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Abstract—Exploiting computational resources within an or-
ganisation for more than their primary task offers great
benefits – making better use of capital expenditure and provides
a pool of computational power. This can be achieved through
the deployment of a cycle stealing distributed system, where
tasks execute during the idle time on computers. However,
if a task has not completed when a computer returns to its
primary function the task will be preempted, wasting time
(and energy), and is often reallocated to a new resource in
an attempt to complete. This becomes exacerbated when tasks
are incapable of completing due to excessive execution time or
faulty hardware / software, leading to a situation where tasks
are perpetually reallocated between computers – wasting time
and energy. In this work we investigate techniques to increase
the chance of ‘good’ tasks completing whilst curtailing the
execution of ‘bad’ tasks. We demonstrate, through simulation,
that we could have reduce the energy consumption of our cycle
stealing system by approximately 50%.
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I. INTRODUCTION

Many organisations exploit the computational power of
their existing computing resources in order to perform large
amounts of computational work through the use of cycle
stealing technologies such as Condor [1] or BOINC [2].
Making the best use of existing capital investment for the
minimal additional cost and energy incurred by using these
computers for a secondary purpose when otherwise unused.
Companies often use workers’ desktops whilst universities
can also exploit computers made available for students. Fig-
ure 1 illustrates an architecture for an organisation in which
interactive users have direct access to computers whilst cycle
stealing users interact through a pool management system
adhering to policy. Both groups are able to wake up sleeping
computers which enter this state after a period of inactivity.

One of the major problems of such an approach is
ensuring that all ‘good’ tasks complete. Where a ‘good’ task
is defined as one which given enough time on a dedicated
resource would run to a natural completion. Computers
within the cluster can appear and disappear arbitrarily, the
computers may be heterogeneous (or broken) making it
difficult for tasks to execute correctly, or computers may
have to preempt tasks in order to return to their primary

1Work carried out whilst working for ISS.
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Figure 1. Multi-use cluster architecture

role. Thus if a task fails to complete on a resource we cannot
assume that it is a ‘bad’ task.

To alleviate the effects of the system on task execution
an approach is adopted in which tasks that do not reach
a natural completion are reallocated to a new resource.
This leads to potential wasted energy from tasks repeatedly
allocated to resources either because the task will never
complete or the resource is incapable of satisfying task
requirements (e.g. appropriate environment or long enough
period for execution). This can be alleviated by limiting
the number of resubmissions, though if the value is too
low ‘good’ tasks, unfortunate in their allocation, will fail to
complete whilst if the value is too high ‘bad’ tasks will waste
time and energy. We define a miscreant task as one which
exhibits multiple reallocations attempts and seek to minimise
energy consumption by reducing the number of reallocations
of ‘bad’ tasks whilst increasing the chance that ‘good’ tasks
are reallocated to resources capable of servicing their needs.
It should be noted that miscreant does not imply ‘good’ or
‘bad’ just that a task has required multiple reallocations.

Traditionally this has led to a two-way compromise be-
tween the number of failed ‘good’ tasks and the overhead
(defined as the time in excess of the tasks run-time in-
curred by the system), with each organisation selecting a
local optimal – an open question which received significant
discussion at Condor Week 2012 [3]. However, due to
energy conservation – now a more important criteria – this
has become a three-way problem. Reducing reallocation
attempts reduces energy consumption through removal of
‘bad’ executions, though increases ‘good’ tasks failures.

Tasks can be allocated to resources whilst they are idle
or sleeping (through Wake on LAN) executing until the
resource is required for its primary purpose (interactive user,



system maintenance or reboot). This would suggest that
the ‘best’ option is to have tasks shorter than the intervals
between primary use and / or only run task during expected
long periods of primary inactivity (overnight). However,
such a policy leads to excessively short execution times and
significant delays in task execution.

In this paper we investigate a number of policies for cur-
tailing ‘bad’ executions whilst still minimising the number
of ‘good’ task terminations and the average task overhead
– allowing us to minimise energy consumption. The rest of
the paper is set out as follows. In Section II analysis of an
existing multi-use cluster is performed. Section III describes
policies aimed at identifying which miscreant tasks should
be re-run and which should be terminated. Related work is
presented in Section IV. Section V describes our simulation
model, whilst Section VI presents the simulated results for
these different polices, before concluding in Section VII.

