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Abstract—This paper presents a robust end-to-end method for
sports cameras extrinsic parameters optimization using a novel
evolution strategy. First, we developed a neural network ar-
chitecture for an edge or area-based segmentation of a sports
eld. Secondly, we implemented the evolution strategy, which
purpose is to rene extrinsic camera parameters given a single,
segmented sports eld image. Experimental comparison with
state-of-the-art camera pose renement methods on real-world
data demonstrates the superiority of the proposed algorithm. We
also perform an ablation study and propose a way to generalize
the method to additionally rene the intrinsic camera matrix.

Index Terms—pose renement, camera calibration, computer
vision, image segmentation, evolution strategy

I. INTRODUCTION

Automatic analysis of sports games is a broad area cover-

ing elds of computer vision, computer graphics, and deep

learning [1]. Industry companies offer real-time tracking sys-

tems for various sports, e.g. SportVU [2] solution from Stats

Perform and Optical Tracking System [3] from ChyronHego

TRACAB. These systems rely on the ability to estimate real-

world objects’ positions from images. Estimation of players’

position and speed or detection of events, such as goals or

offside, require an ability to map 2D pixel coordinates in

the image plane to 3D coordinates in the world reference

frame. This can be achieved using a 3x4 projection matrix

calculated for each installed camera. If we assume the world

model is planar, i.e., the sports eld is a at surface, then

a 3x3 homography matrix is enough to perform the mapping.

In each case, these matrices can be calculated using intrinsic

and extrinsic camera parameters. Intrinsic parameters, specify

internal cameras parameters, such as a camera focal length and

a principal point coordinates. They are represented as a 3x3

matrix, dening the transformation from 3D point coordinates

in the camera reference frame, to the pixel coordinates in the

image plane. Extrinsic parameters, referred to as a camera

pose, describe the camera rotation and translation with respect

to the world coordinate frame. They dene the transformation

from a 3D point coordinates in the world coordinate frame to

3D coordinates in the camera reference frame.

Sports cameras are initially calibrated after they are in-

stalled around the playing eld. Their intrinsic and extrinsic

parameters are estimated by performing a manual calibration

procedure using a planar chessboard-like calibration pattern

and Zhang method [4]. However, in an outdoor environment

cameras are affected by an adverse environmental conditions.

A strong wind or temperature variations cause small changes

to the camera position and viewing angle. Projection and ho-

mography matrices estimated during an initial camera calibra-

tion become inaccurate over time, which leads to an incorrect

conversion from camera coordinates to world coordinates, as

shown in the left part of Fig. 1. This adversely affects the

quality of the entire sport analytic pipeline. A manual calibra-

tion process is relatively difcult and very time consuming,

and it’s not feasible to perform it frequently to correct camera

calibration errors. To solve this problem, we present a method

for automatic renement of cameras extrinsic parameters using

an evolutionary algorithm. This allows a quick correction

of camera extrinsic parameters before each event. Intrinsic

camera parameters (e.g. focal length) are less susceptible to

environmental conditions and remain relatively constant.

Our method consists of two stages: image segmentation and

extrinsic parameters renement. Firstly, we segment the sports

eld image to nd robust eld marking, such as sports eld

lines or areas, using a deep convolutional neural network. We

call these markings robust as players do not occlude them in

a signicant way because of their size. The idea for the second

stage is to iteratively warp segmented image into bird’s-eye

view using camera parameters and evaluate how well it’s

aligned with the eld template. If the matching is not perfect,

then we can rene extrinsic parameters to make the alignment

better. To model this iterative process mathematically, we

dene the problem as an optimization task in a 6-dimensional

space, with 3 translation and 3 rotation degrees of freedom.

The objective is to minimize the previously dened intuitive

loss function. Inspired by biology, we propose performing the

optimization using an evolution strategy. Section IV shows that

this proves to be a better solution than gradient descent-based

approaches. It is important to note that our method requires

a reasonably well initialization of camera extrinsic parameters.

