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Abstract—The growing end-user demand for video services
with superior quality on laptops, tablets, and smartphones
spurs the deployment of telco content distribution networks
(CDNs). Such CDNs provide scalable and bandwidth-efficient
video delivery thanks to disk-packed cache servers deployed in
the telco’s data centers near the clients. However, a sustainable
growth of these CDNs may be hindered by their lack of energy
proportionality. In this paper we propose to apply dynamic
power management (DPM) to the CDN’s cache servers and
their disks to increase the CDN’s energy efficiency. We evaluate
DPM using a CDN energy simulator driven by HTTP adaptive-
streaming workload traces recorded by an operational CDN
delivering IPTV to mobile devices. Even for a minimally-
provisioned CDN, we observe a reduction of the energy
dissipation by approximately 30% thanks to large cyclic load
fluctuations characteristic of IPTV delivery.

Keywords-IPTV; content distribution network; HTTP adap-
tive streaming; cache server; energy efficiency; disk drive;
power reduction

I. INTRODUCTION

Growing end user demand for premium video content

on mobile devices represents an opportunity for Internet

service providers (ISPs) to extend their IPTV offering with

multi-screen video services. Paying consumers of premium

video content expect a high-quality viewing experience,

which ISPs can provide by delivering IPTV over a content

distribution network (CDN) deployed in their own regional

network. Because such a CDN is typically owned by the

ISP, it is qualified as a telco CDN. This type of CDN is

composed of cache servers located in telco data centers in

the proximity of the end users. The proliferation of such new

cache servers will contribute to the continuing increase of

data-center power consumption. These servers consume a lot

of power in part because they are typically packed with hard

disk drives, which require mechanical movement for their

operation. Between 2005 and 2010, the power consumed

worldwide in data centers increased by more than 50% [1].

In 2010, the total amount of energy used in data centers

represented between 1.1 and 1.5% of the global electricity

use. Because the cost of electricity dominates the operating

cost of data centers, data-center operators are looking for

techniques to reduce the energy consumption.

In this paper, we target energy savings in content distri-

bution networks by applying dynamic power management

(DPM) to the CDN’s cache servers and their disks. Accord-

ing to the exhaustive survey of power-reduction techniques

for data-center storage systems that we made analyzing

over a hundred high-quality papers in this domain, DPM

is the basis for most of these techniques because of its high

potential of saving energy [2]. However, DPM was, to our

knowledge, never applied to a storage system distributed

over multiple data centers such as a CDN. To save energy,

DPM powers down system components or scales down

their performance when they are idle or underutilized. We

consider turning off cache servers and their disks under light

load. However, in every data center we keep sufficient caches

powered on such that clients can always be served from

the closest data center to guarantee the superior quality of

the viewing experience, which is considered more important

than saving energy. Under this constraint, DPM doesn’t alter

the workload for any of the data centers; there is no impact

on the geographical load balancing. Therefore, without loss

of generality, we limit our analysis to one of the CDN’s

data centers. The number of active caches s in the data

center under consideration combined with the number of

active disks di for every active cache i determines what we

call the CDN power state. Such a state p is fully identified

by the tuple (d1, d2, ..., ds). This identification implies that

CDN power states with different caches and/or disks active

are identical as long as the number of active caches and the

number of active disks per active cache are the same.

We target a near-optimal offline algorithm that selects per

time interval the CDN power state that minimizes the CDN’s

energy consumption subject to two performance constraints:

(1) the selected power state has to allow the CDN to serve

every client request and (2) the cache hit rate needs to be

sufficiently high such that the data rate from the origin to the

caches doesn’t exceed a threshold agreed between CDN and

content provider. The first constraint ensures that no requests

are dropped while the second prevents trivial solutions with

no active disks. An additional objective is to evaluate the
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search algorithm based on a simulation of the CDN’s energy

consumption using real IPTV workload traces.