II. ANALYSIS OF THE CYCLE STEALING ARCHITECTURE

Condor [1] is a high-throughput computing system used
for cycle stealing or dedicated resources. Condor attempts
to successfully complete all submitted tasks irrespective of
issues with the computers that it is running on. Tasks which
are deallocated from a resource are reallocated to a different
resource unless they have been allocated too many times.

A. Task Deallocation

Tasks may become deallocated from the resource they
were previously allocated to for several reasons:
• Task preemption: Condor has decided to deallocate

the task. Condor [4] identifies four preemption cases:
i) Higher priority task is identified which will start
once this task has been preempted; ii) Policy of the
resource – this can include an interactive user logging
in or a pre-defined time during when tasks can’t run;
iii) Resource ranking – the resource determines a more
appropriate task to execute (e.g. a maths department
owned computer preempts non-maths tasks for maths
tasks); iv) Condor is shutting down – during shut-down
Condor will preempt running tasks. Many managed
clusters have a regular shutdown policy allowing up-
dates and resetting. These preemptions will mark a task
as miscreant though none indicate the tasks is ‘bad’.

• Hardware / Software failures: If a resource becomes
unreachable by the system for an appropriate interval
it will be deemed no longer part of the pool. This can
be for a myriad of reasons including hardware failure,
Operating System failure, catastrophic software failure
(including the running task) or network failure. Note
that these may be transient in nature. Again none of
these issues implies that the running task was ‘bad’.

Although the above indicate under what circumstances a
task is deallocated from a resource they don’t distinguish
whether the task could complete on a subsequent execution.

In all cases the task is deallocated before it has reached its
own natural exit point. The reason for this can be:
• Execution time longer than time available: The time

between allocation and deallocation, tr, is less than the
task execution time. If tr is small the task is likely to
complete on a new allocation, whilst if tr is close to
the maximum time available then it is most likely to
be deallocated again. Note that the task may be ‘good’
but require more time than the system can provide.

• Code has malfunctioned: the code crashes but does
not terminate (infinite loop, awaiting user interaction)
remaining active until deallocated. Re-running the task
is unlikely to change this scenario. Reducing the chance
of a re-run here is highly desirable.

• Hardware / Software malfunction: A fault in the
environment causes the task to fail to terminate (bro-
ken library, CPU failure). Reallocating to a different
resource is likely to allow the task to complete.

• Task requirements not satisfied: Although many fail-
ures in task requirements would prevent the task from
starting or fail upon starting, there are circumstances
where an apparent code malfunction would occur. How-
ever, in this case allocation to a new computational
resource could resolve these requirements.

This problem becomes exacerbated by the fact that it is
not possible to distinguish easily these cases from each other.
A piece of code which malfunctions and is deallocated after
only a few minutes exhibits the same properties as a ‘good’
task which is also evicted after only a few minutes. Hence
the use of the term ‘miscreant’ indicating that, although not
definitively ‘bad’ tasks, the task is behaving in a manner
which is not desirable. An assumption could be taken in
which any task failing to complete on the first attempt
is abandoned by the system, however, this will lead to a
significant number of ‘good’ tasks being terminated, though
this will reduce energy consumption and the overheads on
those tasks which complete – as ‘bad’ tasks will not be
consuming resources. Alternatively allowing miscreant tasks
to be re-run an arbitrary number of times allows ‘bad’ tasks
to consume significant amounts of energy and increase the
overheads for all tasks due to bad tasks consuming resources.
Historically, this problem has only been considered in terms
of the metrics of overhead and number of ‘good’ tasks being
terminated with sites selecting a value for the number of
retries which keeps the number of ‘good’ tasks terminated to
an acceptable level and keeps the overheads to a reasonable
level. Although desirable to obtain the right balance for these
metrics there is little penalty for not getting the balance
right. Including energy as the third metric thus imposes a
significant penalty for wasting computational resources.