For example, the starting parameters cannot dene the camera

looking in the opposite direction compared to the ground truth.

In this work, we investigate the robustness of our method to

the extrinsic parameters initialization.

To the best of our knowledge, evolution strategies involving

sports eld images segmented with deep learning have never



Fig. 1. Camera pose renement results of a system of four outdoor cameras. Cameras were installed in a soccer eld corners and their parameters were not
updated for three months. Left side shows soccer eld images (bottom) and segmented eld lines (top) warped to a bird’s-eye view using initial extrinsic
camera parameters. Right side shows images warped to a bird’s-eye view after performing pose renement using our method.

been used for extrinsic camera calibration. We demonstrate

that this is an efcient and effective solution, performing better

than gradient descent-based algorithms in real-life scenarios.

Experimental evaluation, using our real-world dataset with

football pitch images, proves the superiority of our method

compared to competitive approaches. To summarize, our con-

tributions are:

• proposal of edge and area-based deep convolutional ar-

chitectures for sports eld edge and area segmentation,

• denition of evolution strategy and tness function for

a robust camera extrinsic calibration.

The structure of this paper is as follows. We discuss related

work in section 2, in section 3 we describe our method, and

evaluate it on a soccer dataset in section 4. We also compare

it with state of the art. Finally, we summarize the paper and

conclude further works in section 5.

II. RELATED WORK

A. Sports Camera Calibration

The topic of sports camera calibration has been widely

discussed in the literature. Most of the approaches focus

on the problem of estimating the homography matrix or

relocalizing the camera, i.e. nding its pose. Early approaches

to these problems [5]–[8] use Hough transforms [9] to extract

geometric primitives such as lines, arcs and circles from

images. These primitives allow nding control points or use

a combinatorial search to estimate camera parameters. Un-

fortunately, these methods require a lot of manual work in

order to parametrize color and texture-based heuristics for

geometric primitives detection. These problems are resolved

by a progress in deep learning. Deep neural convolutional

networks, such as U-Net [10], allow automatic semantic

segmentation of images, without the need for constructing

hand-crafted features. Sha et. al. [11] uses such network to

perform the area-based court segmentation. Image segmen-

tation allows for an initial pose estimation using a Siamese

network to calculate a corresponding entry in a feature-pose

dictionary/database. Such database contains pairs of edge

images showing segmented eld lines with corresponding

camera poses. Finally, a homography is rened using spatial

transformer network [12]. A similar approach is described

in [13], where generative adversarial networks [14] are used to

detect sports eld markings. Camera pose is initially estimated

using a feature-pose database and rened using Lucas-Kanade

algorithm and chain rule calculated on distance images. The

drawback of these approaches is an assumption that rening

transformations are small and local.

An iterative approach to calibration is described in [15].



Firstly, a deep convolutional network is trained, which takes

a sports eld template and a camera image as an input. Its

output is an estimation of calibration error, e.g. IoU between

sports eld template and a ground truth template in the camera

view. Then, the calibration process uses a bilinear sampler to

create a fully differential computing graph from an estimated

homography matrix to the calibration error. Stochastic gradient

descent algorithm allows to backpropagate the approximated

calibration error and iteratively updates the homography to

lower it. Such approach is prone to be stuck in a local

minimum as search space is not convex.

An approach to sports camera calibration using

RANSAC [16] and the genetic algorithm is described

in [17]. Field lines are detected in an input image and their

intersections dene control points used by the tness function

in the genetic algorithm. The result of the optimization

process denes new camera extrinsic and intrinsic parameters.

B. Evolutionary algorithms for image registration

Image registration is a similar task to camera relocalization,

where the problem is to estimate a transformation of a set

of different images to the same coordinate system. In this

area, there exist known evolutionary approaches. In [18] the

problem of satellite image registration is modeled as an opti-

mization problem in the search space of afne transformation

parameters. A differential evolution algorithm is used to solve

it. Ma et. al. [19] proposes a similar mathematical model for

the remote sensing image registration but uses an orthogonal

learning differential evolution algorithm as an optimizer.

