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Abstract—Lattice paths are functional entities that model
efficient navigation in discrete/grid maps. This paper presents
a new scheme to generate collision-free lattice paths with utmost
efficiency using the bijective property to rooted ordered trees,
rendering a one-dimensional search problem. Qur computational
studies using ten state-of-the-art and relevant nature-inspired
swarm heuristics in navigation scenarios with obstacles with
convex and non-convex geometry show the practical feasibility
and efficiency in rendering collision-free lattice paths. We believe
our scheme may find use in devising fast algorithms for planning
and combinatorial optimization in discrete maps.

Index Terms—path planning, lattice paths, ordered trees,
enumeration, combinatorial objects, Catalan numbers

I. INTRODUCTION

Trees allow to model hierarchical dependencies in combi-
natorial problems ubiquitously [1]. Among the existing class
of trees, the family of ordered trees are well-known to have
a bijection to Catalan numbers, binary trees with n external
nodes, trees with n nodes, legal sequences of n pairs of
parentheses, triangulated n-gons, and lattice paths [2]].

How to generate ordered trees has attracted the favorable
attention in the discrete mathematics community. Among the
existing approaches, integer sequences are known to generate
ordered trees with n vertices and k leaves in O(n — k) time
[3l. Also, it is possible to traverse the genealogy of trees
with at most n vertices in O(n) space and O(1) time per
tree in average [4]. The genealogy of trees is in essence the
tree of trees, and offers a systematic means to render all
families of trees. For instance, it is possible to enumerate
ordered trees with exactly n vertices and k leaves in O(1)
time in the worst case [5]. Most of the above-mentioned
approaches basically extend the notion of reverse search [6]],
which generates objects through a graph (tree) whose edges
model local and bounded operations on the objects, thus it
becomes possible to generate entities (trees) by traversing the
graph backwards by an adjacency expansion oracle. Authors
have also explored the idea of complete generation of trees
[7], and others have used distinct mechanisms such as parent
arrays [8], [9]], level sequences [10], structural constraints [|1 1],
binary trees [12], triangulations of convex polygons [[13] and
lattice enumerations [14].

In this paper we tackle the problem of planning obstacle-
avoiding paths over grid maps by using gradient-free heuristics
and a representation rendered from the bijection between
lattice paths and the class of ordered trees. Generally speaking,
path planning by heuristic algorithms are often based on A*
[15]], Genetic Algorithms [16]], [[17], Differential Evolution
[[18]], [[19]], Heuristic Graph Search [20], Ant Colony Optimiza-
tion [21], Particle Swarm Optimization [22] and Local Search
[23], [24]. Basically, the path planning problem has been
approached from the mutation, crossover and hybrid selection
perspectives, in which paths are often represented by a set of
points or control commands whose optimal configuration is
to be found by the optimization heuristic. Thus, the problem
scales with the number of points or commands used in the
encoding.

On the other hand, we exploit the 1-1 correspondence be-
tween ordered trees and the space of lattice paths [9] to devise
an heuristic to generate obstacle-avoiding lattice paths, whose
unique benefit is to render a one-dimensional search problem,
which is tractable by the state of the art search/optimization
heuristics. The study of the path planning problem using the
bijection to the ordered trees and its feasibility study by
swarm optimization algorithms is the first proposed in the
literature, to the best of our knowledge. Basically, we present
a new approach to generate collision-free lattice paths in grid
maps by using a bounded search space over the combinatorial
encoding of ordered trees. Our contributions are summarized
as follows:

e a recursive approach that generates obstacle-avoiding
lattice paths over a one-dimensional search space.

o the computational studies using relevant nature-inspired
swarm heuristics using diverse set of exploration-
exploitation features in convex and non-convex naviga-
tion scenarios.

Our experiments demonstrated that Strategy Adaptation Dif-
ferential Evolution (SADE) and the swarm algorithms show-
ing the explorative features outperformed their counterparts
with exploitative features. These observations suggest that
the swarm-based algorithms using explicit exploration mecha-
nisms offer potential merits to tackle the lattice path planning
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problem using the ordered tree representation effectively.

II. PROPOSED METHOD

In this section, we present the main concepts and algorithms
involved in our proposed approach.

A. Encoding Mechanism

Due to the nature of the implicit order of leaves, two ordered
trees are similar (different) if the order of leaves follow the
same (different) order with respect to some convention, as
the one from left to right as shown by Fig. [Il The nature
of such order allows one to use a encodings based on tree
traversal such as the pre-order or post-order arrangements to
identify nodes in the tree systematically. In this paper, we use
the following tuple-based mechanism to represent an ordered
tree:

t = (t1,to, ...

ati7"'atn)) (1)

where an ordered rooted tree has n nodes and ¢; stands for
the number of children of the ¢-th node of the tree in preorder
traversal, thus

ta =0, t; €[0,n—1]. )

The above-mentioned representation in (I)) has a 1-1 bijec-
tion to the family of lattice paths in a grid with n X n nodes
as shown by the example of Fig. [2] In such case, t; denotes
the relative height in the grid.

