
WSDL-D: A Flexible Web Service Invocation Mechanism for Large Datasets*

Mark Wiley Aihua Wu Jianwen Su
Department of Comuter Science

UC Santa Barbara
{wileym66, ahwu, su}@cs.ucsb.edu

* Supported in part by NSF grants ISI-0415195 and CNS-0613998.

Abstract

WSDL web services are built around the request-reply
framework, requiring service invocation to be bundled
together with all relevant data in a single message.
Inefficiency becomes evident as web service providers
begin to offer more robust services that require
massive datasets (e.g., multimedia and scientific data).
Under the WSDL standards, these hefty datasets must
be ported to an appropriate message format and
transferred in their entirety upon each service
invocation or response. Significant gains in service
flexibility and performance can be made simply by
separating invocation messages from their datasets.
Such a separation ultimately grants service consumers
the ability to pass parameter datasets from third party
hosts, to maintain dataset parameters on the service
provider host for use with future service invocations,
and to provide datasets in a variety of different
formats. In this paper, we develop a service invocation
mechanism, called WSDL-D, to support this separation
of service invocation from parameter datasets.

1. Introduction

The development of technologies for the Web makes it
easy to share data and other resources. WSDL allows
the resources to be published as (stateless) Web
services. In scientific workflows, algorithms (often in
the form of web services) and datasets (usually large in
size) are frequently published and shared [3, 4, 5, 6],
third party data management (e.g., salesforce.com) is
becoming a new and interesting model for data
management and IT operations for businesses. As
service orientation (SOA) is being more widely
adopted, more applications attempt to assemble these
resources for their needs (ownerships, management
overhead, etc.). Several interesting problems arise from
this context; a solution would require the separation of

dataset transmissions from service invocations that are
beyond WSDL capabilities. In this paper, we develop
an extension of WSDL to address such problems.
 WSDL was designed based on the motivation to
loosen coupling of interoperating software components
in a simple framework. WSDL services are built
around the request-reply framework that requires
service invocation (response) messages to include all
relevant data. For non-data-intensive (lightweight) web
services (especially those utilized to enable dynamic
website content), the technique is quite appropriate.
 Conceptually, the request-response interface is
clean and simple, but the approach is not scalable for
large datasets. Specifically, inefficiency becomes
evident for services that require massive datasets (e.g.,
product-customer databases, multimedia and scientific
data). This is because that under the current WSDL and
related standards, these hefty datasets must be ported to
appropriate message formats and transferred in their
entirety upon each service invocation or response. For
example, in an e-business, management of product
catalogs and customer records may be outsourced to
one vendor (D) and the key functionalities of an online
store front may be provided by another provider (S). If
the user U wants to invoke a service by S with U’s
(large) dataset managed at its contractor D, the dataset
has to be downloaded from D to U’s site first,
packaged into an XML message form, and then sent
along with the service invocation message to S.
Moreover, if the service of S is repeatedly invoked, the
dataset has to be downloaded every time the service is
invoked. This is a significant waste of resources. Such
situations when the dataset and service request are
located in different sites occur naturally and often. In
e-science, algorithms for computing a scientific
phenomenon may be available as services by one team
and the services (algorithms) may require a dataset
existing elsewhere (e.g., from USGS).

In Proc. IEEE Conf. on CEC/EEE, 2008

 Significant improvements in service flexibility and
performance stand to be made simply by separating
invocation and response messages from their
respective datasets. Such a separation not only grants
service consumers the ability to pass parameter
datasets from third party hosts, but also to maintain
dataset parameters on the service provider host for use
with future service invocations, and to provide datasets
in a variety of different formats.
 In this paper, we develop a dataset-friendly service
invocation mechanism called WSDL-D (‘D’ for
“data”) to support the separation of service invocation
and response from parameter datasets. In WSDL-D,
input parameters (datasets) of a service invocation are
not required to be sent with the invocation message,
instead, an input dataset can be fetched by a service
provider, sent later by the requester, or the dataset from
a previous invocation request can simply be reused.
Similarly, an output dataset can be pushed to the
requester asynchronously, or fetched by the requester.
 The paper makes the following contributions: (i)
technical design of WSDL-D, including the methods of
parameter (input/output) passing; in particular, WSDL-
D extends and is compatible with WSDL, and (ii)
experimental evaluation of a prototype implementation
confirming that the potential gains in service efficiency
dwarf the small amount of overhead associated with
the separation of datasets from their respective
invocation or response messages.
 This paper is organized as follows. Section 2
illustrates application scenarios to motivate the dataset
problems in WSDL. Section 3 presents details of the
design of WSDL-D. Section 4 discusses the prototype
implementation. Section 5 includes experimental
evaluation. Section 6 concludes the paper.