III. METHOD

A. Problem denition

We dene the extrinsic camera calibration process as

a heuristic search in R
6 space. First three dimensions dene

the rotation using a Rodrigues representation, ~r ∈ R
3. Last

three dimensions dene a translation vector ~t ∈ R
3. Therefore,

elements of the search space are [r0, r1, r2, t0, t1, t2] vectors.
We assume that the camera’s intrinsic parameters are correct

and do not change during the calibration process. They are es-

timated earlier, during an initial camera calibration, using e.g.

a planar chessboard-like calibration pattern and the Zhang [4]

method.

Additionally, we model camera extrinsic noise as a mul-

tivariate random vector ~ξ ∈ N (0, ξr)
3 × N (0, ξt)

3 which

was undesirably added to valid calibration parameters and

caused calibration errors. ξr denotes the standard deviation

for the rotation vector and ξt is the standard deviation for the

translation vector. Such noise can be a caused by camera un-

desired movement due to a strong wind or thermal expansion

of camera materials. Our study shows that for football sports

cameras, ξt is approximately 20 times bigger than ξr.

High-level view of our pose renement method is shown

in Fig. 2. It consists of two stages: semantic segmentation of

a play eld image and evolutionary optimization of camera

extrinsic parameters. In the rst stage, a deep neural network

is used to segment an input image. The segmented image is

blurred and passed to the second stage, which is an iterative

optimization process using evolution strategy. Alternatively, in

the second stage we can use other optimization techniques. In

section IV we compare the evolution strategy with a stochastic

gradient descent (SGD) and Adam [20] optimization algo-

rithms. In our calibration pipeline, we assume a known planar

sports eld template and known estimates of ~ξr and ~ξt, which
can be obtained from historical data or adjusted empirically.

We also assume, that we are given starting extrinsic camera

parameters in form of a vector [~r + ~ξr,~t+ ~ξt].

B. Homography calculation from camera parameters

Homography matrix H in computer graphics is a 3x3 matrix

that allows performing a homography, i.e an isomorphism

that transforms a point from one planar surface to another.

The isomorphism can be reversed using H−1. Each cam-

era’s homography matrix allows performing a projection from

a camera plane onto the sports eld plane in a bird’s-eye

view. According to the camera pinhole model, it is possible

to calculate H from ~r, ~t, and camera intrinsic matrix K.

Firstly, a rotation vector ~r must be converted into 3x3 rota-

tion matrix R that has 3 degrees of freedom using a Rodrigues

method [21]. Secondly, 3x4 projection matrix P is calculated

as follows:

P =





K0,0 0 K0,2

0 K1,1 K1,2

0 0 1









R0,0 R0,1 R0,2 t0
R1,0 R1,1 R1,2 t1
R2,0 R2,1 R2,2 t2



 (1)

Because the assumption is that sports eld is planar, third

column of P, which corresponds to the z axis (perpendicular

to the plane) can be dropped and the result can be normalized,

thus giving us homography matrix H :

H =





P0,0 P0,1 P0,3

P1,0 P1,1 P1,3

P2,0 P2,1 P2,3



 /P2,3 (2)

C. Semantic segmentation

The purpose of the semantic segmentation model, denoted

by function Ψ, is to segment an input camera image I into an

image Ψ(I) of the same size containing only relevant sports

eld features. Segmented features can be sports eld lines or

areas such as a penalty area. A segmented image is needed for

the second stage of the calibration process, where it is used

to calculate the value of the tness function by measuring

alignment with a blurred sports eld template T . To obtain

T , we create multiple images from the sports eld template,

blur each one by a Gaussian function of a different radius and

sum them all together. Such transformation makes the tness

function smoother and search space easier to explore for our

algorithm. We prove this intuition to be right in our ablation

study.