The main challenges lie in the potentially huge number of

CDN power states and the large number of client requests

recorded in the workload traces of an operational CDN. The

number of CDN power states ncps is of exponential order

in the number of cache servers and polynomial order in the

number of disks per cache, i.e., ncps =
∑smax

s=1 (dmax+1)s =
O (dsmax

max ), where smax represents the number of provi-

sioned cache servers, dmax the number of disks provisioned

in every cache server, and s the number of active cache

servers. In addition, the large number of client requests

recorded in the workload traces used to drive the simulation

leads to a long simulation time. Therefore, we subsampled

the traces by selecting clients randomly. In the subsampled

traces used for the evaluation, we count on average still

∼250 million requests per day.

In this paper, we make the following two research con-

tributions. As our main contribution, we propose a CDN

energy optimizer, which uses an offline heuristic algorithm

that aims to find for each time interval the CDN power

state minimizing the consumed energy while limiting the

performance deterioration. We avoid the use of an exhaustive

search algorithm because the time complexity of such an

algorithm is linear in the number of CDN power states,

which is exponential in the number of caches. The proposed

algorithm first determines per time interval the minimum

number of active cache servers required to guarantee suf-

ficient bandwidth from the caches to the clients such that

constraint (1) above is satisfied. Then, we use a greedy

algorithm to find the minimum number of active disks

required to keep the data rate from the origin to the caches

below the agreed threshold such that we adhere to constraint

(2) above. We indicate under which conditions our heuristic

approach approximates the optimal solution. In practice,

these conditions are most of the time fulfilled.

To evaluate the optimizer, we present a trace-drive CDN

energy simulator [3]. The simulator is driven using real

workload traces recorded by an operational telco CDN

delivering IPTV to smartphones and tablets using HTTP

adaptive streaming. This type of workload exhibits cyclic

load fluctuations similar but not identical to related work-

loads such as traditional IPTV and web-based video sharing.

The simulator models the energy consumption of a cache

server (excluding disks) in a known way as a linear function

of the server load [4]. The energy consumption of the

disks is modeled separately as a known function of disk

read and write accesses [2]. By turning off more or less

caches and/or disks, the simulator trades off the CDN’s

energy consumption against its throughput and bandwidth

efficiency. Because we consider a simulator to be the soft-

ware for running a simulation, we use the terms simulator

and simulation interchangeably.

The remainder of the paper has the following outline.

Section II describes the trace-driven CDN energy simulator.

In Section III, we introduce the CDN energy optimizer.

The optimizer is evaluated in Section IV. In Section V, we

describe related work. Finally, Section VI is the conclusion

of our paper.

II. TRACE-DRIVEN CDN ENERGY SIMULATOR

As input to our CDN energy simulator, we use workload

traces generated by an operational telco CDN delivering

IPTV for live television (linear) and video-on-demand (vod)

to mobile devices using HTTP adaptive streaming. We

present the workload characteristics most relevant to this

paper for a subsampled (as explained in § I) 7-day workload

trace recorded during the first quarter of 2013. Fig. 1 shows

the file download bandwidth over a single week. We make a

distinction between vod and linear video. We observe that,

during the week under consideration and for this particular

CDN, linear video accounts for the largest share of the

download bandwidth. The figure reveals diurnal patterns of

cyclic load fluctuations that can be expected based on end-

user behavior: load peaks in the evening when most people

are at home watching videos and dips during the night

when most people are asleep. On-demand video shows a

variation of the workload over time similar to linear video

but vod exhibits no small load peak during the morning

before people go to work like linear video does. During

the week under consideration, the maximum load is roughly

six times higher than the minimum load. Over longer time

periods, the ratio between the maximum and minimum load

can be expected to be even higher considering seasonal

load fluctuations and gradual load changes due to a time-

varying number of clients. Such load fluctuations represent

an opportunity for saving energy because of the substantial

overprovisioning of cache servers and disks most of the time.

Cache servers and their disks can be turned off according

to the time-varying workload. Because of the differences in

load variation between linear and on-demand video, it is

possible that the ratio between the optimal number of active

disks and active cache servers changes over time.