Also the above tuple-based representation is inspired by the
BCT representation of binary trees, in which B stands for
branching, C stands for continuation, and T stands for terminal
[25]], [26].

o The BCT representation is renderable from the column-
wise sum of elements below the diagonal of the adjacency
matrix representing the tree, and

o The adjacency matrix is renderable from the BCT encod-
ing by an O(n) algorithm based on stacks [27].

Under the BCT approach, if ordered trees were represented
by an adjacency matrix, and assuming tree nodes are labeled
by a user-defined order, each element of the tuple ¢ in
is equivalent to the column-wise sum of elements below the
adjacency matrix representation.

To give an example of the 1-1 bijective relationship between
ordered trees and lattice paths, Fig. [3] shows the node labels
that define the traversal order in pre-order and their 1-1 parallel

1 child

1
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(1,2,0,1,0) y
© 0 child
children
(5) O chidren
Tuple (Rooted) Ordered Tree Lattice Path

Fig. 2: Basic idea of the encoding mechanism. Each element of the tuple denotes the
number of children of the ordered tree in preorder labeling of the nodes. Also, each
element of the tuple denotes the relative height of the lattice path.

to lattice paths; and Fig. ] shows examples of the encoding
of diverse lattice paths of a square grid of n = 5.

Furthermore, due to the tuple ¢ encodes the relative height
of the node in the n x n lattice, the following holds:

Sh=n1 3)
i=1

The above can also be derived from the following notion:
since t; is equivalent to the number of edges of the ¢-th node,
then summing up all elements of the tuple ¢ will render the
total number of edges of the tree, that is n — 1.

B. Generating Lattice Paths

By using the tuple-based representation in (), we propose a
mechanism to generate arbitrary lattice paths which are above
the diagonal. As such, it is possible to generate lattice paths
by finding each element ¢; of the tuple ¢ for ¢ € [n] by the
following relationships:

ti~U{L, Uil i=1,2,...n (4)
L;,=1- sgn(ti_l + S — 1) 5)
Si=8i—1+tio1—1 (6)
U=Ui_1 —ti1 @)

where L; and U; are the lower and upper bound on ¢,
respectively, such that ¢; € [L;,U;], and sgn(.) denotes the
signum function. Since the above mechanism is recursive in
nature, we set the initial conditions Sy = 0, Uy = n, tg = 1.
The variable S computes the accumulation of elements of the
tuple. It is possible to eliminate the variable S, by which an
equivalent expression to Eq. [7]is

Li=1- sgn(lz_:(tj - 1)) €]

Jj=0

For ordered trees with n nodes, and considering the ordered
nature of the tuple ¢ and of Eq. [5] and Eq. [7] the following
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Fig. 3: Examples of the bijection between lattice paths and ordered trees. Elements of the tuple denoted above the picture denote the number of children of each node in the tree
in preorder encoding. To represent the lattice path, the digits of the tuple encode the relative column height.

Family of lattice paths above the diagonal with n =5

(111,100 (1,1,20,00  (1,2,0,1,00  (1,2,1,0,0) (1,3,0,0,0)
(2,01,1,00  (2,0,2,0,00 (21,0,1,00 (21,1,0,0) (2,20,0,0)
(3,0,0,1,0) (3,0,1,0,0) (3,1,0,0,0) (4,0,0,0,0)

Fig. 4: The 1-1 correspondence with the lattice paths above the diagonal of a grid with
(n — 1) x (n — 1) square cells for n = 5.

relations hold: Ly =1, Uy =n —1, and L,, = U,, = 0, thus
tn, = 0, which aligns well with Eq. 2} and
ty € [1,n—1]. )]

C. Sampling Lattice Paths

Since the bounds for ¢; are given as

t € [Li... U, (10)

it becomes possible to compute the tuple ¢ stochastically to
realize the sampling mechanism of (@) as follows:

Binary Occupancy Grid

0 10 20 30 40 50
Fig. 5: Example of obstacle-avoiding lattice paths above and below the diagonal.

t; = \‘Li + )\(Ui — Li>—‘ , (1
A=r|Z) (12)
n

where )\ is a normalization factor, r is a random number with
uniform distribution UJ0, 1], « is curvature preference, x; is
the x-coordinate of the i-th node of the lattice path, for ¢ =
1,2,...,m,. The range of « € [0, c0]: small values of « (close
to zero) denote L-shaped lattices paths (orthogonal to both x-
axis and y-axis), and the large values of « denote lattice paths
being close to the diagonal.