B. Analysis of the Newcastle Condor System

Here we investigate the two implicit policy assumptions
made by many high-throughput cluster managers. In general
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Figure 2. Decreasing graph of total wasted time vs evictions

it is assumed that a (fairly low) value for reallocations will
allow the vast majority of ‘good’ tasks to be completed and
that choosing a small enough task duration will allow the
majority of ‘good’ tasks to complete without reallocation.

Newcastle University has been running a largely unman-
aged Condor pool since October 2005 [5]. We are fortunate
to possess the Condor history files for this period. We
analyse the tasks from 2010 in order to exemplify the effects
of miscreant tasks on the cluster and to address the two
assumptions. In total 561,851 tasks were submitted through
Condor consuming 1,684,940,087 seconds (∼53 years), of
which 1,218,729,685 (∼39 years) was wasted. This wasted
time comprised 851,989,414 seconds (∼27 years) for tasks
which were subsequently killed by the user – ‘bad’ tasks –
and 366,740,271 seconds (∼12 years) wasted on tasks which
did complete – ‘good’ tasks. Although it is not possible
to determine, from the history, the time consumed by each
unsuccessful allocation of a task terminated by the user
the total time for tasks with at least one deallocation is
relatively close to the total wasted time for killed tasks
(849,725,325 seconds ∼27 years). Thus indicating most
‘bad’ tasks accrued at least one reallocation. For ‘good’
tasks this is only the wasted time, thus all of these tasks
have accrued at least one reallocation.

Although a maximum number of reallocations can be
specified in Condor this property was not activated. Figure
2 shows the maximum number of retries for ‘bad’ tasks
was 1946, whilst the maximum for ‘good’ tasks was 360.
Figure 2 also illustrates that the majority of wasted time
is associated with low eviction counts. It should be noted
that Condor history does not explicitly record the number
of times a task ran on a resource but the number of times
that the task was allocated, thus resource state changes
could cause a task to be deallocated before execution starts.
However, as we are interested here in the number of times
a task is allocated these rapid deallocations can simply be
ignored as fortuitous in terms of energy consumption. Thus
to ensure all ‘good’ tasks are successful we need a maximum
reallocation count of 360. Reducing wasted ‘bad’ task time
to 395,373,483 seconds (∼13 years). It should be noted that
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Figure 4. Cumulative idle time

this does not take into account the effect that changing the
policy would have on the operation of the cluster or the way
users would interact with the cluster.

Figure 3 illustrates the number of ‘good’ and ‘bad’ deal-
locations. In both cases the average number of deallocations
is relatively low (1.38 and 44.89 respectively). In order to
ensure 95% ‘good’ task completion we need a reallocation
maximum of 3, whist for 99% we need a threshold of 6 –
this matches nicely with the intuitive value quoted by many
cluster managers. However, a maximum of 6 reallocations
would mean 2,022 ‘good’ tasks failures, though reducing
wasted time on ‘bad’ tasks to 7,534,050 seconds (∼87 days).

Figure 4 illustrates the idle intervals for computers, de-
fined as the time between a user logging off and the next
user logging in. The average idle length is 371 minutes. A
task would need to be no longer than 2 minutes to ensure
that 95% of idle intervals are long enough, whilst it would
have to be no longer than 1 minute to ensure that 99% of
intervals are long enough. This is clearly unobtainable.

We can clearly reduce the wasted time in a cluster by
reducing the number of reallocations at the expense of failing
to complete ‘good’ tasks. Hence we need a better approach
in which good tasks which have been unfortunate in their
allocations are reallocated whilst ‘bad’ tasks are curtailed.

III. POLICY FOR HANDLING MISCREANT TASKS

We first outline policies which have previously been
identified for detecting miscreant tasks and for the selection



of resources before introducing newly identified policies.

A. Existing Policies

X0: There is no limit on the number of times a task can
be reallocated with termination only occurring if the task is
removed by the submitter or an administrator.

N1(n): Termination after n reallocations. If a user still
believes that the task is good they can resubmit it. This
represents the Condor default policy for reallocation.

