A novel plane based image registration pipeline with CNN scene parsing
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Abstract—Plane is one of the most important element for
indoor man-made structural rooms, such as broadcasting studios,
open lecture room and empty offices. The existing visual mapping
algorithms cannot effectively detect and describe the visual
features on an empty large or medium size plane. This article
aims to introduce a novel frame-to-frame registration pipeline
based on one medium-size plane on man-made object instead
of multiple planes or small plane patches. By introducing a
structural description of reference planar area with its contour
data and CNN segmentation information, the proposed approach
is able track the pose of camera with high accuracy and
robustness in comparison with existing feature-based tracking
or dense geometric tracking approaches.

Index Terms—Plane based image registration, CNN scene
parsing; 2D contour extraction; Depth completion; contour-to-
contour structural matching; Mapping in low-texture scene.

I. INTRODUCTION

When performing the indoor mapping or camera tracking
tasks, the large and medium size planes are selectively ignored
since they can not provide enough visual features, especially
when these planes are only partly visible in current camera
perspective. The theory of visual reconstruction through depth
information also faces the same problem. Because the impreci-
sion of the experimental instrument and lacking of algorithms
that can accurately describe the 3D planar model, most of the
existing sense plane mapping algorithms usually use the plane
to optimise the mapping result, instead of using the plane to
complete the task of camera tracking. Therefore, the problem
of visual reconstruction for low-texture scenes has become a
practical research direction in recent years [1].

Plane is the most important part of real-world objects,
and there are many planar areas in man-made indoor scenes,
such as large planes including walls and floors; medium-sized
planes like projection screens and surface of tables and various
small planes like computer monitor. In one of the pioneering
studies, Salas-Moreno deployed the planes to improve map-
ping performance [1]. It was mentioned that a dense tracking
algorithm is more suitable for rich-planar environment, which
can improve the tracking performance in the case of accurate
extraction and description of planes. Therefore, they use the
dense tracking algorithm to estimate the camera pose of each
frame at beginning and then optimising each pose through
connecting and refining planes.

Recently, Hsiao has introduced a key-frame based Dense
planar SLAM with GPU since plane is a much cheaper dense
presentation, and correctly extracted plane could be used as
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a landmark to reduce the drift error [2]. Therefore, a novel
approach was proposed to convert the planar area into various
small planar patches, and then track the camera by tracking
corresponding patch pairs.

Based on existing studies on plane-based dense registration,
this paper proposes a novel method with CNN labels to im-
prove the frame-to-frame registration performance by tracking
one marked plane inside the scene. This plane model is not
needed to be acquired in priority and it is not required to
be fully appeared in every frame. To detect and describe this
plane, a CNN model and a novel composite contour extractor
is utilised, and a depth completion algorithm is applied to
get the correct geometric description. Then the camera motion
estimation is accomplished by matching the geometric feature
of labelled plane between two frames. Due to the use of CNN
to label feature area and purposed depth completion process,
this algorithm is more suitable for solving off-line visual
mapping problems in indoor extreme scenes. The experimental
results show that the average running time is 500 to 600
milliseconds without using GPU in 50 inter-frame registration.

There are three main steps in the proposed algorithm. In
the first part, a scene parsing CNN model “DeepLabV3+”
is used to segment the image and label the landmark plane
[3]. Then, a novel 2D contour extraction strategy is designed
to get the complete contour of landmark plane. And a depth
completion algorithm is used to compensate the imprecision
of depth sensor reconstruct the 3D model of contour area.
Finally, a normal dense point-point ICP algorithm is applied
to calculate the transformation between two contour models
in two different processes. In addition, purposed registering
algorithm uses the Ref Model and Ray-cast theory to make
every registration accurate and reliable.

The rest of this paper is organised as follows. Firstly, a
brief review of recent research on plane-based visual mapping
algorithm is reviewed in Section II; then, each part of the
proposed algorithm is introduced in Section III and the exper-
iment results are shown in Section IV to show the feasibility of
the proposed approach. Finally, a brief conclusion and further
plans are described in Section V.