Computing () - (7) implies a recursive procedure with



Map 9

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 . Map 7 : Map 8 4 Map 10
o 0o O — | \ + A
. Map 11 . Map 12 . Map 13 . Map.14 i Map 15 . Map 16 . Map 17 Map 20
: : 1 - e Te = ; .® [
, . .' i . | i~ - n

Fig. 6: Grid map environments used for evaluation.

Algorithm 1 Generate Lattice Path

1: function GENERATE PATH(L, U, S,n,a, A, x,y)
2 if n > 1 then

3 Compute t = {L + AU — L)—‘

4 if x =1 then

5: y=t

6 else

7 y=y+t

8 end if

9: Oy 4 < Get Occupancy at (z,y)
10: if O, , = False then

11: u+—U—1t

12: S—S+t—-1

13: I+ 1—sgn(9)

14: A=r. (E)a

15: n4n —nl

16: t' + GENERATE PATH(I, u, S,n,a, A\, z+1,y)
17: return ¢ Ut

18: else

19: return {}
20: end if
21: return {}
22: end if

23: end function

O(n) space and O(1) time in average per path, realized by
algorithm (1| generating lattice paths above the diagonal. Here,
inputs are: the lower bound L of the ith element of the tuple
t, the upper bound U of the ith element of the tuple ¢,
the summation term S, the number of nodes n in the grid,
the preference for curvature «, the normalization factor A,
the initial coordinates in the grid (z,y). Note that line 9 of
algorithm |1| checks the occupancy at coordinate (x,y), thus it
is possible to compute collision-free paths above the diagonal.

A lattice path starting at (0, 0) and ending at the upper
corner of the grid is generated by algorithm (1| with inputs
L=1U=n—-1,=0,A=0,z =0,y =0 and the user-
defined parameter cv. Although algorithm [I] generates a path
above the diagonal, it is possible to swap the coordinate x

by the coordinate y to generate paths below the diagonal. For
instance, Fig. [5|shows two lattice paths, one above the diagonal
(with a = 1.2), and another below the diagonal (with o =
2.5), implying that the parallel execution of algorithm [T] allows
to compute multiple collision-free paths above and below the
diagonal, for which the path topology depends on the one-
dimensional parameter c. In Fig.[5] the origin is located at the
bottom-left, while the destination is located at the top-right
corner. In the following section, we evaluate the possibility
of using gradient-free optimization heuristics to find optimal
values of « for distinct navigation conditions.

III. COMPUTATIONAL EXPERIMENTS

In order to evaluate the feasibility of generating collision-
free paths, we performed computational experiments com-
prising diverse grid environments. Our algorithm was im-
plemented in Matlab 2020a and evaluations considered the
environments with grid maps with 50 x 50 cells and obstacles
comprising convex and non-convex geometry a shown by Fig.
[6] Our computing environment was as follows Intel Core i7
@3.6GHz, 16 GB RAM. The time to generate lattice paths
for a fixed o was in the order of 0.01 seconds, implying the
fast performance for embedded platforms.

In order to show the performance frontiers of our approach,
we used the following swarm heuristics to find optimal val-
ues of «: Particle Swarm Optimization (PSO) [28]], Particle
Swarm Optimization with Speciation (PSOSP) [29], Differen-
tial Particle Scheme (DPS) [30]], Particle Swarm with Fitness
Euclidean Ratio (PSOFER) [31]], Differential Evolution with
BEST/1/BIN mutation (DEBEST) [32]], Differential Evolution
with RAND/1/BIN mutation (DERAND) [32], Differential
Evolution with Similarity-based Mutation Vector (DESIM)
[33]], Strategy Adaptation Differential Evolution (SADE) [34]],
Differential Evolution With Underestimation-Based Multimu-
tation Strategy (UMSSADE) [35] Differential Evolution with
Rank-based Mutation (RBDE) [36]]. For simplicity and without
loss of generality, we set to obtain obstacle-avoiding lattice
paths above the diagonal with origin at (0, 0) and destination at
(n,n). Our motivation of using the above algorithmic set is to
include distinct mechanisms of selection pressure, multimodal-
ity and trade-off mechanisms in exploration-exploitation. For
each scenario and each algorithm, the objective function F' is
the Euclidean distance of the path from the origin (bottom-
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Fig. 8: Success ratio of each algorithm over 20 independent runs.

left) to the destination (top-right) in the 50 x 50 grid map. For
evaluations, we used 20 independent runs with 1000 function
evaluations at the maximum, which allows to compare the
behaviour over independent random initializations under tight
computational budgets. Parameters for PSO-based schemes
involve w = 0.7, ¢; = 2.05, ¢ = 2.05, population size was set
as 10. As for Differential Evolution algorithms, the crossover
rate was C' R = 0.5, the scaling factor F' = 0.7. The coefficient
[ involved in the Whitley distribution scheme in Rank-Based
Differential Evolution (RBDE) was set as 5 = 2. The fine
tuning of the afore-mentioned variables is out of the scope of
this study. Other parameters used the default settings in the
respective references.