The specific workload under consideration exhibits cyclic

load fluctuations similar to other types of video-streaming

workloads such as traditional IPTV [5], where the client is a

TV screen, and web-based video sharing [6]. The traditional

IPTV workload characterized in [5] has a less significant

peak in the morning but shows a quite large peak around

lunch time. The web-based video sharing workload analyzed

in [6] peaks during the afternoon instead of during the

evening.

The CDN energy simulator used in this paper models only

those aspects of the CDN that significantly impact the energy

consumed by the CDN’s cache servers and their disks. The

simulator models the CDN’s distribution system and part of

its request-routing system according to the state of the art

in the design of telco CDNs. The request-routing system
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Figure 1: File download bandwidth split in linear video and vod
over a single week.

typically redirects every client request from the origin to an

available cache server in a data center nearest to the client.

Because we consider only one of the CDN’s data centers as

justified in Section I, the simulator doesn’t model the global

geographical load balancing; only local (per data center) load

balancing is simulated. A new client for the data center under

consideration is redirected to the data center’s cache that is

least loaded. As long as that cache is not overloaded, every

new request from the same client is redirected to it. When

a client sends a request to an overloaded cache, that client

is redirected to another cache in the same data center based

on the load-balancing policy.

The CDN’s distribution system is composed of caches that

serve client requests by fetching the requested file in order

of priority from (1) their memory, (2) one of their disks, (3)

a cache in the same rack using the Internet Cache Protocol

(ICP), or (4) the origin server. In the case of a cache hit, i.e.,

a replica of the file is available in the cache’s memory or on

one of its disks, the cache serves the requested file directly.

Upon a cache miss, the cache first pulls the requested file

from the origin or a neighboring cache in the same rack

and caches it in memory before serving it to the client. For

sake of simplicity, we assume in this paper that there is

only one cache server per rack. If the cache server needs

to read the file from disk, it moves the file from disk to

memory. Also a file received from the origin is cached in

memory. When a file needs to be written to memory but

there is insufficient space available, the cache replacement

policy is consulted to move files from memory to disk to free

the required space. The disk to write the files to is selected

based on a load-balancing policy. The disks apply the same

cache replacement policy; we use LRU in our evaluation in

Section IV. However, the disks do not cache linear video

streams because the linear video traffic dominates the vod

traffic and the memory is large enough to cache the linear

video for the short duration it is relevant to the clients. For

simplicity we assume all cache servers to be of the same

type. The same holds for the disks. In addition, we assume

all cache servers to be provisioned with the same number

of disks. These assumptions typically match reality for new

deployments of telco CDNs.

The simulator is driven by a workload trace. The client

requests logged in the trace are processed one after the other

by the simulator based on the proposed CDN model. The

simulator keeps track of the files cached in memory and

on disk. The processing of the requests leads to energy

dissipation in the cache servers which is recorded per time

interval Tres of 5min (default). Also the download rate

(from caches to clients) and the upload rate (from origin to

caches) are logged per time interval. The disks are modeled

separately from the server itself. An active disk consumes

at least the idle power Pid. While seeking or during data

transfer the power consumption increases to the active power

Pact. The energy consumed by a disk during time interval j
is modeled as Edsk

j = TresP
dsk
id +(T sk

j +T tf
j )(P dsk

act −P dsk
id ).

T sk
j is the total seek time during the interval while T tf

j stands

for the total transfer time. We assume that reading, writing,

and seeking requires the same power. The calculation of

seek and transfer time per time interval depends on the exact

sequence of client requests because of caching and therefore

requires simulation.