II. BACKGROUND

Recent plane-based visual tracking and mapping algorithms
includes two main approaches: using plane for tracking or
using plane for global alignment. In the former case, Taguchi
et al. used a multi-stage process to optimise a 3D plane



point cloud from raw depth data [4]. They divide the whole
3D data into various planes by extending a random plane
point with its neighbours repeatedly, and then compute the
pose transformation by matching threes matched plane-plane
features or point-point features. Similarly, Kaess identified
that at least three plane pairs is required to match two
frames. Two angle values and one distance value were used to
describe and distinguish each plane, and estimate the camera
motion by measuring the distance between matched plane
in a tangent space [5]. However, these approaches is not
practical in feature-less scenes. Li used the small plane patch
to enhance the registration performance, but a 21*21 small
patch cannot make the system run in a low-texture environment
[6]. Similarly, Hsiao used the key-frame structure for dense
mapping [2]. By turning a complete plane into several facets,
it solves the problem of inaccurate depth information at the
plane boundary. Both photo-metric error and geometric error
were used to estimate the pose transform matrix.

In the later case, Salas-Moreno used the connected compo-
nent labelling technique to detect and mark planes [1]. This is
a pioneering work in terms of using planes to optimise normal
point-to-point dense registration results. Ma used a soft EM
algorithm to extract and label the planes in each image, and
register current frame to key-frame through matching points
and planes to global model [7]. Then the detected areas are
utilised to align the global model. ElGhor et al. detects the
feature points and extract plane from point cloud through
RACSAC concurrently. By projecting points onto correspond-
ing plane and complementing the same plane, the influence of
sensor error on the construction is greatly reduced [8]. Guo
used the edge and structure of planes to optimise the low-
texture visual odometry problems [9], and LSD and LBD were
used to extract and describe the edge of planes respectively.
However, this algorithm requires a very simple scene structure
and is impractical. In large man-made indoor scenes, structural
information is also considered as an important feature. Kim
introduced their theory used for empty structural scene, such
as the corridors [10]. The scene structure is consistent with the
Cartesian coordinate. When a new frame was inserted into the
loop, users could define its orientation by analysing the wall
plane, ground plane and ceiling plane, and then comparing its
orientation with Cartesian coordinate to estimate current pose.

III. ALGORITHM OVERVIEW

The purposed registration algorithm is based on point-
point ICP algorithm. However, classic ICP-based dense visual
tracking algorithm can not meet the requirements of our
contour-contour matching theory, and it mainly includes two
reasons: on the one hand, captured depth data, RGB image and
CNN scene segmentation information are not accurate enough,
and the contour extracted through these raw data will directly
affect the registration performance; on the other hand, ICP
algorithm is easy to fall into the local minimum problem due
to its computation limitation when the difference between two
images is large, and the matching score obtained in this case
is unreliable. To solve these limitations, a novel frame-frame
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Fig. 1. The flowchart of the proposed Contour-to-contour registration pipeline

registration process is proposed based on global ref model and
ray-casting theory. Figure 1 presents the processing pipeline
of the proposed contour-to-contour registration algorithm. The
target and process of each part is described in the following
subsections: section A includes a novel contour extraction
and modelling process; section B describes the raw contour-
contour ICP registration and its limitations; section C and
section D present the ref model theory and a self-calibration
process respectively.

A. Contour extraction and Data Fusion

This section introduces a novel contour extraction and
modelling process, which aims at recovering an accurate 3D
contour model of landmark plane with noisy visual data and
imprecise CNN image segmentation. This process consists of
two parts. The first part is to accurately extract the edge points
of the landmark plane in the non-HD image through the rough
CNN scene segmentation and contour extractors. The other
part is to correct the raw depth data of the contour region with
normal vector of this plane, and then construct an accurate 3D
contour model.
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Fig. 2.