C1: Tasks are allocated to resources at random favouring
awake resources. This represents the Condor default policy.

C2: Targeting less used computers [6]. By selecting
resources with longer idle times between users reduces the
chance that a task will be deallocated due to preemption.

The remaining policies are proposed as part of this work:

B. Computer selection policy

C3: tasks are allocated to computers in clusters with least
amount of time used by interactive users. This reduces the
chances of task preemption and exploits the less popular
clusters around campus. Computers can be ranked using:

Rank(c) =

∑s∈c
s sidle/stotal

|c|
where c is the set of computers in a cluster, s is a computer
in c, sidle is the total idle time on computer s, and stotal is
the total time for computer s.

C. Dedicated resources

D1(m,d): Tasks identified as miscreant are permitted to
continue executing on a dedicated set of m computers
(without interactive users or reboots), A maximum duration
d prevents the task from running indefinitely.

D. Miscreant task identification

We evaluate a number of policies to identify and handle
miscreant tasks. These policies govern the circumstances
under which deallocated tasks are abandoned or reallocated.

Conventional n reallocation policies do not distinguish the
causes of deallocation, thus are poorly suited to the multi-use
cluster context. Evictions due to the arrival of interact users
and planned machine reboots do not in any way imply a task
to be miscreant. We propose two variations on N1 which
discount these evictions from a task’s reallocation count:

N2(n): A task will be abandoned if it deallocated n times
ignoring deallocations due to interactive users.

N3(n): A task will be abandoned if it is deallocated n
times ignoring deallocation due to computer reboots.

Random policies are presented to allow comparison:
R1(p): a task is abandoned with probability p (0 ≤ p ≤ 1).
A deallocated task j is retried according to exponential

function P (f) = (1 − e−kf ), 0 ≤ k ≤ 1, where k is a
scaling factor:

E1(f=n): Exponential decay on deallocation count n.

E2(f=t): Exponential decay on the total accrued time from
all executions.

Tasks are subject to an upper bound t on their cumulative
execution time, and are abandoned if deallocated and over
this bound. Furthermore, we investigate the impact of dis-
counting deallocations due to interactive users and reboots
from a task’s accrued execution time:

A1(t): Abandon if accrued time > t and task deallocated.
A2(t): Abandon if accrued time > t and task is deallocated

discounting deallocations due to interactive users.
A3(t): Abandon if accrued time > t and tasks is deallo-

cated discounting deallocations due to reboots.
I1(t): Abandon if individual time > t. Nightly reboots

bound this to 24 hours. We investigate the impact of lowering
this threshold.

By leveraging historical information it is possible to more
closely identify ‘bad’ tasks by looking at the percentile
values for different properties:

P1(n,p): Abandon if percentile(n) > p.
P2(t,p): Abandon if percentile(accruedtime) > p.

IV. RELATED WORK

The most common and default policy for handling task
failures in an unreliable environment is resubmission. Berten
and Jeannot [7] performed a numerical analysis of resub-
missions in a fault prone Grid environment. Their approach
studies the effect of bounded and unbounded reallocation
polices (equivalent to X0 and N1(n)). However, energy
consumption is not considered and tasks are assumed not
to be faulty – something we see here as a significant factor.

Checkpointing and migration [8] does not reduce task re-
allocation but removes the need to re-start the task after each
reallocation. However, to allow checkpoint and migration
the task and the environment needs to support this process,
something which is currently unavailable in the Windows
implementation of Condor which makes up the majority of
the Newcastle pool. Users can ‘roll’ their own checkpoint
and migration mechanism, however this is often a non-trivial
task to perform. We see that the use of checkpoint and
migration is complementary to our proposed policy, though
the values of the parameters for a number of our policies
would need to be modified in order to accomodate.

The use of task redundancy [9] in which multiple copies
of each task are deployed increasing the chance that at
least one will complete in the first attempt, helps to reduce
overheads for the task and ensure that ‘good’ tasks complete.
However, these multiple runs will in general consume more
energy than running resubmissions. We therefore see this as
an alternative approach for scenarios in which overhead and
‘good’ task completion are the primary concerns.