For Ψ, we use a modied U-Net architecture [10] with

sigmoid activation function after output layer and additional

padding of 1 in encoder layers to ensure that Ψ(I) is of

the same size as I . Maintaining the image size is crucial

for calibration quality. We also use PReLu instead of ReLu



Fig. 2. Overview of our camera pose renement method. Firstly, the camera image I is segmented using the deep convolutional network, denoted by the
function Ψ. The sports eld template is blurred using Gaussian functions of different radii; the clipped sum of these transformations produces T . Then, in
each generation, the evolution strategy warps segmented images for each individual i with a homography matrix Hi calculated from one’s rotation, translation
vectors, and camera intrinsic matrix. This allows calculating tness function between Hi(Ψ(I)) and T in top view perspective and selecting individuals
that provide better calibration. They move to the next generation, or if it is the last generation, the best one denes new camera extrinsic parameters and
optimization process stops.

activation functions. In our study, PReLu allowed achieving

better results.

The evolution strategy we present can work with different

types of segmented images. We train and compare two inde-

pendent models. First segments only eld lines. It classies

each pixel into one of two classes: line and not line. The

second model performs football eld area segmentation. It

classies each pixel into one of 4 classes: belonging to

a penalty area; a goal area; other area belonging to the sports

eld; and the area outside the sports eld. In the case of

the semantic segmentation of football eld lines, there is

a strong imbalance between the foreground (eld lines) and

background pixels. What’s more, lines that are further away

from the camera appear smaller in images and contribute less

to standard loss functions than closer lines. To compensate for

this problem we use α-balanced variant of a focal loss [22] as

the objective function during training:

LFL = −α(1− pc)
γ log(pc) (3)

where α and γ are adjustable hyperparameters. Given p as

a probability of a pixel belonging to a class with label y = 1
(binary classication), pc is dened in the following way:

pc =

{

p if y = 1

1− p otherwise
(4)

D. Evolutionary optimization

Our evolution strategy is based on (µ+ λ) elitist evolution

strategy, where in each generation g ∈ 0, 1, ..., G− 1 all µ

parents, denoted as Pg are randomly recombined to create

Og offspring of size λ. The optimization is done for G

generations. The starting population with µ individuals is

created by taking an initial estimate of camera extrinsic pa-

rameters [~r+ ~ξr,~t+~ξt] and randomly mutating it by corrupting

with a Gaussian noise ~ξ. In each generation, an offspring is

created consisting of λ children. Due to recombination, each

child takes form of a vector [~a ∗ ~pi + (~1 − ~a) ∗ ~pj ] where

a ∈ U(0, 1)6, pi and pj are randomly sampled parent vectors

from Pg . The offspring is further mutated using random vector

N (0, ξgdecayξr)
3 × N (0, ξgdecayξt)

3 where ξdecay is a decay

factor of mutation strength. This factor allows to improve

exploration of the search space in rst generations and later

increase exploitation of found minima. After the mutation

step, a homography matrix Hi is calculated for each offspring

individual according to Eq. (2). Then, the whole population

of µ + λ individuals is sorted in ascending order according

to the tness function. The best µ individuals move on to the

next generation, and the rest is terminated, what guarantees

that the adaptation quality in each generation is at least as

good as in the previous generation. Finally, after the last

generation, the new extrinsic parameters of the camera are set

to the parameters of the best individual in PG−1. We provide

pseudocode for the algorithm in Fig. 3.