1) Composed Feature extraction process: The proposed
contour extraction process is the combination of LSD extractor
and basic contour extractor based on image intensity value,
and its structure is illustrated in Figure 2. LSD is a frequently
used line detection algorithm in recent studies and often
used in conjunction with the LBD line description algorithm.
However, it is difficult for LSD to find accurate edge feature
points in non-HD images due to unbalanced illumination
and shooting-jitter problems. Similarly, the normal contour
extractor based on gradient change has the same limitation.
Therefore, the purposed contour extraction pipeline combines
the two extractors to compensate for each other’s detection
error. This process start with extracting the contour features
on 2D RGB image with LSD and contour extractor at the
same time, and project all the contour points back to original
image to force an edge to large areas. Then, contour extractor



(a) Imprecise Contour Detection

(b) Rough Image Segmentation

T

(c) Optimised Contour Detection on landmark plane

Fig. 3. Contour Extraction on Labelled plane. (a) the red points describes
the raw contour extraction result with LSD contour extractor and Intensity
gradient based contour extractor. The false detection occurs because of
unbalanced illumination (errors inside plane) and image quality (errors outside
plane); (b) describes the rough scene segmentation from CNN model, the dark
green indicates the right label, and the light green pixels are the false detection;
(c) presents the plane and its contour extraction result with our approach, the
table surface is labelled with light grey, and its contour points is drew with
dark grey.

is used again to extract the contour in the enhanced image.
By filtering out all the open contours and short contours, only
the contours which describes the landmark plane and other
large areas are saved. After 2D contour extraction, the CNN
scene parsing model "DeepLabV3+" is used to define which
contour describes the landmark plane. Due to the imprecision
of CNN scene segmentation, if more than 70 percent of the
whole pixels inside one contour area belongs to the landmark
label, it means this area is describing the landmark plane. The
Figure 3(a), 3(b) and 3(c) describe the raw contour detection,
rough image segmentation and optimised contour extraction
result with purposed algorithm respectively.

2) Depth Completion: After locating the 2D edge of a
landmark plane, a depth completing process is triggered to
correct the raw depth value acquired with off-shelf commodity
cameras, and obtain an accurate 3D contour model of plane in
each frame. In this section, a novel plane depth compensation
algorithm based on normal vector equation is tested to get a
correct 3D model of plane‘s contour. This process includes
three steps:

a Split the extracted plane model with two points groups:
Cloudjnside and CloudEdge;

b Choose two random point P; and P in Cloudpside
and one point P; in Cloudgqge;

¢ Build the residual equation with P; and P;, and P; and
P; to estimate the depth of each Ps; based on Normal
Vector equation.

In Step a, the landmark plane is projected to space with
raw depth value and then distinguished with the inside point
cloud Cloudrnsiqe and edge point cloud Cloudggge. The
Cloudgage is composed with the detected edge points and its
nearest 15 neighbours toward the centroid of this plane, and
the Cloudy,siqe is made up of the remaining points. Then, the
normal vector of Cloudy,side is extracted as (a, b, ¢, d) in Step
b. This normal vector is reliable since the inside points have
less false depth values. Finally, By choosing two random point
Py and P, in Cloudpside and one point P; in Cloud gqge, and
then establishing the residual equations based on normal vector
extracted in Step b, the depth of each point P; is acquired by
solving these residual equations.
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where a, b, ¢ and d are derived by normal vector extraction,
vectors X, y, z could be derived by (Ps.xz - P1.x), (P3.y -
Pry), (Ps.z - P1.z2) or (Ps.x - Py.x), (P3.y - Po.y),(Ps.2 -
P5.2). Note that x, y and z of P, and P, are derived directly,
P5.x and Ps.y could be derived by Equations (2), (3) and (4).