2. Motivations and Problem Statement

WSDL service invocations involve two parties and the
service patterns are limited to four types: one-way,
request-response, solicit-response, and notification. A
typical service invocation consists of two steps: (1) a
request message from the client (requester) to the
service (provider), and (2) a response message from the
service to the client. This works well in applications
when the size of data used is small. Problems arise
when datasets are (very) large. In this section, we
illustrate with an application scenario that WSDL
service invocations are undesirable.
 Fig. 1 shows an application for a retail business that
stores its sales and other data in a Data Center (D).
The Business Operations (O) and the Research (R)
departments make replenishments orders and design
strategies, resp. An outsourced service (A) is used for

performing data analysis tasks. In making replenish-
ment decisions, O uses an analysis report that is
generated by the Forecast service provided by A. Thus
O downloads the Sales Data (large in size) from D and
invokes the Forecast service at A. Similarly, R also
needs the Quarterly Report for its decisions. In Fig. 1,
thickness of lines roughly indicates the message size.
 Three key deficiencies of WSDL web services exist
in this scenario. First, a duplicate Sale Data transfer
takes place during the invocation of Forecast by B: D
to B and B to A. Also, Sales Data must be wrapped
into an appropriate XML invocation message. It seems
unnecessary to transfer the dataset twice. It is desirable
for A to download Sales Data from D directly to avoid
the extra transfer.
 The second shortcoming of WSDL services exposed
in the scenario is the wasteful disposal of datasets once
the service provider has finished processing a given
operation. In the scenario, R wants to get the same
Quarterly Report. Under the WDSL limitations, R’s
invocation of Forecast resembles B’s. However, Sales
Data was already downloaded from D and sent to A
via B’s invocation. It is desirable to avoid R’s upload.
Also, the Forecast service does not need to run on the
same input twice. It could be much more efficient to
reuse that resultant data than to repeat the redundant
service invocation.
 The third weakness demonstrated by the scenario is
the superfluous wrapping and unwrapping of datasets
not readily formatted for WSDL service invocation.
With WSDL services (in particular those utilizing
SOAP messages), the invocation and all parameter data
must be converted to an XML message. Sales Data
could be in binary format, the file must first be
encoded in base64 binary in order to invoke Forecast.
This wrapping not only adds additional computational
overhead, but also augments the size of the invocation
message as base64 binary takes up more space than the
original binary data. Once the invocation message
reaches the web service, computational overhead is

Figure 1: A business application scenario

again incurred as the data must be decoded before the
server can process it.
 These scenarios illustrate the weaknesses of WSDL
when dealing with large datasets. In order to overcome
these weaknesses, one might consider the following
questions to explore alternative invocation mechanisms
for large input parameters (and/or output result):
• When input data isn’t stored at the client but in a

data center, or when output data is destined for a
third party, how should the service invocation be
handled?

• Can a service provider actively fetch data from the
client? Similarly, can the client “pull” the result
from service provider?

• Can one reuse input data in subsequent
invocations?

• How can one efficiently deal with data in formats
not supported by XML (e.g., a binary file, CSV)?

 In the remainder of this paper, we develop a
framework WSDL-D to augment WSDL with flexible
service invocations so that large datasets can be dealt
with effectively and efficiently.

3. WSDL-D

In this section, we present the details of WSDL-D,
including parameter passing methods, communication
protocols between service provider and requester, and
WSDL syntax augmentation.