The energy Esrv−
j consumed by an active server exclud-

ing disks during time interval j is modeled as a linear

function of the server load λj = Dsrv
j /Dsrv

max with Dsrv
j

the server download rate at interval j and Dsrv
max the max-

imum server download rate, i.e., Esrv−
j = TresP

srv−
id +

λjTres(P
srv−
max − P srv−

id ). P srv−
id represents the server idle

power and P srv−
max the power consumed by the server under

maximum load. We thus assume that the energy consumed

by the server (excluding disks) for delivery of a file only

depends on the file size and not on the location from where

the file is fetched. The energy Esrv
j consumed by an active

cache server including disks during time interval j is the

sum of the energy consumption of the server and its disks

during that interval. The CDN’s energy consumption Ecdn
j

is the sum of the energy consumed by each of its caches.

We ignore the additional energy required for hosting these

servers in a data center (such as energy for cooling and

network access).

III. CDN ENERGY OPTIMIZER

In this section, we describe the CDN energy optimizer.

The objective of the optimizer is to find offline for every

time interval j the CDN power state pj = (d1,j , ..., dsj ,j)
that minimizes the energy Ecdn

j consumed by the CDN while

ensuring that (1) the maximum CDN download rate Dcdn
max,j

exceeds the rate Dcdn
req,j required to serve all requests from

the clients and (2) the CDN upload rate U cdn
req,j required

to serve all requests from the caches does not exceed the
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maximum rate U cdn
max. The first constraint ensures client

requests are not dropped, and the second constraint prevents

trivial solutions with all disks turned off. This discrete

optimization problem is formulated in (1). We call the first

constraint in (1) the download constraint and the second one

the upload constraint.

minimize
pj

Ecdn
j (pj)

subject to Dcdn
max,j(pj) ≥ Dcdn

req,j

U cdn
req,j(pj) ≤ U cdn

max

(1)

For every time interval, solving this optimization problem

requires the exploration of different power states. Regardless

of the time interval under consideration, each power state

corresponds to one simulation. Indeed, for every simulation

used to solve the optimization problem, the CDN remains in

the same power state during the complete simulation time

window; a simulation is completely identified by the power

state of the simulated CDN. However, the solution to the

optimization problem is a sequence of possibly different

power states that, when applied to the CDN, leads to the min-

imum energy consumption over time. Thus, the minimum

energy consumption that results from this sequence of power

states is actually rather a lower bound for the CDN’s energy

consumption because we ignore the transitions between

different power states. For sake of simplicity, we drop in

the remainder of this section the subscript j.
To solve the energy minimization problem, we propose a

CDN energy optimizer. In practice, this optimizer needs to

be considered a heuristic method, which only approximates

the energy-optimal solution to the constraints when the four

conditions introduced below are fulfilled. In this section,

we explain why these conditions are likely to hold most

of the time. The evaluation (Section IV) shows that these

conditions are indeed valid most of the time for the specific

workload and CDN configuration used. In Section IV we

also quantify our heuristics using an exhaustive algorithm

guaranteed to find the minimal solution to the energy op-

timization problem under all conditions. In terms of power

consumption, our heuristic algorithm only deviates by less

than 0.01% from the optimal.
The CDN energy optimizer approaches the energy min-

imization problem by considering in order the number of

active cache servers (§ III-A) and the number of active disks

per active cache (§ III-B). The optimizer first determines the

minimum number of active caches that solves the download

constraint. Minimizing the number of cache servers is also

the first step in solving the upload constraint under the

condition that, when all disks are activated, an additional

cache server will not reduce the CDN upload rate. More-

over, this minimum number of active caches corresponds

to the energy-optimal solution to the constraints under the

condition that activating an additional cache increases the

energy usage of the CDN.

Given this resulting number of active caches, the opti-

mizer search for the CDN power state with the minimum

total number of active disks that solves the upload rate

constraint using a greedy algorithm. The greedy algorithm

finds this CDN power state under the condition that a

disk activation increases the hit rate less than the previous

disk activation in the same cache server. Finally, this CDN

power state approximates the energy-optimal solution to the

constraints under the condition that, given a number of active

caches, a CDN consumes more energy when more disks are

active.