Ps.z = depth/camerascqie; 2
Ps.x = (n — cameracy) * p3.z/cameragy; (3)
P3.y = (m — cameracy) * p3.z/camerag,; “4)

Where m and n are the 2D pixel position of P5, camerascqie
is the camera depth scale; camera., and camera,, are the
camera principle points; cameray, and camerays, are the
camera focal length. These camera intrinsic parameters could
be derived from calibration directly.

By inserting these values in normal vector formula, we can
obtain two residual equations, which could be solved through
Ceres optimisation lib.

residual[0] = a = (Ps.x — Py.x) + b= (Ps.y — P1.y)
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residual[l] = a = (P3.x — Py.x) + b (Ps.y — Po.y) ©
+cx (Py.z — Py.z) +d

Figure 4 has shown the modelling result of our approach and
proved the reliability of our proposed algorithm. When the 3D
model is accurate, it could be treated as a two-dimensional
image feature represented by three-dimensional information.
Moreover, tracking this geometric feature is similar to 2D
visual feature-matching theory with less number of visual
features.



(a) Raw depth model

(b) Optimised model

Fig. 4. Comparison of modelling results between the original depth image
and the ones from the depth completion algorithm. (a) is the 3D model with
normal depth data. Some edge points are no longer in the plane area because of
imprecise depth value. (b) is the 3D model optimised with the proposed depth
completion algorithm, which has kept all the important contour information
and could be considered as a 3D description of 2D contour area of plane.

B. contour-to-contour Dense Registration

Dense registration could be classified by geometric ap-
proach and photo-metric approach. The geometric approach
is using various ICP algorithm to match the geometric feature
and the photo-metric approach is relying on intensity value.
Our algorithm belongs to the geometric approach. With the
inspiration of 2D line feature based visual tracking algorithm,
this paper registers two planes by matching their 3D spatial
edge features, which could be considered as a 3D matching
approach on 2D image features. By accurately matching the
edges with each other, two plane models could be accurately
aligned, as well as the whole 3D scene. Point-point ICP
algorithm also derives a matching score, which describes the
matching accuracy. And a smaller score indicates the better
registration performance.

This approach provides good matching results when two 3D
models are similar to each other. However, when two models
are very different (e.g. long distance between two frames), this
approach is easy to fall into local minimum and its derived
matching score is no longer reliable, as shown in Figure 5.
This limitation is caused by point-point ICP algorithm itself.
Therefore, a novel reference model theory and re-calibration
method based contour-contour matching algorithm is deployed
in the next subsections for optimisation.

C. Ref Model in inter-frame registration

Using Ray-casting theory and Global Model to replace
normal frame-frame tracking has proved its efficiency in recent
dense visual mapping algorithms, since it can effectively
reduce the drift error as this method matches each newly added
frame with the global model instead of a continuous inter-
frame registration. Based on this theory, this paper introduces
a novel global reference model and ray-casting theory specific
to purposed contour-contour matching algorithm to improve

(a) limitation 1

(b) limitation 2

Fig. 5. These two images describe the limitation of Raw Contour-contour
Registration Results, green points and red points are from adjacent different
frames. (a) the matching score of this scene = 0.00010304. As one model
is totally overlapping the other one, it still gets a small matching score even
when the registration is not accurate. (b) When the two models are partially
overlapped, it is easy to fall into the local minimum problem, and its matching
score is not reliable.

its robustness and accuracy. Compare with existing theory, our
algorithm has made three main changes:

1) Reconstructing and updating a special ref model be-
sides the global reconstructed model. This ref model
is presented with point cloud instead of voxel-based
reconstructed model. This makes the system saves the
process of point-voxel converting and easy to change or
delete the points.

2) The ref model updates its viewed part in current per-
spective when the pose of current inserted frame is
confirmed, and only part of new model will be added to
the ref model. This keeps the simplicity and accuracy of
ref model.

3) When tracking failure occurs, global ref model will stop
updating and the current ref model will be saved as a
piece-wise contour model.