3.1. Overview

There are three primary features in WSDL-D. The first
is the ability to pass parameter datasets hosted on third
party servers. As third party data hosting solutions
evolve, it becomes more and more likely that datasets
used by web service consumers will not be hosted on
the consumer’s machine. Section 2 illustrates the
problem (especially for large datasets) as the web
service consumer must first acquire the dataset before
being able to invoke the service.
 The second improvement by WSDL-D is the ability
to reuse previous datasets. By enabling storage of
parameter datasets on the web service provider,
WSDL-D allows multiple service operations to share
the same dataset and avoid the consumer to resend the

dataset. This has great potential to save time as web
service consumers are no longer required to resend
entire parameter datasets upon invocation of different
service operations or even different invocations of the
same operation.

The final function of WSDL-D is the ability to pass
unaltered files as dataset parameters or results. WSDL-
D web service systems have the ability to fetch or
receive datasets via a variety of protocols (i.e. FTP,
HTTP). Rather than having to encode file contents to
be compatible with the message formats utilized by
present web service systems, WSDL-D permits
transferring the dataset directly to the target service.

3.2. Parameters

The metadata for describing the datasets required by an
invocation specifies how those required datasets should
be acquired and handled by the WSDL-D service
provider, as well as how the resultant dataset should be
supplied to the service consumer. The object
encapsulating this extra metadata will henceforth be
referred to as a WSDL-D parameter.
 The first bit of metadata provided by a WSDL-D
parameter specifies how the dataset parameters are to
be acquired. In order to make this specification, one
must provide an actor-action pair for each parameter.
In WSDL-D the valid actors are Client (service
requester) and Server (service provider). The valid
WSDL-D parameter actions are Push, Pull, and Use.
The Push action indicates that the specified actor will
directly provide the corresponding dataset parameter. If
the Pull action is specified, the actor will fetch the
dataset, possibly from a third party. The Use action is
used to indicate that the actor should utilize a stored
dataset.
 As an example, a web service consumer passes a
WSDL-D parameter P with transfer method “Client-
Push.” This indicates that the client will provide the
service with the dataset directly. Alternatively, if the
consumer passed P with transfer method “Server-Pull,”
the server would fetch the dataset, from the client’s site
or a third party host. Fig. 2 demonstrates valid actor-
action pairs for parameter passing and result return.
Entries marked as “—” are invalid combinations.
 There are five other pieces of required metadata for
a WSDL-D parameter. The first is transfer protocol
(FTP, HTTP, web service, etc.) that should be used by
the specified actor when sending or receiving the given
dataset. WSDL-D is not restricted to the three
protocols listed; however, these protocols are common
and provide the necessary mechanisms for the Push
and Pull actions required by WSDL-D. The second
metadata is a URL data path specifying where the

 Push Pull Use

Client Service Input valid — —
Service Output — valid —

Server Service Input — valid valid
Service output valid — —

Figure 2: Valid Actor-Action Pairs

specified actor should push or pull the specified
dataset. The next two metadata are login and password
credentials for accessing the specified dataset. These
credentials will be used for dataset hosts that require
authentication in order to access server resources. The
final metadata is a time-to-live value that specifies if
and for how long the given dataset should be kept at
the server for invocations utilizing dataset reuse.

3.3. States and Messages

The separation of parameter and resultant datasets from
invocation or result messages requires both service
provider and service consumer to maintain their states
in order to track the asynchronous invocation and
dataset specification. The state maintained by the
service provider tracks which invocations require
which datasets, which datasets are currently required
by an invocation or have been flagged for client reuse,
which invocations are ready to execute, as well as
which datasets have expired. On the client’s end, the
state reflects pending web service invocations, the
datasets the server currently has available for reuse, as
well as which datasets the server is expecting to be
provided by the client.
 Instead of the typical single request, single response
messages in a WSDL service, a WSDL-D service
invocation requires multiple messages to be sent from
the web service provider to the web service consumer.
In addition to the invocation and response messages,
WSDL-D also requires messages for dataset ID
coordination, dataset readiness notification, and service
completion notification.
 WSDL-D service invocations are similar to that of
WSDL web services. The service consumer sends the
service provider a message with an operation to
invoke, the required WSDL-D parameters, as well as
an additional WSDL-D parameter used to specify how
the resultant dataset is to be returned to the service
consumer. In response to this initial invocation
message, the WSDL-D service provider returns its ID
for the invocation. This ID can later be utilized by the

