a
maximum of 10 fully-connected layers).

B. Adversarial Machine Learning
Adversarial examples are maliciously crafted so as to

make an attacked model produce incorrect outputs [9], [22].
Throughout the years, several methods have been proposed
in the literature to craft such attacks, under different threat
models. These threat models can be defined based on the goals,
knowledge, and capabilities of the adversary [10].

A distinction can be made based on the adversary’s knowl-
edge about the model: architecture and parameters, training
algorithm and training data, randomness at test-time, and
allowed level of query access [23]. In this work, we focus
on white-box attacks, where the adversary has full access to
the model.

A further distinction can be made between untargeted and
targeted attacks. In the particular case of image classification
tasks, the goal of untargeted attacks is simply to make the
model predict a class different from the true label of a given
instance, while the goal of targeted attacks is to make the
model produce a misclassification into some desired class [8].
Formally, x is an input with correct label y and C is the
classifier under attack. In the untargeted setting, an adversarial
example xadv is such that C(xadv) 6= y. On the other hand, a
targeted attack would aim at crafting xadv given a target t 6= y
such that C(xadv) = t.

An adversarial example is usually obtained by adding some
perturbation δ to a benign image [22]. Constraints are usu-
ally imposed on the capabilities of the adversary in terms
of the maximum perturbation that can be added, so that
xadv remains close to the original input and its true label
remains unchanged [10]. In the image domain, a common
approach is to use Lp-norms for those bounds such that∥∥x− xadv∥∥

p
≤ ε, where ε is the perturbation budget and

usually p ∈ {0, 1, 2,∞} [10], [24].
Optimization-based methods are an important category of

white-box attacks. Some of such methods try to minimize the
perturbation, while others try to maximize some loss function
(typically the cross-entropy loss) [23], [24]. We present some
of the latter methods assuming an untargeted setting.

The fast gradient sign method (FGSM) [6] is a one-step
gradient-based attack optimized for the L∞-norm which gen-
erates an adversarial example as:

xadv = x+ ε · sign (∇xL(x, y))

where ∇xL(x, y) is the gradient of the cross-entropy loss
with respect to the input image. When this method is optimized



for the L2-norm, we obtain the fast gradient method (FGM)
which generates an adversarial example as:

xadv = x+ ε · ∇xL(x, y)
‖∇xL(x, y)‖2

In both cases, the perturbed image should be clipped in
order to maintain a valid data range.

We present the methods that follow for L∞ adversaries, but
these definitions can be easily adapted to the case where L2

bounds are imposed, similar to what is done with FGM.
A straightforward extension of the FGSM attack is to take

multiple small steps (with step size α) and clip the result by ε
at each iteration. The clipping operation also takes into account
the valid range of data values. This results in the basic iterative
method (BIM) [13] which can be defined as:

xadv0 = x,

xadvi+1 = clipε
{
xadvi + α · sign

(
∇xL(xadvi , y)

)}
The projected gradient descent (PGD) method [14] is an-

other iterative attack which only differs from BIM on how
xadv0 is set. In the case of PGD, instead of starting from
the original input, a random perturbation bounded by ε is
generated and added to x.

In an attempt to stabilize the update directions and escape
from local optima, the momentum iterative fast gradient sign
method (MI-FGSM) [24] incorporates momentum [25] into
the BIM method. The Auto-PGD (APGD) method [26] is a
variation of the PGD attack which adjusts the step size in
an automated way. The authors of APGD also proposed an
alternative to the cross-entropy loss called difference of logits
ratio (DLR) loss. In addition to being invariant to shifts of the
logits, the DLR loss is rescaling invariant [26].

Adversarial robustness evaluations typically consist of per-
forming adversarial attacks to obtain an upper bound of the
robustness of a model [11]. One resorts to this approximation
since computing it exactly is usually intractable [10], [11].

Several defenses against adversarial examples have been
proposed in the literature. Such defenses tend to be designed to
be robust to one specific threat model [10]. Adversarial train-
ing [14], and variants like ensemble adversarial training [27],
have shown the most promising results when it comes to
increasing the robustness of models. The main idea behind
these methods is to incorporate adversarial examples in the
training procedure of a model. Many of the other methods
were circumvented shortly after their proposal [23], [28].