The ref model Modelg.s starts with the initial contour
model in a image sequence. Assuming the current frame is
Frame; and the ref model is Modelr.f, the up coming
Frame is Frame;;1, its contour depth image is Depth; 1,
and its spatial point cloud in world coordinate is Cloud; .
Updating the ref model includes four steps: (1) When the
pose P;.1 of new inserted frame F'rame;; is defined, the
Modelgey is split into the viewed model M odelyieweq and
unviewed model M odel, yieweq in the first stage; (2)only
the points in Cloud;,1 that is surrounded by the points
in Modelyieweq Will be added to the Modely;ewed. (3) the
viewed model Modely;eweq 1S warped to Frame;y; and
then projected back to world coordinate for updating. (4)
the updated viewed model Modely;eweq is combined with
unviewed model M odel,,picwed to form an updated landmark
ref model. ’

When the new model is out ranging the ref model, the



system will detect the out-ranged points by detecting their
surrounding points. For example, if a point P;;1 in Cloud;
is only surrounded by points of the same model and this point
is not connecting to the M odely;ewed, then this point belongs
to the newly added points. In order to maintain the accuracy,
the proposed system will only add new points to the ref model
when the number of newly added points is greater than 30,
which is described in Figure 6.

Fig. 6. The updated ref model. The yellow point in the up-left corner is
the newly added points; the red describes the unviewed part of ref model
Modelynyiewed In the current camera perspective; the blue points are the
viewed points in the ref model and the green points are the updated points to
the viewed model Model,;ewed-

D. Self-Calibration

Self-calibration aims at solving the limitations of raw
contour-contour ICP algorithm and deriving an accurate
matching score, and it is the second ICP process to optimise
the raw pose estimation result from first contour-contour regis-
tration. Its main computing process is using estimated camera
pose Pose; 4, from the first contour-contour ICP registration
to ray-cast ref model and get its viewed part M odel,;eqed, and
then optimising the predicted pose P686i+1 by defining the
spatial relationship between predicted M odel,;eweq and real
model Cloud; . This method can effectively optimise the lo-
cal minimum problem and significantly improve the accuracy
of pose tracking since the difference between the estimated
camera pose P58€i+1 and the real pose Pose;1 are smaller
than Pose; of F'rame; and Pose; 1 of Frame;1. Moreover,
the matching score derived by this approach is reliable and
accurate enough to describe the inter-frame matching accuracy
due to Modelyieweq and Cloud;, 1 are similar, And it can
be used as the main criteria in visual tracking algorithms to
determine if tracking lost happens.

IV. EXPERIMENTAL RESULTS

The experiments were conducted to verify the validity of the
proposed algorithm in this section. To verify the practicability
of algorithm with different camera motions, we first extracted
the key-frame sequence through orb-slam, and use the pro-
posed algorithm for key-frame to key-frame registration. In
this experiment, the image sequence and camera parameters
are obtained from SUN3D Database (Harvard- c11/hv-c11-2)
[11], and the surface of the table inside this scene is considered
as the landmark plane. Three tests were implemented to prove
the reliability and robustness of the proposed algorithm: the
first one is demonstrating the feasibility of purpose theory

(a) matching result with three edges

(c) matching result with two edges

(b) matching result with three edges

(d) matching result with two edges

Fig. 7. Registration results, the green point and red point are from
different images: (a) and (b) Registration with 3 edges, the matching score
= 0.00007362; (c) and (d) Registration with 2 edges, the matching score =
0.000082763

(a) Scene-scene ICP (b) Contour-contour ICP

Fig. 8. Comparison between normal scene-scene ICP (a) and our contour-
contour ICP (b)between two adjacent key-frames.The matching score derived
from (a) equals to 0.067, and then matching score obtained from (b) equals
to 0.011

when part of landmark plane is visible, and the other two
are describing the comparison between scene-scene ICP and
existing ORB-SLAM respectively.

