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Abstract

We present ISENS, a distributed, end-to-end, ontology-
based information integration system. In response to a
user’s query, our system is capable of retrieving facts from
data sources that are found in the surface Semantic Web as
well as in the Semantic Deep Web. Furthermore, it retrieves
facts from sources where the data is not directly described
in terms of the query ontology. Instead, its ontology can be
translated from the query ontology using mapping axioms.
In our solution, we use the concept of source relevance to
summarize the content of a data source. QOur system can
then use this information to select the needed sources to an-
swer a given query. Source relevance is general enough that
it can be used with both the surface Semantic Web and the
Semantic Deep Web. In this paper, we show how we have
incorporated three particular Deep Web data sources into
our system to enable answering queries by composing in-
formation from the integrated sources.

1 Introduction

The Semantic Web provides an infrastructure that has the
potential to transform the Web to a true global knowledge
medium. Ontologies, expressed in a standard logic lan-
guage with formal semantics, can be used in concert with
web data in order to develop powerful query systems. The
research community and the industry have made significant
progress toward realizing this vision. For example, the Web
Ontology Language (OWL) is now an international stan-
dard [7]. One key bottleneck to the success of the Semantic
Web is data acquisition. The Deep Web, on the other hand,
makes up about 77.3% of the current Web data [3]. This
data is mostly stored in relational databases; it has well de-
fined structure and some basic semantics defined by their
schema. Therefore, acquiring and adapting the Deep Web
data for the Semantic Web is a less complex task than ac-
quiring and adapting semi-structured surface Web data like
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web pages and blogs. For example, nontrivial issues like
natural language processing, data discrepancies and ontol-
ogy learning are not that critical in acquiring Semantic Web
data from the Deep Web. The Deep Web can be an ideal
source for Semantic Web data.

Although there is a wide array of Deep Web data sources
available, each Deep Web data source usually focuses on a
particular area of a user’s interest. Even the so called fed-
erated search engines that combine the results of multiple
Deep Web data sources usually follow this same paradigm
[9]. For example, a federated search engine may combine
the results of three Deep Web data sources that provide re-
views of “Fargo” the movie, but will not provide informa-
tion about say the city “Fargo”. However, in reality the in-
formation need of a user can span many data sources. For
example, a user may want to know about some geographi-
cal information of a city like its elevation, latitude/longitude
etc., but in addition she may be curious about the city’s
political information and may want to see some satellite
images of the city. Her query therefore could potentially
span a geographical database like Geonames', a Wikipedia
style database like DBPedia’ and maybe some individual
blogs that have imagery of the city she is interested in. It
is well known that web scale information integration has
many challenges to overcome [2]. The Semantic Web may
provide an integration mechanism that will allow a more
comprehensive use of the Deep Web data beyond the data
provider’s anticipation.

In this paper, we present a system that demonstrates
some of the synergies between the Semantic Web and the
Deep Web that we have hypothesized above. Our ISENS
system is a distributed, end-to-end, ontology-based infor-
mation integration system which takes a SPARQL? query
as input and retrieves facts from data sources that are found
in the surface Semantic Web (files in OWL and Resource
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Description Framework* (RDF) format) as well as the Se-
mantic Deep Web. We say a data source is a Semantic Deep
Web data source if it is either a Semantic Web Knowledge
base or can be wrapped with a Semantic Web interface. This
definition is consistent with the definition provided by Jung
Anetal. [1].

In our solution, we use the concept of a source relevance
to summarize the content of a data source. Our system can
then use this information to select the needed sources to an-
swer a given query. Source relevance allows the content of
a database to be declaratively described without regards to
a specific access mechanism (e.g. query language, protocol
etc.). This abstraction allows us to treat the surface Seman-
tic Web and the Semantic Deep Web in the same manner. In
our system, we ground these descriptions in RDF. We refer
to these RDF statements that express a source’s relevance
to a query as REL statements. We postulate that these REL
statements will either be handcrafted by the data providers
or auto-generated using various data mining techniques [4].

In addition to addressing this format/access heterogene-
ity, our system addresses the semantic heterogeneity be-
tween data sources as follows. It uses an adapted informa-
tion integration algorithm and mappings expressed in OWL
to reformulate the query into the ontologies that the data
sources use. We note that this reformulation is not the focus
of this paper. The details of the reformulation and the infor-
mation integration algorithm are presented in Qasem et al.
[8].

The rest of the paper is presented as follows. In Section
2, we describe the overall architecture of our system and its
key functionality. In Section 3, we provide specific details
of the source relevance concept and how it is implemented
in our system. In Section 4, we discuss the Deep Web data
sources for our experiment and issues we have encountered
in the data preparation. Finally, we conclude and provide
the highlights of our future work.