To show the overall performance of all evaluated algorithms,
Fig. [/| shows the obtained obstacle-avoiding lattice paths by
all algorithms in all environments and all independent runs.
Here, lattice paths are rendered with a transparency factor,
thus lattice paths with darker colors imply the most common
navigable regions. Also, by looking at Fig. [7] one can note
that it is possible to obtain multimodal lattice paths over
independent runs such as the case of Map 6.

In order to show the effectiveness of each swarm optimiza-
tion algorithm, Fig. [8] shows the ratio of success at finding

obstacle-avoiding lattice paths overall independent runs. For
instance, by observing Fig. [§] the ratio of 1 (0.8) denotes that
the algorithm was able to find obstacle-avoiding lattice paths
in 100% (80%) of the independent runs. Among the studied
optimization algorithms, we can observe from Fig. [§] that only
SADE was able to generate obstacle-avoiding lattice paths in
all independent runs, and that maps 11, 12, 13 and 19 were
the most challenging environments for most algorithms. We
can also observe that the heuristics with exploitation features
such as PSOFER and DEBEST are outperformed by heuristics
having exploration and diversity inducing mechanisms such as
SADE, DERAND, DESIM and DPS. Furthermore, most algo-
rithms were able to find obstacle-avoiding lattice paths in the
first ten environments, implying that the convex/nonvex nature
of the obstacles has no significant effect on the performance of
the algorithm. On the other hand, maps with narrow passages
such as maps 11, 12, 13 and 19 were challenging for most
optimization algorithms.

To show the convergence characteristics of the studied
algorithms, Fig. [0] shows the mean convergence behaviour
over independent runs. By observing Fig. [7] and Fig. 0] we
can note the feasibility to compute obstacle-avoiding lattice
paths in challenging navigation scenarios with reasonable
number of function evaluations. The noisy behaviour of some
convergence figures at Fig. 0] e.g. at Map 12, 13, and 19 is
due to some swarm optimization algorithms being unable to
find obstacle-avoiding lattice paths in some independent runs
(variability in the averaging over independent runs).

On the other hand, Fig. |'115| shows the best (shortest) path
obtained by each optimization algorithm over all independent
runs, and Fig. [TT] shows the lower bound of the convergence
over independent runs. By observing Fig. [I0] and Fig. [T}
one can note that it is possible to obtain obstacle-avoiding
lattice paths with similar topology, and that convergence
occurs irrespective of the nonlinear stochastic algorithm over
independent runs. It is also possible to study the statistical
difference between the studied algorithms as shown by Fig.
[[2] which shows that explorative strategies are consistent
in finding shortest lattice paths over all environments. The
above-mentioned observations highlight the importance of
exploration rather than exploitation when tackling the lattice
path-finding problem. Investigating the fitness landscape for
diverse geometries and large n is left to future work.
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Fig. 10: Best obtained paths in each grid map environment over 20 independent runs.

The above-mentioned results show the feasibility and ef-
ficiency to generate collision-free lattice paths in grid maps.
Due to one dimensional search problem and the 1-1 bijective
property to ordered trees, our approach is potential to sample
other combinatorial objects such as legal sequences of n pairs
of parentheses, triangulated n-gons, and other combinatorial

objects based on catalan numbers. In future work, we aim at
studying the smoothness considerations in paths [19], [37],
the integration with trajectory tracking [38]], the online adap-
tation and integration with other intelligent schemes such as
Fuzzy Logic [39)]l, the performance for very large n and their
further applications in combinatorial optimization in Robotics
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Fig. 11: Lower bound of the convergence of the evaluated algorithms over 20 independent runs.

and Operations Research. We believe the proposed approach
may find its use in planning and combinatorial optimization
problems.

IV. CONCLUSION

In this paper, we have proposed a new approach to generate
obstacle avoiding lattice paths based on the 1-1 bijection
to ordered trees, rendering a one dimensional optimization
problem. Our computational studies using relevant swarm-
based optimization heuristics has shown the feasibility to gen-
erate obstacle-avoiding lattice paths in challenging navigation
scenarios consisting both of convex and non-convex obstacle
geometries. Furthermore, our observations suggest that the
explorative search strategies are effective over independent
runs. In future work, we aim at studying further combinatorial
optimization problems in Robotics and Operations Research;
for instance the combinatorial problems involving binary trees
with n external nodes, the legal sequences of n pairs of

parentheses in modularity formation, and the triangulated n-
gons in folding problems.
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