C. Related Work
RobustBench [11] aims at benchmarking adversarial ro-

bustness under different threat models, namely Lp-robustness
with p ∈ {2,∞} and common image corruptions [29]. In
addition to a leaderboard aggregating the evaluations of several
robustness-enhancing proposals, a Model Zoo containing pre-
trained models from top entries of the leaderboard is also
available. While the primary goal of RobustBench is to assess
defenses against adversarial attacks, we focus on the general
robustness of a model from an architectural point-of-view.

In [30], a comparison is made between CNNs and more
recent architectures, such as the Vision Transformer [31] and
the MLP-Mixer [32], which have achieved promising results
in computer vision tasks. This work relates to ours in that
architectural differences are at the core of the analysis, but

we solely focus on CNNs and try to establish a comparison
between hand-crafted models and models that result from an
evolutionary search.

The experiments conducted by [33] are closer to our ap-
proach since the authors also look at adversarial robustness
from an architectural perspective and include both manually-
designed architectures and architectures found by NAS ap-
proaches (such as an NSGA-Net model) in their analysis.
In contrast to this work, we focus only on NeuroEvolution
methods. Moreover, we consider not only L∞-robustness but
also L2-robustness, and we try to perform attacks that bring
the accuracy of at least one of the target models to zero under
each threat model.

There is also a growing body of work that uses NAS
approaches, including NE, to find robust models [34], [35],
[36]. However, and as pointed out by [33], adversarial training
is often incorporated in these studies. Thus, it is difficult
to assess the role of architectural aspects on the robustness
exhibited by the models. In the case of [36], robustness
is explicitly included in the objective function, once again
making it difficult to understand if the models found by NE
are inherently more robust than the ones crafted by humans.

III. EXPERIMENTAL SETUP

In this section, we detail the methodology followed to
evaluate the adversarial robustness of the models. We conduct
all the experiments on the CIFAR-10 dataset [12], which
consists of 32 × 32 RGB images divided into 10 classes.
The training set has 50000 images while the test set has
10000, with an equal number of examples from each class. The
original pixel values are in [0, 255], but we always operate on
pixels modeled as real numbers by applying a pre-processing
step to normalize the values to the interval [0, 1].

A. Target Models
We evaluate models designed by two NE approaches:

DENSER [1] and NSGA-Net [3]. This choice was mainly
based on two criteria: firstly, models had to be directly trained
on the CIFAR-10 dataset, and secondly, pre-trained models
(i.e., network weights) had to be publicly available, so as to
introduce as little bias as possible from our end. In fact, all the
attacked models are pre-trained and publicly available. We use
these models directly, without re-training them, but describe
some relevant differences in the training procedures.

The WRN-28-10 architecture [37], a manually-designed
wide residual network, is used as the baseline model in
our experiments for a variety of reasons: its performance on
CIFAR-10 is similar to that of the models from the two NE
approaches, the work which proposes NSGA-Net [3] also
uses it as a baseline, and some of the defenses from the
RobustBench leaderboard [11] are based on this architecture.
In particular, we use the pre-trained model from the Model Zoo
of RobustBench 1, which was trained with the 50000 training
images of CIFAR-10, without any data augmentation. Besides
converting the pixel values to [0, 1] as previously described,
no further pre-processing is applied to the data.

In what concerns DENSER [1], we select the network that
achieved the best accuracy on the CIFAR-10 test set over 10
evolutionary runs. The models resulting from 5 independent
training runs of this network are publicly available 2, but,
again, we solely attack the one with the highest test accuracy.

1https://github.com/RobustBench/robustbench
2https://github.com/fillassuncao/denser-models



In these training runs, the original work used the complete
training set of CIFAR-10 and applied a data augmentation
method which includes padding, horizontal flipping, and ran-
dom crops (similar to what is done in [5]). In addition
to converting the pixel values to real numbers, the data is
expected to be centered around zero before being fed to the
first layer of the network. Following [1], this is accomplished
through the removal of the mean pixel value per location and
color channel (calculated on the entire training set).