A. Number of Active Cache Servers

To find a solution to the energy minimization problem, we

first consider the number of active caches. The maximum

CDN download rate Dcdn
max depends only on the number

of active cache servers s and not on the number of active

disks per active server. This dependency is formulated as

Dcdn
max(p) = sDsrv

max where Dsrv
max represents the maximum

server download rate, which is a characteristic of the server

and, therefore, remains constant over time. The disks never

become the system bottleneck because, if they are over-

loaded, the cache fetches files directly from the origin.

Therefore, the download constraint determines a minimum

number of active cache servers as smin = �Dcdn
req /D

srv
max�.

Selecting the minimum number of active caches smin

is the first step in solving the upload constraint under the

condition that activating an additional cache server does not

reduce the CDN’s upload rate even when all disks are turned

on. We expect this condition to hold most of the time as we

explain next. The number of active cache servers determines

the load distribution of the client requests over the caches.

This load distribution has an impact on the performance of

the individual caches. Therefore, changing the number of

active caches affects the upload rate U cdn
req required to serve

all requests from the caches. Every additional active cache

is expected to increase this required upload rate because

increasing the number of active caches leads to fewer clients

per active cache and therefore less file sharing. We thus

expect in general that powering up an additional cache server

(with all disks in all servers active) will not help satisfy

the upload constraint but will on the contrary increase the

required CDN upload rate due to diminished file sharing.

Thus, the minimum number of active cache servers smin

not only solves the download constraint but also represents

the best option for addressing the upload constraint. In

addition, selecting a minimal number of active cache servers

minimizes the total energy consumed by the CDN under

the condition that activating an additional server increases

the energy usage of the CDN. This condition is likely to

commonly hold because both the energy consumed by the

servers (excluding disks) and the energy consumed by the

disks are expected to increase when an additional cache

server is activated. Every additional active cache simply
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increases the energy consumption per time interval by the

idle energy P srv
id Tres (derived from the model in Section II)

in our model because the server energy depends on the server

load, which is distributed over more servers but does not

change in total. In addition, we also expect the disk energy to

increase upon the activation of an additional cache because

increasing the number of active caches tends to increase the

required upload rate as explained above. To overcome such

upload rate increase more data needs to be read from the

disks to satisfy the upload constraint. Therefore, more disks

may need to be activated and the disk energy increases.

B. Number of Active Disks per Active Cache Server

We consider the energy minimization problem given |pj |=
smin and only consider the upload constraint (assuming

smin provides a solution to the download constraint). This

problem can be restated as how many disks to activate

per active cache server so as to minimize energy usage

while meeting the upload constraint. This problem can be

formulated as a multiple-choice knapsack problem (MCKP)

with caches as classes, numbers of active disks as items,

energy savings as profit, and cache upload rate as weight.

We propose a greedy heuristic algorithm to find the

number of active disks per active cache that is a simplified

version of the MCKP-Greedy algorithm described in [7].

MCKP-Greedy leads to the so-called split solution, which is

generally a good heuristic solution for the MCKP. Applied to

our problem, MCKP-Greedy would take the ratio of upload

rate decrease in activating a disk over the corresponding

energy consumption increase as a metric to select the disk

for activation. Our greedy algorithm uses the upload rate

decrease alone, as we will discuss. Under certain conditions

this simplification leads to a solution close to optimal for

the MCKP under consideration.

Our greedy algorithm targets the minimum total number

of active disks across the active caches required to satisfy

the upload constraint. Because a total of 0 active disks is

the minimum possible, the greedy algorithm starts from the

CDN power state represented by the smin-tuple (0, ..., 0).
If this state satisfies the upload constraint, then this state

is clearly the solution to the energy minimization problem

because the consumed disk energy is minimal when all disks

are turned off. As long as no CDN power state is found

that satisfies the upload constraint, the greedy algorithm

iteratively chooses in which server (of the smin servers)

to activate a disk. Activating a disk increases the cache’s

size, which may increase the cache hit ratio. A larger cache

hit ratio will result in a lower required upload rate. At

every step, the greedy algorithm explores smin different

CDN power states, each with an additional active disk in

a different active cache. The algorithm then chooses the

CDN power state with the greatest reduction in required

CDN upload rate as the base for the next iteration. If exactly

one of the explored CDN power states satisfies the upload

constraint, a solution is found. If multiple CDN power states

(with the same total number of active disks) meet the upload

constraint, the algorithm selects the one with the lowest

energy consumption as solution.