2 ISENS System

In this section, we describe the overall architecture and
the functionality of our system. As depicted in Fig. 1,
ISENS consists of three main components: GUI, OBII, and
distributed sources of meta data. We assume that each data
source commits to one or more OWL domain ontologies.
We use OWL axioms to describe a map between a pair of
related ontologies. The choice of OWL to articulate the
alignments make these maps shareable via the Web. Note
that it is unlikely that we will have alignments between all
pairs of ontologies, but it should be possible to compose an
alignment from existing alignments. We also assume that
each source has a set of REL statements, which will be dis-
cussed further in Section 3.
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Figure 1. ISENS Architecture Diagram with ar-
rows showing the flow of information when
processing a query.

The primary component of our system is the Ontology
Based Information Integrator (OBII). The OWLIIRulePro-
cessor loads the OWL maps and the REL statements. The
Reformulator takes these inputs and implements our infor-
mation integration algorithm. The AnsweringEngine is re-
sponsible for querying/loading the sources selected by the
Reformulator into the KAON2> reasoner. In addition, the
module loads the ontologies that are used in the reformula-
tion and all the relevant maps. Then, it issues the original
query to the reasoner and formats the retrieved answers.

Our Reformulator adapts the peer data management sys-
tem (PDMS) reformulation algorithm [5] to the Semantic
Web. The PDMS is a decentralized and extensible infor-
mation integration architecture, in which any user can con-
tribute new data, schema information, or even mappings be-
tween other peers’ schemas. PDMS extends the standard
Local-as-View (LAV) and Global-as-View (GAV) informa-
tion integration approaches [6]. Since users can and will
have queries in any ontology, we need to enable a mech-
anism that does not depend on a single mediated schema.
Therefore, PDMS’s “any schema” approach makes PDMS
suitable for adaptation over data described with RDF/OWL
ontologies. Qasem et al. [8] provide the details of our adap-
tation of this algorithm and defines an OWL-compatible
mapping language to describe peer maps and sources.

Users interact with ISENS via its graphical user interface
(GUI) component. The GUI allows loading of ontologies
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available on the Web to visualize their class and property
taxonomies (displayed as trees). Terms from the displayed
(together with previously loaded and cached) ontologies can
then be selected and used in constructing SPARQL queries
in an interactive way. Once a SPARQL query is constructed,
it can be submitted to the OBII component to find the rel-
evant answers from the available data sources. The results
found by OBII are returned back to the GUI and displayed.

3 Source Relevance

In Section 1, we introduced the notion of a REL state-
ment. Due to the Web’s size, it is infeasible to query all the
web data sources for a given query. Therefore, we need
some means of specifying meta data for sources. If we
can determine which sources are potentially relevant sim-
ply from the meta data, then we can limit our queries to
these sources. Having relevant information, however, does
not mean that the source is capable of answering the query
completely. It just says that the source may have some use-
ful information on the query.

REL statements are formed using a subset of OWL
and can be translated into LAV rules. Consider the state-
ment REL(http://sourceURL, Electronics, CinemaDisplay
M 3 madeBy.“DELL”). We omit the OWL syntax here for
space consideration. It says that in a data source located
at http://sourceURL there are some individuals of class
“Electronics” that are cinema displays made by Dell. In
this example, the meta:container will be the class expres-
sion that defines CinemaDisplay M 3 madeBy.“DELL”, the
meta:contained will be Electronics and meta:source will be
http://sourceURL. The meta:RelStatement will encapsulate
these three predicates. Please see Qasem et al.[8] for a de-
tailed description of the REL statements.

We have also mentioned that the REL statements allowed
us to focus on the content rather than the access mechanism.
In our system we provide a translator that would translate
the contained query atom into the target database’s query
language. We have currently implemented a translator to
the SERQL query language. This is the query language for
Sesame®, which we use to store Deep Web data for our ex-
periments. We plan to implement translators for SPARQL
and other query languages.

4 Data Sources

Currently, there are only a few true Semantic Deep Web
data sources that are accessed through SPARQL endpoints’.
Most of these endpoints are not yet very reliable. However,
as mentioned in Section 1, it is relatively easy to convert

Ohttp://www.openrdf.org/
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regular Deep Web data sources to Semantic Deep Web data
sources. In our initial experiment we have done just that.
Here, we briefly describe the three sources that we have in-
corporated into our system. In each case, after translating
the data to OWL, we loaded into its own Sesame knowledge
base.