As far as the NSGA-Net approach [3] is concerned, we
conduct experiments with a pre-trained model from the macro
search space described in Section II-A (NSGA-M), as well as
three variants of the architecture obtained by using the cells
found by NSGA-Net on the NASNet micro search space [38]
(NSGA-mA, NSGA-mB, and NSGA-mC with an increasingly
higher number of model parameters, as shown in Table I). In
the original work, cutout [39] was used to train these models,
together with a data augmentation strategy similar to the one
adopted by DENSER, which includes padding, random crops,
and horizontal flipping. For the three models from the micro
search space, the scheduled path dropout technique [38] was
also adopted, together with an auxiliary head classifier, whose
loss is aggregated with the loss from the main network [3].
After converting the pixel values to real numbers, the data
is expected to be normalized using pre-calculated means and
standard deviations for each color channel. Further details
about these architectures and training procedure can be found
in the original paper [3] and the source code repository 3.

An overview of the size of the models used in our exper-
iments, as given by the number of trainable parameters, is
presented in Table I.

TABLE I
OVERVIEW OF THE MODELS IN TERMS OF NUMBER OF PARAMETERS AND

ACCURACY ON THE CLEAN EXAMPLES OF THE CIFAR-10 TEST SET.

Model Number of Parameters Clean Accuracy
WRN-28-10 36.48M 94.78%

DENSER 10.81M 93.70%
NSGA-M 3.37M 96.27%

NSGA-mA 1.97M 97.57%
NSGA-mB 2.20M 97.78%
NSGA-mC 4.05M 97.98%

B. Threat Models and Attacks

Since all models are publicly available, we consider the
scenario in which the attacker has full access to the target
model, i.e., we perform white-box attacks. Furthermore, we
consider untargeted attacks, where the adversarial perturba-
tions are bounded by ε = 8/255 under the L∞-norm or, in
the case of the L2-norm, by ε = 0.5. The perturbation budgets
ε were chosen based on threat models used in previous works,
namely in the RobustBench benchmark [11].

We focus on attacks that craft adversarial examples by solv-
ing a constrained optimization problem instead of attacks that
aim at finding minimal adversarial perturbations. Therefore,
we attack the chosen models using different configurations
(number of iterations and number of random initializations)
of FGSM / FGM, BIM, and PGD. For the iterative attacks
(i.e., BIM and PGD), we set the step size to α = ε/4. We use
the Python implementations of the attacks by the Adversarial
Robustness Toolbox (ART) library [40].

3https://github.com/ianwhale/nsga-net

C. Baseline Performance
The accuracy of the models on the clean examples of

the test set is shown in Table I. For a fair comparison, we
only generate adversarial examples on samples that initially
receive a correct classification by the model under evaluation.
Nevertheless, when reporting the models’ accuracy of adver-
sarially generated samples, we consider the complete test set
of CIFAR-10. It is important to mention that an untargeted
attack is considered to be successful if the model produces
a misclassification, regardless of the predicted class. For this
reason, no perturbation needs to be added to a sample that is
already incorrectly classified.

While the DENSER models are implemented in Keras /
TensorFlow 2, the baseline and the NSGA-Net models are in
PyTorch. We reiterate that all models were trained using a
standard procedure and no defensive method was applied.

IV. RESULTS AND DISCUSSION

The accuracy of the models on the adversarial examples
generated under the threat model that considers L∞-robustness
is shown in Table II. We present the results for the FGSM
attack, for FGSM with 10 random initializations (FGSM-10),
and for the BIM attack with 10 and 50 iterations (BIM-10 and
BIM-50, respectively). In this case, the attacks operate in [0, 1]
and any additional model-specific pre-processing is applied to
the images after the adversarial perturbations are added.

A brief perusal of the results reveals that the DENSER
model is the most susceptible to L∞ attacks. Even in the case
of single-step attacks like FGSM, the accuracy falls below
10% when random restarts are incorporated. On the other
hand, the models that result from the application of NSGA-
Net to the NASNet search space are the most resistant to
single-step attacks. In fact, they achieve higher accuracy on
the adversarially perturbed images than the baseline model.
Nevertheless, given enough iterations, the accuracy of all
models drops to zero under this threat model. This suggests
that these NE approaches do not seem to find L∞-robust
models, at least if that objective is not explicitly included in
the evolutionary process.