The greedy algorithm satisfies the upload constraint by

activating as few disks as possible under the condition that

the activation of another disk in a cache server results in a

smaller decrease of the required cache upload rate than the

previous disk activation did in the same server. In terms of

hit rate, the condition requires that activating another disk

increases the hit rate less than the previous disk activation.

This condition needs to hold for every cache server. We

expect this condition to hold often because increasing the

cache size (by activating more disks) follows the law of

diminishing returns. However, this condition might not hold

at all times in real systems where the cache replacement

policy is suboptimal.

The CDN power state found by the greedy algorithm not

only solves the download and upload constraint with the

minimum total number of active disks but also approxi-

mates the minimum CDN energy consumption under the

condition that given a number of active caches, disk energy

consumption increases with the number of active disks. This

condition is likely to hold because the idle energy consumed

by the disks increases linearly with the total number of active

disks regardless of the distribution of the active disks over

the caches. For every additional active disk, the idle energy

P dsk
id Tres is added as can be derived from the model in

Section II. The disk write energy does not depend on the

number of active disks per active cache as long as for none

of the caches the disks are overloaded and at least one disk is

active. The disk read energy increases with the data volume

directly served from the disk cache, which tends to increase

with the total number of active disks.

The greedy algorithm, which determines the number of

active disks per active cache, needs to explore in the worst

case n′cps CDN power states per time interval of linear

order in the number of disks and of quadratic order in the

number of servers, i.e., n′cps = 2+ (dmaxsmax − 1)smax =
O (

dmaxs
2
max

)
, whereas an exhaustive search would require

a number of power state visits per time interval exponential

in the number of servers and polynomial in the number of

disks.

IV. EVALUATION

We evaluate the CDN energy optimizer based on a

24-hour subsampled (as explained in § I) workload trace

recorded by an operational CDN during the Monday of

the week in the first quarter of 2013 for which workload

characteristics are presented in Section II. Other days of the

week show similar results. The simulated CDN differs from

the operational CDN. The CDN energy simulator models

one of the CDN’s data centers and is configured with

the minimum number of caches required to allow serving
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Figure 2: CDN’s power consumption over a single day corre-
sponding to the solution found by the greedy and exhaustive search
algorithm, which almost perfectly coincide.

all client requests during any time interval (5min). We

don’t expect an improvement of the bandwidth efficiency by

adding caches as explained in Section III. Moreover, limiting

the number of provisioned caches to the minimum leads to

a conservative estimate of the potential energy savings. This

minimum number of caches turns out to be two for the type

of cache server used for the simulation.

The simulated cache is an HP proliant server equipped

with a Dual Intel Xeon 5600 processor, 144 GiB of DDR3

RAM, and eight 146GB hard disk drives. This type of server

exhibits a maximum download rate of 18Gb/s. When idle,

this type of server excluding disks consumes 224.6W. Its

maximum power consumption excluding disks is 405.88W.

The 146GB hard disk drive has a transfer rate of 141MiB/s.

On average, the disk’s seek time is 2.98ms and its rotational

latency 2ms. The disk idle power is 4.37W and active power

7.25W. These device specifications are mean values. We

don’t have access to the confidence intervals. Therefore, all

simulation results presented in this section are mean values

as well without confidence intervals. The maximum upload

rate is set to 4.3Gb/s. The caches use an LRU replacement

policy and were filled before the time shown in the graphs.

We solve the energy minimization problem with the

greedy algorithm proposed in Section III and, for validation,

with an exhaustive search algorithm, which is guaranteed to

find the global optimum. For both solutions, we present the

CDN’s power consumption (Fig. 2), download rate (Fig. 3),

and upload rate (Fig. 4) over a single day. For comparison,

we also show the result for the simulations (0), (8), (0,0),

and (8,8).