service consumer to poll the service provider for the
corresponding invocation’s state of progress.
 After an invocation has been received by the
WSDL-D service provider, the service provider may
need to send additional information back to the service
consumer. A WSDL-D service invocation with a
dataset provided by Client-Push (Fig. 3), for example,
creates a table entry for the dataset and returns to the
consumer an ID to be used to identify that dataset
when uploading (or pushing) it to the service. The
same goes for persistent datasets that will be
maintained on the service provider host. When a
persistent dataset is specified, a dataset ID message is
sent back to the invoking client so that the client may
reuse the dataset on future invocations.
 When a service invocation completes, the service
provider notifies the invoking client of completion via
an InvocationComplete message. Depending on how
the service consumer requested the resultant dataset to
be returned, the service provider may return the
resultant dataset directly to the consumer or provide
the necessary address and access information for the
resultant dataset in the InvocationComplete message.
 Fig. 4 illustrates the messages needed for a WSDL-
D invocation utilizing the ServerPull data acquisition
mechanism using a message sequence diagram. The
message sequence begins with an invocation call from
the service consumer. The service consumer calls the
method foo, passing a WSDL-D parameter as input, as
well as an additional WSDL-D parameter that
describes how the resultant dataset should be handled.
The WSDL-D input parameter “ServerPull(x,@x)” of
foo specifies the data acquisition method ServerPull
and provides the necessary data path and credential
information (denoted as “@x” in the figure) needed to
pull the dataset. When the service receives the
invocation message, it uses the provided data path and
credentials to fetch the dataset from the specified
location. The service then executes and sends an
InvocationComplete message back to the service
consumer. Since the service consumer requested that
the resultant dataset be returned via ClientPull (as
indicated by “ClientPull(z)” in Fig. 4), the service
provider provides the path and credential information
(“@z”) to the service consumer that may pull the
resultant dataset z to complete the invocation.

Figure 3: Invocation using ClientPush

Figure 4: Invocation Using ServerPull

 Fig. 3 and 5 demonstrate the message sequences for
the ClientPush and ServerUse dataset acquisition
techniques in WSDL-D, respectively. The messages
utilized are similar to those in Fig. 4. Note that the first
invocation message in Fig. 5 specifies its parameter as
“ServerPull(x,@x,ttl=2)”. The specification identifies
the ServerPull method and indicates that the dataset
will be used for two invocations (“ttl=2”). In the
subsequent call, “ServerUse(ID(x))” specifies the reuse
of the dataset x, where ID(x) is the unique identifier of
the dataset x at the service provider and was sent back
to the service customer in the “notify” message
occurred earlier.

3.4. Syntax Augmentation to WSDL

We now discuss extension of WSDL to WSDL-D. In
the extension, we focus on (1) compatibility with
WSDL (a WSDL invocation should also be legal and
recognizable to WSDL-D services), and (2) that
changes to WSDL should be kept at a minimal.
 In a WSDL-D web service invocation, the content
or its passing method of a parameter must be specified.
These are specified through attributes. Specifically,
attributes include:
• transferMethodIn, whose possible values are:
clientPush (dataset will be pushed to the Server),
serverPull (dataset will be pulled by the Server),
and serverUse (an existing data will be reused).

• transferMethodOut, whose possible values are:
clientPull (dataset will be pulled by the Client),
and serverPush (dataset will be pushed to the
Client by the Server).

• address, address of the dataset.
• dataID, ID of exiting data. When transferMethodIn

has the value serverUse, this ID can tell the
Server which existing data should be used.

• persistent, indicates whether the Server should keep
the dataset for future reuse. If this is set, dataset ID
will be returned.