Table II also shows the adversarial accuracy of the models
under the threat model that considers L2-bounded perturba-
tions. We present the results for the FGM attack, for the
BIM attack with 10, 50, and 100 steps (BIM-10, BIM-50,
and BIM-100, respectively), as well as for the PGD attack
with 10 random restarts and 50 iterations (PGD-50-10). We
again report the results when the attacks operate in [0, 1] and
any additional model-specific pre-processing is applied after
the adversarial perturbations are added to the images.

The strongest L2 attacks in our analysis (BIM-100 and
PGD-50-10) bring the accuracy of the models to below 1%
and, in the case of NSGA-M and NSGA-mB, to zero. Surpris-
ingly, and contrary to what was observed with the L∞ attacks,
this does not hold true for the DENSER model whose accuracy
just drops to around 20% under this threat model. However,
the DENSER model remains the most susceptible under the
single-step FGM attack, while the NSGA-Net models from the
search space of NASNet remain the most robust.

Moreover, a comparison between the three NSGA-Net mod-
els from the micro search space reveals that NSGA-mB is
the least robust of the three, even though it is more complex
(i.e., it has a higher number of parameters) than NSGA-
mA. This is observed under both distance metrics, but the
susceptibility of NSGA-mB is particularly higher than that of



TABLE II
ACCURACY ON THE CIFAR-10 TEST SET WHEN THE ATTACKS OPERATE IN [0, 1]. THE HIGHEST REPORTED ACCURACY UNDER EACH ATTACK IS IN BOLD.

WRN-28-10 DENSER NSGA-M NSGA-mA NSGA-mB NSGA-mC

L∞
ε = 8/255

FGSM 28.85% 16.37% 35.08% 52.09% 51.86% 55.06%
FGSM-10 11.03% 6.19% 9.28% 25.02% 22.49% 26.92%
BIM-10 0.02% 0.00% 0.00% 0.16% 0.00% 0.02%
BIM-50 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

L2
ε = 0.5

FGM 47.61% 44.76% 48.51% 61.34% 60.61% 64.06%
BIM-10 2.01% 30.76% 0.23% 3.04% 0.73% 2.57%
BIM-50 0.16% 24.13% 0.00% 0.26% 0.01% 0.35%

BIM-100 0.09% 21.76% 0.00% 0.12% 0.00% 0.23%
PGD-50-10 0.08% 18.10% 0.00% 0.11% 0.00% 0.21%

TABLE III
ACCURACY ON THE CIFAR-10 TEST SET WHEN ALL MODEL-SPECIFIC PRE-PROCESSING IS APPLIED TO THE ORIGINAL INPUTS BEFORE PERFORMING

THE ATTACKS. THE HIGHEST REPORTED ACCURACY FOR EACH ATTACK IS IN BOLD.

DENSER NSGA-M NSGA-mA NSGA-mB NSGA-mC

L∞
ε = 8/255

FGSM 16.37% 46.65% 60.61% 61.57% 63.64%
FGSM-10 6.16% 40.82% 58.41% 58.88% 60.97%
BIM-10 0.00% 2.70% 12.22% 8.36% 12.70%
BIM-50 0.00% 0.81% 6.87% 3.86% 6.96%

L2
ε = 0.5

FGM 44.75% 67.96% 78.11% 77.70% 80.12%
BIM-10 30.77% 25.98% 48.60% 44.80% 49.61%
BIM-50 24.13% 17.57% 41.63% 37.43% 42.04%
BIM-100 21.76% 16.86% 40.72% 36.46% 41.09%

PGD-50-10 18.10% 15.99% 40.10% 35.38% 40.05%

TABLE IV
ACCURACY ON THE CIFAR-10 TEST SET WHEN THE ATTACKS OPERATE IN [0, 1], BUT THE GENERATED IMAGES ARE POST-PROCESSED. THE HIGHEST

REPORTED ACCURACY FOR EACH ATTACK IS IN BOLD.