DBPedia is an effort to convert all the Wikipedia data
into a web enabled structured format. The DBPedia how-
ever, is not in OWL format and therefore we had to process
the data so that its instances are typed according to OWL
classes. For our initial experiment, we have used DBPedia’s
“infobox” dataset that was extracted from the English ver-
sion of Wikipedia. The infobox data is well structured and
its granularity enables fine-grained queries over the data set.
Furthermore, we have only focused on infoboxes related to
the cities of the world. We harvested city specific data for
about 33,000 cities from this source. The properties of these
city instances however are not used uniformly. For example,
one city may have latitude/longitude information, whereas
another may not. We decided to use the following set of
properties that cover a large number of instances: popula-
tion, population as of, postal code, image map, established
date and airport code.

The Geonames web site provides information on various
geographic entities. The database contains over eight mil-
lion geographical names and consists of 6.5 million unique
features of 2.2 million populated places. We collected city
specific data of about 70,000 cities from this source. The
data is fairly clean and we have converted it to OWL with
simple scripts. The properties of cities that we have col-
lected from this data set are latitude, longitude, elevation
and country code.

The third data source we incorporated in the system con-
sists of NASA provided Spaceborne Imaging Radar-C/X-
Band Synthetic Aperture Radar (SIR-C/X-SAR) imagery
and related semi-structured textual data® on cities. The
NASA data are in HTML format. We decided to harvest
and generate meta data in OWL on the NASA’s “Cities”
SIR-C/X-SAR data set in order to permit possible integra-
tion with the DBPedia and Geonames data sets. Thus, these
three data sets enable us to develop a meaningful and inter-
esting use case scenarios for ISENS with non-trivial ontol-
ogy maps for information integration from the separate data
sources.

We designed and developed an OWL ontology to de-
scribe the NASA city data. Then, to generate ontology in-
dividuals, we wrote code to crawl the NASA data, extract
relevant information from the fetched html pages, and gen-
erate the individuals in OWL in the terms of the developed
ontology. The code generates individuals about the cities
for which imagery was provided, image data individuals
that contain information about the dates the images were
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taken on, IDs, URLs to the specific images, city names, and
descriptions of the images. We harvested city specific data
for 33 cities from the NASA source.

An example of an interesting information integration use
case query given these data sources consists of asking the
system to find all cities for which there are image data
available and their altitudes and their population density.
Such a query can be expressed in a straightforward way in
SPARQL. For testing the system, we have written this query
in terms of the NASA ontology. The individuals of this on-
tology contain data about cities and imagery on them but
there is no available information about the altitudes of these
cities or population density. However, ISENS uses its ontol-
ogy maps to deduce that the hasAltitude property in the
NASA ontology is equivalent to the elevation property
in the Geonames one and hasPopulation in the NASA
ontology is equivalent to the population property in the
DBPedia. The system then, using REL statements, finds
relevant data sources on elevation data (from the Geonames
individuals), and population data (from the DBPedia indi-
viduals) to answer this query and provide the elevation and
population data of the cities for which it also found NASA
imagery data.

5 Conclusion and Future Work

In this paper we present the ISENS ontology based in-
formation integration system that works seamlessly with
both surface Semantic Web and Semantic Deep Web data
sources. Given a user query, ISENS retrieves facts from
multiple data sources, even from the sources where the data
is not directly described in terms of the query ontology; and
then integrates them to meet the user’s information need.
We have described how we have developed and incorpo-
rated three particular Deep Web data sources into our sys-
tem to enable answering queries that provide complemen-
tary information from the integrated sources.

This work opens up some interesting avenues for further
research. One of our short term goals is to investigate the
robustness of our system in the case when a Deep Web data
source is currently unavailable. Although we expect there
will be natural redundancy of sources in terms of the infor-
mation they provide, it is conceivable that in some cases we
will not have any source available that can provide a certain
piece of information. In that case the user query can only be
partially answered. We want to perform a trade off analysis
between providing partial results and having to postpone a
query because one of its components is unavailable. A re-
lated area to look into is the optimization of the calls to
the data sources. Depending on the query and the speed of
the server, information about some components of the query
will take longer to reach our system. We want to perform
a similar analysis to come up with heuristics that will allow

our system to handle the delay in a graceful and useful way.

A more long term research goal is to enhance the REL
statements to accommodate web services. Web services ex-
pose their content through APIs. Unlike the Deep Web data
sources, whose relevance can be modeled using our REL
statements by specifying the expected result (i.e. output)
of a query, web service API calls will also need inputs. We
plan to investigate the changes required in our formal model
to accommodate this enhancement.
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