Hwang and Keselman [9] present an architecture in which
extra tasks are run alongside the main task in order to
more closely identify the state of the main task. This we
see as complementary to our work and could be used to



Table I
COMPUTER TYPES

Type Cores Speed Power Consumption
Active Idle Sleep

Normal 2 ~3Ghz 57W 40W 2W
High End 4 ~3Ghz 114W 67W 3W
Legacy 2 ~2Ghz 100-180W 50-80W 4W

help aid ‘good’ and ‘bad’ task detection. Haider et. al. [10]
provide a literature review for the different fault tolerance
mechanisms provided by different distributed systems along
with an argument for the need for such techniques.

Estimates of task execution times can be used as a criteria
for selecting when to abandon a task. However, the use
of estimates, provided by users at submission, have been
widely criticised by the scheduling community for their
inaccuracy [11]. With many papers reporting the majority of
task taking less than 30% of their requested allocation [12],
[13], [14]. This may be due to tasks misconfiguration
causing immediate termination [15] but is often due to wide
variation in execution times [16] – especially if the cluster
is heterogeneous – or since tasks are often terminated at
the end of their estimated time interval users ‘pad’ their
estimate to increase the chance of completing. If estimates
are provided by the system (equivalent to I1(t)) then these
need to be generous – often the maximum available. This
in general does not help here as reallocations will happen
before this time limit is reached.

V. SIMULATION MODEL

Our simulations are based on trace logs from the Condor
high-throughput cluster at Newcastle University along with
user cluster access logs for 2010 [5], [6]. The 1359 student
access desktops, which were running Microsoft Windows
XP, were distributed around the University Campus in 35
different clusters. Several clusters may share the same room,
each room having its own opening hours. These hours
vary between clusters that are predominantly for teaching
purposes (normally 9am till 5pm) through to 24-hour access
computer clusters. Computers are rebooted nightly around
5am unless an interactive user is logged in. The location of
clusters has a significant impact on throughput of interactive
users. From clusters buried deep within a particular school
to those within busy thoroughfares such as the University
Library. Computers are replaced on a four year rolling cycle.
This leads to three main computer categories as illustrated
in Table I. As the main focus of our work is the comparison
of different polices for reducing energy, ‘good’ task termi-
nations and overheads we ignore differences between the
performance of these computers and assume the execution
time will match the original execution time.

We have extended our cluster based simulation for Con-
dor [6] to take account of the data transfer times. The
iperf bandwidth testing software [17] was used to compute

Table II
BASELINE RESULTS

Policy Overheads Power Good tasks killed
X0 C1 20.03 minutes 137.54 mWh 0
X0 C2 15.05 minutes 123.58 mWh 0
X0 C3 15.77 minutes 117.43 mWh 0

the maximum bandwidths available between computers for
different payload sizes. Although bandwidth for small (less
than 1Kb) of data exceeded 100MBits/s this quickly capped
out at 94.75MBits/s. It should be noted that these are
maximum bandwidth potentials, real use is likely to be less.
Thus these are lower estimates of transfer times.

VI. SIMULATION RESULTS

Table II depicts the results for running the base-line case
of no abandonment policy (X0) against the three resource
selection policies (C1, C2, C3) with the two usage-based se-
lection policies providing a better overhead for tasks though
providing alternative optimality’s for energy or overhead
between themselves. It should be noted that as all of these
policies have no limit on the number of reallocations of tasks
this leads to zero ‘good’ tasks being killed.

In the rest of this section we compare the energy, good
tasks killed and overheads for all policies. Although not
illustrated here the cost for these polices can easily be
derived by multiplying energy by the cost per unit. In some
cases the key has been omitted from a graph for clarity, for
these the key on the other graphs in the set can be used.

Figures 5(a), 5(b) and 5(c) illustrate the differences be-
tween abandonment polices N1, N2 and N3 along with
selection polices C1, C2 and C3. Policy N2 (maximum deal-
location count ignoring user preemption) gives a significant
improvement for ‘good’ tasks terminated when the value of
n is small. Selection policy C2 and C3 work well with this
by keeping the energy levels and overheads low.