WRN-28-10 DENSER NSGA-M NSGA-mA NSGA-mB NSGA-mC

L∞
ε = 8/255

FGSM 28.85% 16.38% 35.08% 52.09% 51.86% 55.06%
FGSM-10 11.15% 6.28% 9.45% 25.19% 22.70% 27.13%
BIM-10 0.02% 0.00% 0.00% 0.16% 0.00% 0.02%
BIM-50 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

L2
ε = 0.5

FGM 47.69% 44.86% 48.62% 61.46% 60.82% 64.24%
BIM-10 2.02% 30.77% 0.23% 3.10% 0.75% 2.67%
BIM-50 0.16% 24.13% 0.00% 0.26% 0.01% 0.38%

BIM-100 0.09% 21.76% 0.00% 0.12% 0.00% 0.24%
PGD-50-10 0.08% 18.10% 0.00% 0.14% 0.01% 0.23%

NSGA-mA and NSGA-mC under the BIM-10 attack with L2

perturbations. Unlike NSGA-mA and NSGA-mC, NSGA-mB
does not use Squeeze-and-Excitation blocks. Thus, it seems
that Squeeze-and-Excitation may help improve the robustness
of an ANN, an hypothesis worth investigating in future work.
The discrepancies in the relative robustness of the models
between the two distance metrics demands further analysis.
Namely, it would be of interest to understand what aspect of
the DENSER model makes it more L2-robust and why it does
not seem to help the model against L∞ attacks.

A. Impact of Data Pre-Processing
In Section III, we described the different pre-processing

steps applied to the images before they reach the first layer
of each model. Contrary to WRN-28-10 and DENSER, the
pre-processing for the NSGA-Net models changes the scale
of the data (i.e., the difference between the maximum and
the minimum values of a feature is larger than 1). Therefore,
the NSGA-Net models perceive the adversarial perturbations
as approximately 4 times larger than the perturbation budget
of the threat model. To show this effect, we craft adversarial
examples after all the pre-processing steps have been applied
to the data, instead of operating in the [0, 1] range. By doing
so, the perturbation budget refers to the distance in the space
in which the first layer of a network expects the data to be.

The results of this experiment are shown in Table III for
both the L∞ and the L2 attacks. The baseline model is
excluded from this analysis since it only requires the data

to be in [0, 1], without centering or standardizing it. We
can see that, as expected, there is no significant difference
between these results and those from Table II regarding the
DENSER model. On the other hand, the robustness of the
NSGA-Net models appears to be much higher, especially in
the case of L2-bounded perturbations. This shows that the
choice of data pre-processing should not be neglected when
designing networks under scenarios where adversarial attacks
may be of concern. In the particular case of NE approaches,
one might even consider including this design choice in
the evolutionary process. Additionally, works that focus on
robustness evaluations should clearly specify the conditions
under which the models were trained, including any model-
specific pre-processing step.

We also evaluate the impact of converting the pixel values
back to integers, such that each value is between 0 and 255.
We just consider the case in which the attacks operate in the
range [0, 1] and any additional pre-processing is applied after
the perturbations have been added to the images. Therefore, we
multiply each pixel value by 255 and round to the nearest even
integer. We then re-apply all pre-processing steps required
by the model and report the accuracy on the post-processed
examples. Table IV shows the results for the attacks under
both distance metrics.

For the L∞ attacks, differences are mainly detected when
random restarts are incorporated (FGSM-10). The attack suc-
cess rate slightly deteriorates, but the differences are of less
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(a) BIM-50, L∞-constrained
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(b) BIM-100, L2-constrained

Fig. 1. Confusion matrices for the WRN-28-10 model under two attacks.

than 0.25% and seem negligible. As far as the L2-bounded
attacks are concerned, the largest differences occur with FGM
but also seem negligible (always of less than 0.25%). The suc-
cess of the attacks is mostly affected by this post-processing
procedure when their target is an NSGA-Net model from the
NASNet search space.

B. Analyzing Misclassifications through Confusion Matrices
To complement our analysis, we looked into the confusion

matrices of each model under different attacks. Even when
an attack brings the accuracy of all models to zero (e.g.,
the L∞-constrained BIM-50 attack), different patterns in their
misclassifications can be observed.

As shown in Fig. 1a, under an L∞-bounded BIM-50 attack,
WRN-28-10 produces misclassifications for each class that are
spread out across the remaining classes. Moreover, it seems
to favor mainly two classes, bird and cat, with most examples
being misclassified as such. Under the L2-constrained BIM-
100 attack (Fig. 1b), the misclassifications of classes that
represent a means of transportation (airplane, automobile, ship,
and truck) are more clustered together.