The optimization goal of the renement process is to nd

a minimum for the tness function dened as follows:

Fitness =
Σ[H(Ψ(I))− T ∗B]◦2

Σ(B)
(5)



1. Initialize T , µ, λ, ξr, ξt, ξdecay , G, K, P0 = {i0..., iµ−1}
2. Calculate Hi for each individual in P0

3. Calculate the tness function for each individual in P0

for g ∈ 0, ..., G− 1 do

4. Create offspring Og by randomly sampling 2 parents

from Pg for each child and interpolating them

5. Mutate Og with N (0, ξgdecayξr)
3 ×N (0, ξgdecayξt)

3

6. Calculate Hi for each individual in Og

7. Calculate the tness function for each individual in Og

8. Pg = Pg ∪Og

9. Sort Pg according to tness in an ascending order

10. Leave in Pg only top µ individuals

end for

11. Set camera extrinsic parameters as i0

Fig. 3. Evolution strategy for camera pose renement pseudocode.

where Σ is a function that sum over all pixels, H(Ψ(I)) is

a segmented image warped into bird’s-eye view, * denotes

element-wise multiplication, ◦2 stands for Hadamard square

power and B is a binary mask in which each element is 1 if

corresponding element in H(Ψ(I)) is above 0.5. Otherwise,

the element is 0. This tness function produces scalar values,

which can be intuitively interpreted as a level of alignment

of a segmented image warped into a bird’s-eye view with the

blurred template image. In our study, this function performed

more stable than mean squared error (MSE) between H(Ψ(I))
and T .

IV. EVALUATION AND EXPERIMENTS

A. Dataset

We use an in-house dataset gathered using a multiple-

camera image acquisition set installed at football academies.

The dataset consists of 1020 RGB images in 4K resolution

(3840x2160 pixels) from real-world football games. Images

come from 34 videos recorded with different cameras set

on six different football elds. We divided the set of videos

into train, validation, and test subsets in the proportion of

28:3:3, respectively. 30 images are randomly sampled from

each of the recordings. There are also 34 sets of ground

truth camera parameters provided, i.e. camera translation,

rotation, and intrinsic matrices. They were calculated using

a manual selection of control points and conventional algo-

rithms: Levenberg-Marquardt iterative optimization and Zhang

method. To simulate calibration errors, we perturb intrinsic

parameters with ~ξ dened in Section III. We test calibration

algorithms twice for different distortion rates ξr and ξt: (0.005,

0.1) and (0.015, 0.3). Calibration errors that are created due

to the perturbations are presented in Table III as Start.

B. Metrics

We use well-known metrics such as intersection over union

(IoU), recall, precision, F1-score dened for the binary clas-

sication task to evaluate semantic segmentation models.

To evaluate the results of the pose renement algorithms,

we use two metrics:

a) IoUpart: A metric that is popular in literature [11],

[15], [23] and is computed in a camera view. To calculate

IoUpart, we calculate intersection over union between 2 sports

elds templates. First is warped into camera view using ground

truth homography. The second is warped according to the

estimated homography.

b) Real world error score set (RWE): An important met-

ric in player and ball tracking problems is an error measured

in the real-world metric, such as centimeters. For tasks that

require high accuracy, such as player tracking, this error should

be as low as possible to ensure calibration error will not

propagate into the player tracking pipeline. Therefore, we

dene a RWE set that consists of real-world error distances

between ground truth points and the same points warped into

camera view using ground truth homography Hgt and then

warped back to the world model using an inverse of estimated

homography Hest. The set allows the calculation of real-

world calibration error statistics. The ground truth points are

sports eld keypoints visible in camera view, denoted as KP .

These are center, corners, and halfway line intersections with

sidelines. We assume these points belong to the same plane.

Given a set of images and euclidean distance function d, the
RWE set is dened as follows:

RWE = {d(p,H−1

estHgtp) : p ∈ KP ∧Hgt(p) ∈ I} (6)

To evaluate calibration algorithms, we report the mean and

standard deviation of the RWE set.

C. Baselines

We compare our method to the renement part of the

pipeline described in [15] denoted by OTLE. This approach

makes use of a regressor that estimates IoUpart between sports

eld visible in image and sports eld template warped into the

camera’s plane of view. It uses the gradient descent method to

rene rotation and translation vectors to increase the IoUpart.