In addition to the above new attributes, there is a
change to WSDL XML Schema type. Attribute nillable
of input/output message type must be set to true. Input
or output message can be parameter of XML data type
(with value) or parameters with one or more of the
above attributes (without value).
 Along with the syntax changes, there are several
constraints that define the behavior. For example, when
any sub-element of input or output message is not
empty, all extended attributes are ignored. When any
sub-element of input or output message is empty, its
transferMethodin or transferMethodOut cannot be
ignored. We omit the details here but provide an
example in the Appendix.
 It is important when addressing the shortcomings of
current WSDL-based web service systems to maintain
compatibility with those systems. The WSDL-D
service extension is intended to be implemented in a
manner that allows the typical, request-reply oriented
service invocation to be handled as it would be if the
WSDL-D extension were not installed. Applications
referencing a WSDL-D web service should have the
option of invoking an operation via WSDL web service
mechanisms, passing service parameters within the
invocation message. Alternatively, applications are
also able to invoke the same operation using WSDL-D
parameter passing mechanisms, using separate
messages to initiate service invocation and parameter
dataset provision. Similarly, the web service results can
be sent via standard web service messages or by
WSDL-D techniques.

4. Prototype Implementation

A prototype of WSDL-D was developed on top of the
.NET framework. Instead of attempting to expand the
web service enabling code base of .NET or Java (as is
the ultimate intent), the prototype implementation was
developed as a proxy system, sitting between the
service consumer and service provider. A .NET web
service was deployed on both client and server hosts to
act as a proxy between a normal WSDL-based service
provider and service consumer. The two proxies fulfill
the sate maintenance needs of the WSDL-D design as
well as all dataset creation, dataset transfer,
asynchronous messaging, invocation and dataset
management, as well as resultant dataset creation and
transfer. The following diagram illustrates how the
prototype was deployed.

4.1. The Client Interface

The intermediate web service residing on the client
host (the Client Interface) acts as a proxy between the

invoke foo(ServerPull(x,@x,ttl=2)):ClientPull(z)

pull(x)
x

pull(z)

z

InvocationComplete(@z)

Service Consumer Service Provider

Result Host

Invoke foo(ServerUse(ID(x)):ServerPush(z)

notify datasetID(x, ID(x))

Push(z)

3rd party data

InvocationComplete()

Figure 5: Invocation Using ServerUse

service-consuming client application and the WSDL-D
proxy service. The responsibilities of the Client
Interface include maintenance and tracking of all
invocation calls and parameter datasets sent to the
WSDL-D service, the handling of all asynchronous
messages received from the WSDL-D service, as well
as the receipt and handling of result datasets returned
by the service. These responsibilities are addressed by
the use of a directory table for both invocations and
datasets as well as a web service operation that allows
the WSDL-D service to update the state of an
invocation or dataset.
 Through the Client Interface, web service
consumers can invoke WSDL-D services as they
would any typical WSDL web service. Upon
invocation, the Client Interface creates the necessary
invocation and dataset directory table entries and
forwards the service call to the WSDL-D proxy. The
Client Interface thread for that particular invocation
then enters a state of waiting. Subsequent messages
from the WSDL-D proxy update the state of the
invocation and dataset directory tables as the service
processes. Once the service has completed, an
InvocationComplete message is then sent back to the
Client Interface, awakening the waiting thread. From
the service consumer’s perspective, service calls
through the Client Interface appear to function as
normal, blocking until the service has completed
processing and produced a return result.

4.2. The WSDL-D Proxy

The second intermediate web service is a wrapper for
the desired WSDL-based web service. Similar to the
Client Interface, this service (the WSDL-D Proxy)
maintains directory tables for tracking all incoming
service invocations and parameter or resultant datasets.
Each invocation is mapped to the parameter datasets it
requires in order to process as well as the resultant
dataset created upon service completion.
 When the WSDL-D Proxy receives a service
invocation, it creates a new entry in the invocation
directory table as well as new dataset records for each
new WSDL-D parameter in the directory table. For
those parameters that are to be pushed by the client or

have been flagged for reuse, the WSDL-D proxy sends
dataset identification messages back to the Client
Interface proxy web service. Once the directory tables
have been updated and the new or persistent dataset
IDs have been sent to the Client Interface, a new thread
is started to handle the WSDL-D invocation and the ID
of the new invocation is returned to the Client
Interface. The invocation-handling thread continues to
run, fetching all necessary datasets, calling the
wrapped WSDL-based target service, building a
resultant dataset, and finally sending that resultant
dataset back to the Client Interface in the manner
specified upon invocation.