Fig. 2a shows that, under the L∞-constrained BIM-50
attack, the predictions of the DENSER model can be clearly
grouped into clusters, with most examples from one class
being misclassified into a smaller subset of the other classes
than with the baseline model. Images that represent an animal
are mainly misclassified as another animal, while images of a
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(a) BIM-50, L∞-constrained
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(b) BIM-100, L2-constrained

Fig. 2. Confusion matrices for the DENSER model under two attacks.

means of transportation are misclassified as another vehicle.
The confusion matrix of DENSER under the BIM-100 attack
constrained by the L2-norm is shown in Fig. 2b. Contrary to
the L∞ attack, the BIM-100 attack is unable to decrease the
accuracy to zero, and so, some images are correctly classified.
Notwithstanding, the misclassifications follow a pattern similar
to that shown in Fig. 2a. The automobile and the truck classes
are the most difficult to attack under this threat model, while
it is easier to cause a misclassification of airplane instances.

According to Fig. 3a, and similar to the baseline model,
most examples are also misclassified as bird and cat with
NSGA-M. However, misclassifications of a single class are
less spread out between the remaining classes, especially in
the case of bird, cat, ship, and truck. The three NSGA-Net
models from the NASNet search space show similar patterns
in their misclassifications. The main distinguishing factor is
the spread of the misclassifications of each class: NSGA-mB
misclassifies the majority of the examples from one class into
fewer classes than NSGA-mC (check, for instance, the ship
class), and NSGA-mA is in the middle of the spectrum. Similar
to NSGA-M, most misclassifications of these three models also
fall into the cat class (especially with NSGA-mA). However,
the second most predicted class is dog and not bird.

The confusion matrices for the BIM-100 attack with L2-
bounded perturbations exhibit similar patterns. In comparison
with the BIM-50 attack with L∞ constraints, less examples are
misclassified by the three models from the micro search space
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(a) NSGA-M
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(c) NSGA-mB
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(d) NSGA-mC

Fig. 3. Confusion matrices for the NSGA-Net models under the BIM-50 attack with L∞-bounded perturbations. The results under BIM-100 with L2-bounded
perturbations revealed similar patterns.

as belonging to the cat class, especially in the case of NSGA-
mB. With NSGA-M and NSGA-mB, some changes are also
observed with the misclassification of examples that originally
belong to the ship class.

V. CONCLUSION AND FUTURE WORK

Artificial Neural Networks designed through evolution
achieve competitive results with respect to predictive perfor-
mance, but the study of their adversarial robustness is limited.
In this work, we assessed the L∞ and L2-robustness of
models found by NeuroEvolution approaches for the CIFAR-
10 classification task, under white-box untargeted attacks. No
defense against adversarial examples was incorporated in the
models or in their training.

Our results show that, similar to human-designed networks,
the accuracy of these evolved models usually drops to zero (or
close to zero). The main exception occurs with the DENSER
model, which shows some resistance to L2 attacks, with
the accuracy dropping to 18.10% under a PGD attack. We
identified distinct patterns in the misclassifications produced
by the models: in some cases, the adversarial examples from
one class are misclassified into a small subset of classes, while
with other models the misclassifications are much more spread
out between classes. Furthermore, the choice of data pre-
processing techniques must not be neglected when automati-

cally designing CNNs. We have shown that certain procedures
can exacerbate the adversarial perturbations before they reach
the first layer of the network, this way potentially jeopardizing
robustness. However, extending current NE approaches so as
to include this design choice in their search is not always
straightforward (i.e., NSGA-Net).

We plan on studying the L2-robustness of the DENSER
model so as to understand if it can be attributed to some
architectural feature. That invaluable knowledge could be
leveraged to build robust models. We tried to be as faithful
as possible to the original works under analysis, which came
with some disadvantages. Namely, each model was trained
under slightly different configurations, including distinct data
pre-processing approaches. It would be interesting to re-train
all the models under the exact same conditions so as to make
sure that the observed differences truly arise from architectural
aspects. Although previous work suggests that higher network
capacity allows for robustness improvements, analyzing the
relationship between the adversarial robustness and the compu-
tational complexity of a model still needs further investigation.

Since we solely analyzed pre-trained models for CIFAR-
10, a clear extension to our work would be to consider other,
more complex, datasets. Future work also comprises assessing
the adversarial robustness of models found by NE approaches



under additional threat models, such as transfer and universal
attacks.
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