Fig. 2 shows the CDN’s power consumption over a single

day. We observe that the solution found by the greedy

algorithm approximates the optimal solution very well. The

average absolute error is about 50mW, which corresponds

�� �� �� �� �� �� �� �� �� �� �� ��
�	
��

�

�

�

��

��

��

��

��

��

�
��
�
��
��
��
��
��
�
��
�

������

���� ��	!�

"#$&'()&(*+,-(./"0$

"#1#$1&'()&(*+,1-(./1"010$23.31)'.
*+4(5+6+*
781"#$1
3)*1"0$

Figure 3: CDN’s download rate over a single day corresponding to
the power state found per time interval by the greedy and exhaustive
search algorithm, which coincide.

to a relative error of 0.007%. To serve all requests, only one

active cache is required between ∼03:00 and ∼18:00; during

the rest of the day two active caches are required. From

∼20:00 till ∼02:00 disks get activated to keep the upload

rate below the configured limit; the rest of the day all disks

are powered down. If all caches and their disks would remain

turned on the whole day (simulation (8,8) in Fig. 2), the

energy consumed by the CDN during this day would amount

to 16.83 kWh. By applying DPM to the cache servers and

their disks, the CDN’s energy consumption is reduced by

4.88 kWh (the shaded area in Fig. 2), which corresponds to

a relative reduction of 29%. Turning off caches accounts

for 79% of the energy savings; the disk power management

contributes 21% to the savings.

The CDN’s download rate is shown in Fig. 3. This

figure clarifies why two active caches are required between

∼18:00 and ∼03:00 to satisfy the download constraint.

The download rate of the type of cache server used for

the simulation is limited to 18Gb/s. If the download rate

required to serve all client requests during a time interval

exceeds 18Gb/s, a second cache needs to be activated.

The shaded area represents the data volume that cannot be

delivered by a single cache.

Fig. 4 shows the CDN’s upload rate over a single day. We

observe that both the greedy and exhaustive search algorithm

adhere to the upload constraint, which limits the upload

rate to 4.3Gb/s. The shaded areas above the upload rate

limit represent data that doesn’t need to be pulled from

the origin but can be delivered directly from cache instead

because disks were activated. In this case, energy is traded

for bandwidth efficiency. The shaded area below the upload

rate limit also represents data that doesn’t require retrieval

from the origin but can be distributed directly from cache

because the second cache was turned off. In this case, the
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Figure 4: CDN’s upload rate over a single day for the solution
found by the greedy and exhaustive search algorithm, which almost
perfectly coincide. The maximum upload rate equals 4.3Gb/s.
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Figure 5: Top: Number of active disks found per time interval by
the greedy and exhaustive search algorithm over the last nine hours
of the day under consideration: for the first cache only (thin) and
for the combination of the two caches (thick). Bottom: Difference
in number of active disks between the greedy and exhaustive search
algorithms given in the top graph.

upload rate reduction goes hand in hand with energy savings.

Fig. 5 shows the number of active disks per cache for the

most relevant time window. The top of the figure reveals

the total number of active disks per time interval as well as

the distribution of the active disks over the two caches as

determined by the greedy and exhaustive search algorithm.

The bottom of the figure shows the difference between

the greedy and exhaustive algorithm in terms of the total

number of active disks and the number of active disks in

the first cache. The greedy algorithm almost always finds

the energy-optimal total number of active disks. Although

the greedy and exhaustive algorithm do distribute the active

disks significantly differently over the active caches, the

impact on the CDN’s power consumption appears to be

marginal. Moreover, the two caches seem to require more

or less the same number of active disks. Therefore, it seems

worthwhile to investigate whether the time complexity of

the search through the state space could be further reduced

without unacceptable impact on the accuracy of the solution

by assuming an even distribution of the active disks over the

active caches.