4.3. Other Prototype Considerations

While developing the prototype implementation, a few
decisions regarding how various components would be
implemented had to be made. For one, we had to
decide where the additional functionality should be
added. As mentioned in previous sections, WSDL-D is
meant to extend current web service systems (i.e.
Java’s GlassFish, or Microsoft’s .NET web services).
The prototype was developed as wrapper, or proxy,
web services both to be compatible with any SOAP-
based web service system and to allow us to focus on
creating the new functionality instead of trying to
figure out how the new features would fit into a
specific web service framework.
 In order to achieve asynchronous messaging
between the Client Interface and WSDL-D Proxy, we
considered a few approaches. Socket connections were
at one point considered a possible solution. The
WSDL-D Proxy could make a connection to the Client
Interface machine and update some sort of shared
resource. This was quickly dismissed; however, as it
broke from the loosely-coupled, web-like paradigm we
wanted to adhere to. The second messaging technique
considered was the use of WS-Eventing [2]. However,
while WS-Eventing provides a protocol and messaging
schema for event-driven, asynchronous communi-
cations between two web services, as of this writing,

Figure 6: Architecture of the WSDL-D prototype

Figure 7: Service execution time
(the dataset at a 3rd party host)

no standardized implementations of WS-Eventing are
publicly available. As a result, the WSDL-D prototype
utilizes additional service operations to enable
communications between the WSDL-D Proxy and
Client Interface web services.
 It should be noted that while this prototype was
built using .NET web services, future prototypes need
not do so. The WSDL-D system is not meant to be an
exclusive extension to .NET web services.

5. Experimental Evaluation

In order to gauge the performance enhancements
offered by WSDL-D, the implementation described in
Section 4 was deployed and tested. Overall, WSDL-D
performed as expected, reducing total service runtime
when compared to an analogous WSDL services in our
preliminary experimental evaluation. WSDL-D
invocations utilizing the ClientPush acquisition method
(the most similar technique to WSDL-based services)
performed on par with the conventional WSDL-based
technique. Slight gains in performance were achieved
by removing the encoding requirement for binary
datasets, reaching roughly twenty percent gains.

5.1. Setup

Three different scenarios were tested to compare the
performance of WSDL services and WSDL-D services.
 The first environment was composed of a WSDL-D
Proxy and an end point web service hosted by a lab
machine on the cs.ucsb.edu domain (this host will
henceforth be referred to as the WSDL-D host). The
Client Interface and service-consuming client GUI
were hosted by a PC connected to the Internet via cable
modem with bandwidths of 5Mbs downstream and
512kbs upstream (this host will henceforth be referred
to as the client host). We refer to this environment as
slow-link since the service-consuming client is behind
a relatively slow connection.
 The second environment (fast-link) differed from
the first in that the service-consuming client was

deployed to another lab machine in the cs.ucsb.edu
domain. The connection between the WSDL-D service
provider and consumer in this environment was
100Mbs (about 35Mbs actual) Local Area Network.
 Each experiment was run with 1, 2, 4, 8, 16, and 32
megabyte (MB) sized text datasets. A dataset of 64 MB
was additionally tested in the fast-link environment for
the third party and dataset reuse scenarios.

5.2. Third Party Datasets

For evaluating ServerPull from a 3rd party data host, an
additional host in the cs.ucsb.edu domain was
deployed to host datasets (the dataset host). A 100Mbs
Local Area Network connection served as the link
between the WSDL-D host and the dataset host.
 In this scenario, the client host consumed the end
point service from the WSDL-D host. For typical
WSDL service invocations, the client downloads the
dataset from the dataset host first, and then invokes the
service with the parameter data in the invocation
message. The WSDL-D invocation was made
specifying ServerPull as the dataset acquisition
method, i.e., the WSDL-D host pulls the dataset from
the dataset host directly.
 For the WSDL-based service, the time to download
the dataset from the third party host was added to the
time required to invoke the service to get total
invocation time. This time was compared to the total
time it took to run the service using WSDL-D’s
ServerPull mechanism. Since the WSDL-D ServerPull
mechanism eliminates the extraneous transfer of the
dataset from the client host to the WSDL-D host, the
performance difference was quite significant.
 Fig. 7(a) shows the improvement by WSDL-D
when the requester has a slow connection to the service
provider. For 32MB datasets, WSDL-D improved
performance by nearly 30 times. Fig. 7(b) illustrates
that even in environments where network connection
speeds are fast and symmetric, WSDL-D techniques
still provide significant reductions in the time needed
for the service to acquire the necessary datasets.