The individual time accrued policy I1 is explored in
Figures 6(a), 6(b) and 6(c). This policy gives better energy
performance and overheads in comparison with N1. How-
ever, this is at significant impact on the number of ‘good’
tasks which are terminated. It should be noted that the steep
step in energy in Figure 6(a) corresponds with an individual
execution time of 24 hours. This effectively allows the task
to run indefinitely.

Exponential abandonment polices E1 and E2 are shown
in Figures 7(a), 7(b) and 7(c). Note the scaling factors for
these have been adjusted to allow both data sets to be drawn
on the same graph E1 needs to be scaled by 10−3 and E2
by 10−10. Although for this policy energy and overheads
fall as the growth factor increases the number of good tasks
terminated increases and from a high initial value (∼4500).
Likewise for the random selection policy R1 – Figures 8(a),
8(b) and 8(c) the number of ‘good’ tasks killed is high and
increases despite offering good overheads and energy results.
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Figure 5. Policy : Terminate after N
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Figure 6. Policy : Individual
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Figure 7. Policy : Exponential

The policy of dedicated resources D(m, d) is explored in
Figures 9(a), 9(b) and 9(c). There is a significant advan-
tage here for energy in keeping the number of retries (n)
low the other factors (dedicated resources and maximum
dedicated time) have relatively small impact on the energy
consumed increasing as the maximum run time increases
on the dedicated resources. Only the maximum dedicated
time has an impact on the number of good tasks killed.
A dedicated maximum execution time of ∼90 hours then
allows for zero ‘good’ task terminations with little effect on
the overall overheads. Though the overheads are in general
poor. Note that dedicated resources are assumed to use the

same energy as our top-end computers.

Accrued policy A1, A2 and A3 are explored in Figures
10(a), 10(b) and 10(c). Low accrued times offer lower energy
consumption at the expense of ‘good’ tasks killed. Apart
from combination A3,C2 there is no significant advantage
in selecting an accrued total over ∼40 hours.

The percentile policies depicted in Figures 11(a), 11(b)
and 11(c) show that the consumed energy comes down to
an equivalent level as the other polices, however, only as
the percentile tends to 100% do the number of ‘good’ tasks
terminated reduce significantly. In order to get benefit from
using policy P2 the percentile needs to be almost exactly
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Figure 8. Policy : Random
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Figure 9. Policy : Dedicated
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Figure 10. Policy : Accrued

100% giving little advantage over policy N1. Whilst policy
P1 benefit as low as 90%.

VII. CONCLUSION

In this work we demonstrate, through simulation, a num-
ber of policies which can be used to reduce the effect
of miscreant tasks in a multi-use cycle stealing cluster.
Each policy is capable of dramatically reducing the energy
consumption for tasks in the system – to around 1

2 of the
original. This is largely attributed to reducing the amount
of effort wasted on tasks that will never complete, but also
by ensuring that tasks are placed onto computers which are
less likely to be required for their primary task.

Although we are able to reduce the energy consumption
significantly in all cases this can often be to the detriment of
the users of the high-throughput system. Choosing a policy
such as N2 (total deallocation count ignoring interactive
user preemption) allows a significant decrease in energy
consumption without loosing a significant number of good
tasks and a minor increase in average task overhead, albeit
still significantly less than the values for the baseline results.
By using dedicated computers we are able to reduce the
number of good tasks lost to zero for a relatively small
increase in energy consumption.

The policy D(m, d) with a low value for reallocations and
a value of ∼90 for maximum dedicated resource time would
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Figure 11. Policy : Percentile

appear to give a ‘good’ solution. However, this policy could
easily be adapted to incorporate the advantages of policy N2
or even the individual or accrued polices. In fact most of the
policies presented in this work could be combined with each
other to maximise the potential energy savings.

Although we have developed our work around the Condor
high-throughput system we see that our approach could as
easily be applicable to other cycle-stealing architectures in
which the tasks being executed are not necessarily guaran-
teed to complete. While we do not consider fully the effects
of computer faults within this work we do see this as an
important area for future research.
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