In addition, we verified the validity of the four conditions

(introduced in Section III) under which our greedy algorithm

approximates the optimal solution. It turns out all conditions

hold during the complete simulation window except the

condition that requires the activation of another disk in

a cache to result in a smaller upload rate decrease than

the previous disk activation in the same cache. The latter

condition holds for most time intervals and caches but not

for all.

V. RELATED WORK

Based on the analysis of over a hundred high-quality

papers on power-reduction techniques for data-center stor-

age systems, we prepared an exhaustive survey of this

domain [2]. Power-reduction techniques were in succession

proposed for individual disks, RAIDs (redundant array of

independent disks), and clusters of storage servers. Although

a CDN is composed of storage elements distributed over

multiple data centers, we are not aware of any work in

the specific domain of power-aware storage systems that

targets CDNs. Most of the proposed techniques rely on

DPM. However, a typical data-center workload characterized

by short idle periods needs to be reshaped to enable DPM.

One of the DPM-enabling techniques is DIV [8] (short for

diverted accesses), which segregates original and redundant

data on different storage devices such as different disks in

a RAID [9] or different storage servers in a cluster [10].

Under light load, client requests are diverted from redundant

to original devices such that the former can be turned off.

Because of its inherent segregation of original and redundant

data on different servers and its centralized request-routing

system, it should be relatively straightforward to apply DIV

to CDNs to enable DPM.

Although we are not aware of any work that ap-

plies power-reduction techniques for storage systems to

CDNs, researchers have started working on energy-efficient

CDNs. The main objective of this research is to come up

with energy-aware cache-server and file-replica placement.

[11] shows that a typical CDN architecture with caches

placed near the clients is more energy-efficient than both

peer-to-peer delivery and delivery from a central server.

Other studies led to consistent results for the specific case of

IPTV distribution [12]. More energy might even be saved by

integrating the caches into the home gateways [13]. Content-

centric networking (CCN) has more potential for saving
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energy than traditional CDNs because CCN integrates the

caches into relatively energy-efficient routers [14]. In this

paper, we consider the cache-server placement characteristic

of a telco CDN architecture as a given. Recent research in

the domain of energy-efficient CDNs focuses on energy-

aware load balancing [15], which is closest to our research

focus. However, we consider DPM not only at the level

of the cache servers but also their disks. Moreover, our

evaluation is based on HTTP adaptive streaming workload

traces recorded by an operational telco CDN delivering

IPTV to mobile devices. Mathew et al., on the other hand,

use traces from a traditional CDN. Finally, we are not aware

of the existence of other CDN energy simulators although

CDN performance simulators do exist [16].

VI. CONCLUSION

The proliferation of power-hungry, disk-packed cache

servers in data centers of ISPs for the deployment of

telco CDNs to deliver multiscreen IPTV services fuels the

increase of data-center power consumption. In this paper, we

target energy savings in telco CDNs by applying DPM to

the cache servers and their disks. We propose a heuristic

offline algorithm to find per time interval the minimum

number of active caches and active disks per active cache

required to serve all client requests and limit the data rate

from the origin to the caches. This heuristic algorithm

approximates the optimal under four conditions. We argue

that these conditions can be expected to hold frequently.

This expectation is confirmed for the specific workload and

simulated CDN used for the evaluation. The deviation of

our greedy algorithm from an exhaustive optimal one is

insignificant (relative error less than 0.01% on average). The

greedy algorithm is only of quadratic order in the number

of servers whereas the exhaustive one is of exponential

order. We evaluate the algorithm using a CDN energy

simulator driven by HTTP adaptive streaming workload

traces recorded by an operational telco CDN delivering

IPTV to mobile devices. Even for a minimally-provisioned

CDN, the evaluation reveals potential DPM-based energy

savings of approximately 30% thanks to predictable cyclic

load fluctuations. In the future, we plan to develop online

algorithms, which can be implemented in real CDNs to

realize the energy savings in an unpredictable environment.
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