5.3 Dataset Reuse

In this scenario, the client host consumed the end point
service from the WSDL-D host. This time, the client
made two calls to the service using the same parameter
dataset. For typical WSDL service consumption, the
client had to transmit the entire dataset upon each
invocation of the service.
 Two service invocations were also used when
testing the WSDL-D approach; however, on the first
call to the service the client specified ClientPush as the

Figure 8: Service execution time

(the dataset stored at the service provider)

acquisition method and signaled that the dataset should
be maintained for future use. On the second WSDL-D
invocation, the client specified ServerUse as the data
acquisition technique and provided the ID of the
already-acquired dataset to be used by the service.
 For the WSDL service, the time required to invoke
the service once was doubled and counted as the total
time needed to make two service calls using the same
dataset. For the WSDL-D experiments, the total time
was calculated by adding the amount of time taken by
each of the WSDL-D invocations (one using
ClientPush and the other using ServerUse).

Fig. 8(a) shows that using the dataset reuse feature
cuts over-all service runtime nearly in half when
making two invocations. Fig. 8(b) shows that even in
environments where hosts share fast connections and
state maintenance becomes relatively more costly,
WSDL-D is still more efficient.

5.4 Binary Datasets

In the final scenario, binary data was required as a
parameter for the service invocation. For both WSDL-
D and WSDL service invocations, this binary data
originated on the client host. In order for the WSDL-
based service invocation to succeed, the binary
parameter data had to first be encoded into XML-
compatible base64 binary. WSDL-D services do not
require this step because the binary data is transferred
as a file from the client to the server.
 For the WSDL-based service, the time required for
a single invocation was counted as the total time

needed to make a WSDL-based service call with
binary dataset inputs. For the WSDL-D experiments,
the client used the ServerPull mechanism so that the
server would fetch the raw binary file from the client
host.
 Due to the additional overhead associated with
encoding and decoding binary data for transport via
SOAP messages in addition to the extra space needed
for base64 binary encodings, WSDL-D invocations
outperform WSDL invocations by roughly 20%. These
gains in performance are illustrated by Fig. 9.

6. Conclusions

WSDL provides a simple interface for web services.
However, it lacks support for handling large datasets.
This paper presents an extension of WSDL to allow
decoupling the invocation request and invocation
parameters (datasets). The extension allows obtaining
datasets from a third party, reusing a prior dataset, etc.
Preliminary experiments show that the performance
gain out-weighs the overhead for large datasets. It is
noted that the WSDL-D extension is compatible with
WSDL-S [1]. It is also interesting to further evaluate
WSDL-D in practical applications.

7. References

[1] R. Akkiraju, J. Farrell, et al. Web Service

Semantics—WSDL-S, W3C Member Submission,
November 2005
(http://www.w3.org/Submission/WSDL-S/)

[2] D. Box, L.F. Cabrerea, et al. Web Services Eventing
(WS-Eventing), W3C, March 15, 2006
(http://www.w3.org/Submission/WS-Eventing/)

[3] Earth System Grid,
http://www.earthsystemgrid.org/
[4] Federation of Earth Science Information Partners,

http://www.esipfed.org
[5] B. Ludäscher and C.A. Goble. Guest editors’

introduction to the special section on scientific
workflows. SIGMOD Record, 34(3):3-4, 2005

[6] C. Reed. Integrating Geospatial Standards and
Standards Strategies into Business Processes, 2004
(http://www.opengeospatial.org/pressroom/papers)

Figure 9: Invocations with binary datasets