The authors did not make the training code public, but they

shared the implementation of their ResNet-18 [24] model

with spectral normalization. We trained this network from

scratch using Adam optimizer and a batch size of 4. We

denote this network as ResNet-18+SN. For its training, we

initially set the learning rate to 0.001 and decrease it by 2%

every epoch. We chose a model that had the lowest validation

MSE error from 100 epochs of training. For each training

dataset, we apply noise of ~ξ and data augmentation. During

inference, we use Adam optimization algorithm with default

hyperparameters and a learning rate of 1e-4 to update extrinsic

parameters to lower the estimated calibration error. We utilize

the grid sampler with bilinear interpolation to maintain the

differentiability of the estimated IoUpart. We run Adam for 50

iterations.

OTLE described earlier operates on an RGB image and

a template. Our method produces mid-way byproducts in the

form of binarized line masks with U-Net architecture, which

may benet the OTLE-like approach. Thus, we also perform

an experiment where instead of using the evolution strategy

to lower the tness function (5) we use the SGD algorithm



and optimize ~r and ~t vectors in a similar manner to OTLE.

We are not using an evolution strategy at all for this baseline.

It is run for 50 epochs with a learning rate of 0.0001 and

momentum of 0.9. We denote these methods as U-Net+SGD

and U-Net-Area+SGD.

D. Our method hyperparameters

We denote our segmentation models as U-Net and U-Net-

Area. The former performs sports eld lines segmentation and

the latter sports eld area segmentation. These models have

four times fewer lters in each layer than the original U-Net

architecture. They are trained for 100 epochs with the same

optimizer and learning rate schedule described for the ResNet-

18 IoUpart regressor. We denote evolution strategy utilizing

outputs from line segmentation as U-Net+ES and outputs from

area segmentation as U-Net-Area+ES. For both of them we set

µ to 64, λ to 128, G to 50, ξdecay to 0.95, ξr and ξt to those

set for dataset.

E. Results

Results are divided into 3 categories: results of semantic

segmentation models (Table I), IoUpart regressors (Table II) and

pose renement results (Table III). All tests were performed

using PC with AMD EPYCTM 7401P and Nvidia GeForce

RTXTM 3090. An average time of pose renement for our U-

Net+ES method is approximately 14 seconds.

TABLE I
RESULTS OF SEGMENTATION MODELS

IoU Recall Precision F1

U-Net 0.29 0.51 0.35 0.41
U-Net-Area 0.78 0.86 0.88 0.87

TABLE II
RESULTS OF IOU REGRESSION MODELS

MSE MAE

ξr = 0.005
ξt = 0.1

ResNet-18 2.93 ·10−4 0.0171

ResNet-18 + SN 3.65 ·10−4 0.0191

ξr = 0.015
ξt = 0.3

ResNet-18 2.21 ·10−3 0.0470

ResNet-18 + SN 4.64 ·10−3 0.0681

Line-based segmentation model (U-Net) performed signi-

cantly worse compared to an area-based segmentation model

(U-Net-Area). This can be attributed to imperfections in the

training dataset. As playing eld lines are very thin, even small

errors in the ground truth annotations cause mislabelling of

a relatively large number of pixels belonging to a eld line in

the image.

However, using our evolutionary pose renement method

with line-based segmentation (U-Net+ES) yielded the best

results. It achieved superior results compared to other, non-

evolutionary, methods. New extrinsic camera calibrations it

generated were near-perfect, proving robustness of the pro-

posed method.