In the first experiment, the inter-frame registration perfor-
mance is tested when there are two edges or three edges are
visible in current perspective, and the experimental result is
shown in Figure 7.

Figure 8 describes the second test, which aims at identifying
purposed algorithm is more efficient than normal scene-scene
ICP registration. Since scene-scene ICP is very time consum-
ing, only 1 key-frame pair is displayed as a comparison.

The third experiment is proving proposed algorithm is able
to implement in visual mapping programs through mapping a
sequence of continuous key-frames and comparing the map-
ping result with ORB-SLAM. Both the reconstructed contour
model and scene model are present to make the comparison
clearer. This experimental result is described in Figure 9, both
the reconstructed contour model and scene model are present
to make the comparison clearer.

In Table 1, the 3D contour models were transferred with
the estimated pose computed by three algorithms to obtain
a balanced and numerical comparison. The distance between
clouds was computed by the average distance between points.



(a) our algorithm

(c) ORB-SLAM

(d) ORB-SLAM

Fig. 9. The comparison between our algorithm and ORB-SLAM with
mapping a 15 key-frame sequence without global loop closure optimisation.
(a) and (b) are describing the mapping result with our algorithm. (a) is the
recovered contour model and (b) is the recovered scene model. The white
are in (b) is the ref plane model and the red points are its contour. (c)
and (d) are describing the mapping result with ORB-SLAM without loop
closure optimisation. To get the contour model, the pose of each key-frame is
estimated firstly, and then register each contour model to space with estimated
poses.

The derived matching score is the average score of 25 different
matching frame pairs.

TABLE I
THE COMPARISON BETWEEN NORMAL SCENE-SCENE ICP, ORB-SLAM
AND PURPOSED CONTOUR-CONTOUR REGISTRATION RESULT

Method Matching Score
scene-scene ICP 0.07635
ORB-SLAM 0.03602
purposed contour-contour ICP 0.00932

V. CONCLUSIONS AND FUTURE WORK

This paper has introduced an off-line plane-based inter-
frame dense registration algorithm. Alternative to recent photo-
metric error based visual tracking and mapping algorithms, the
purposed algorithm estimates the pose of each input frame by
tracking the geometric feature of one medium-size plane inside
the scene. As a conclusion, our system has made three main
contributions as follows:

« Firstly, the purposed inter-frame registration algorithm
only depends on one medium-size plane, and this plane
is not required to be completely visible in every frame.
This makes our algorithm implementable in low-texture
indoor scenarios.

« Secondly, a line detection and depth completion algorithm
is introduced to get the optimal 3D contour data of planar
area with raw RGB, Depth image and rough CNN scene
parsing result. The obtained 3D contour model describes
the 2D contour features in 3D space, and by tracking
this 3D geometric feature, system could more accurately

and robustly obtain the spatial relationship between two
frames.

o Thirdly, specific to purposed contour-contour ICP reg-
istration, we suggest to use a global ref model and
ray-casting theory to optimise the limitation of ICP
algorithm itself. This approach makes our registration
algorithm practical in long-distance inter-frame matching,
such as key-frame to key-frame registration. Moreover,
the derived matching score with our approach accurately
describe the matching accuracy, which makes it imple-
mentable in visual tracking and mapping programs.

However, this algorithm has an inevitable limitation. This
algorithm is tested only in off-line processes, since CNN scene
parsing and depth completion process is time consuming.
For registration process, the experiments show that it spent
an average of 500ms for registration without using GPU. In
the further studies, this algorithm will be implemented on
GPU and real-time visual mapping programs. Moreover, this
registration process will be firstly tested in more scenarios,
and labelled area will be changed to different typed of planar
area. Then, this algorithm will be used in the complete indoor
mapping algorithms, and a complete visual mapping system
based on single plane for low-texture environment will then be
researched, including local loop-closure optimisation, global
loop-closure detection and loss tracking recovery.
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