OTLE+SN, U-Net-Area+SGD and U-Net+SGD based

methods in each of 90 test runs fully converged each time

TABLE III
RESULTS OF CALIBRATION ALGORITHMS

IoUpart
RWE

mean std

ξr = 0.005
ξt = 0.1

Start 97.62 2.30 4.07
U-Net+ES (ours) 99.25 0.17 0.11

U-Net-Area+ES (ours) 98.78 0.57 0.58
U-Net+SGD 97.62 2.44 4.46

U-Net-Area+SGD 98.23 1.29 2.12
OTLE 97.61 2.27 4.16

OTLE+SN 97.50 2.41 4.17

ξr = 0.015
ξt = 0.3

Start 93.15 8.05 21.90
U-Net+ES (ours) 99.02 0.20 0.13

U-Net-Area+ES (ours) 98.20 0.68 0.78
U-Net+SGD 93.19 8.11 22.08

U-Net-Area+SGD 93.86 7.19 23.98
OTLE 93.28 5.25 6.72

OTLE+SN 93.62 5.57 7.17

but to the wrong local minima. Once stuck there, the loss

would no longer decrease, thus making the algorithms fail

to recalibrate cameras properly. For small extrinsic camera

perturbations (ξr = 0.005 and ξt = 0.1), U-Net-Area+SGD
performed the best out of all gradient descents methods. It got

worse results in the second test (ξr = 0.015 and ξt = 0.3)
where OTLE+SN performed better.

F. Ablation study

In our ablation study, we tried to improve the unsatisfac-

tory performance of the OTLE+SN algorithm by using our

implementation of Resnet-18 without spectral normalization.

We trained it using the same hyperparameters and denote

this method as OTLE. This model achieved a much lower

regression error, but the improvement in pose renement task

was not signicant, 5% lower mean of RWE set.

We also investigated how blurring of the sports eld tem-

plate impacts results of ours U-Net+ES approach. We tested

the algorithm on the test set for different amount of Gaussian

kernels (0, 1, 3, 7, 15) and different sizes of the kernels.

Amount of Gaussian lters equal to 0 means no blur was

performed, 1 means that a single kernel was applied to the tem-

plate. For number of kernels 3, 7 and 15 the template blurring

yielded the respective number of images, each transformed

with the kernel of different size. First image has no blur (size

of kernel is 0), second kernel has the base kernel radius size

which is a hyperparameter. The rest of kernels have size of one

plus a multiple of base kernel radius size decreased by one.

E.g. number of kernels 7 and base kernel size 5 means, that

the template was blurred 7 times with kernels of size (0, 5, 9,

13, 17, 21, 25), each time yielding a different image. These

images were summed up and clipped to the maximum pixel

value, thus giving us the blurred template T . For this ablation
study we set ξr = 0.015, ξt = 0.3, µ=32, λ=64, G=60.

Results are presented in Fig. 4. They prove our intuition

concerning that blur positively impacts the search space of the

problem. With no blur RWE set has a big standard deviation,

therefore the calibration results are unstable. A single kernel

is also not enough since median of RWE set and of IoUpart



Fig. 4. Mean, median and standard deviation of RWE set and median of IoUpart with respect to the number of Gaussian kernels and their size.

is noticeably worse than for larger amount of kernels. For

number of kernels 3, 7, 15 and different kernel sizes we

observed solid and stable results.

From theoretical point of view, the tness function (5) is

a step function. Blurring the template increases function’s

number of intervals, thus making the search space easier to

explore. With blur, even a small step in the space results in

a change of value of the tness function.

V. CONCLUSION

In this paper, we propose the robust and accurate solution

for the static sports cameras pose renement problem. The use

of evolution strategy avoids being stuck in local minima of the

extrinsic parameters search space, thus performing better than

gradient descent approaches.

We would like to notice that our camera pose renement

method can be generalized to adapt intrinsic camera param-

eters by adding them to the denition of the individual. The

method can also be changed to operate only on a homography

matrix, thus making an individual be a 3x3 matrix with 8

degrees of freedom. Our approach can also be adapted to pose

renement of a set of sports cameras, which view is stitched.

In order to achieve the best stitch quality, the tness function

should include additional loss for the part of the sports eld

that is visible in each camera.
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