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Abstract—Complex networks are a powerful modeling tool, 

allowing the study of countless real-world systems. They have 
been used in very different domains such as computer science, 
biology, sociology, management, etc. Authors have been trying to 
characterize them using various measures such as degree 
distribution, transitivity or average distance. Their goal is to 
detect certain properties such as the small-world or scale-free 
properties. Previous works have shown some of these properties 
are present in many different systems, while others are 
characteristic of certain types of systems only. However, each one 
of these studies generally focuses on a very small number of 
topological measures and networks. In this work, we aim at using 
a more systematic approach. We first constitute a dataset of     
publicly available networks, spanning over   different domains. 
We then process    different topological measures to 
characterize them in the most possible complete way. Finally, we 
apply standard data mining tools to analyze these data. A cluster 
analysis reveals it is possible to obtain two significantly distinct 
clusters of networks, corresponding roughly to a bisection of the 
domains modeled by the networks. On these data, the most 
discriminant measures are density, modularity, average degree 
and transitivity, and at a lesser extent, closeness and 
edgebetweenness centralities. 

Keywords—Complex Networks; Topological Measures, 

Properties Comparison, Cluster Analysis. 

I.  INTRODUCTION 

A complex system is a specific type of real-world system, 
i.e. a set of interacting elements relatively isolated from their 
environment, and possessing some emerging properties [1]. 
Such a property is not present at the level of a single element, 
but appears when considering the system as a whole. Its study 
consequently requires focusing on the interactions between the 
system elements. For this purpose, graphs are a very 
appropriate modeling tool, in which elements and their 
relations are represented by nodes and links, respectively. And 
indeed, they have been used as such in a number of domains 
such as computer science, physics, biology, sociology, etc. [2]. 
The graph representation of a complex system is called a 
complex network. Such a graph has non-trivial topological 
properties, due to the specific features of the complex system it 
represents. Concretely, this means complex networks differ 
from both regular and random graphs. 

Graphs can be characterized by many different measures, 
each one reflecting some particular traits of the studied 
structure. One can cite degree, transitivity, distance between 
nodes, density, etc. Some of these measures have been used to 
detect certain properties, seemingly very widespread in 

complex systems. For instance, it is now well known that many 
complex networks are scale-free, meaning their degree is 
power-law distributed [2]. Many of them also possess the 
small-world property, i.e. the average distance between their 
nodes increases only logarithmically with the number of nodes 
[3]. Complex networks are also known to have a transitivity 
several order of magnitude larger than that of random graphs of 
the same size [2]. It is also very common for complex networks 
to display a hierarchical or a community structure [2]. 

In the past, authors have focused on one or a few properties 
and studied them on networks representing a range of systems, 
with the purpose of showing their omnipresence. For example, 
in [3], Watts & Strogatz considered the transitivity and average 
distance in social, electrical and biomolecular networks, and 
found out they all behave similarly. On the contrary, other 
studies tried to show some properties are characteristic only of 
a certain class of networks. For example, in [4], Lancichinetti 
et al. observed different topological traits in community 
structures, depending on whether the considered data 
correspond to a biological, social, information, communication 
or computer network. These works highlight the importance of 
discovering regularities and discrepancies in complex networks 
topological properties. Indeed, these properties correspond to 
functional features. For example, a scale-free network is known 
to be sensitive to targeted attacks or failures, but resilient to 
random ones [1]. Topologically similar networks are therefore 
likely to represent systems with functional similarities, whereas 
network classes with specific topologic properties probably 
have unique functional features. However, existing works 
focused on a small number of networks and/or of properties. 
The network number limitation might be due to the difficulty 
of accessing data at this time. And regarding the focus on a few 
properties, this might be because those works were conducted 
to verify an a priori hypothesis. For example, one goal of 
Watts & Strogatz was to check if the small-world property was 
present also in non-social networks [3].  

In this work, we propose to adopt a systematic approach in 
the study and comparison of the topological properties of 
complex networks. First, it is now possible to retrieve many 
publicly available network datasets through the Web, which 
allows considering a number of different systems. Second, data 
mining techniques are able to consider a large number of 
topological measures simultaneously, and to automatically 
identify the relevant ones. By considering many of them at the 
same time, we can find how they relate, which is not possible 
when focusing only on a few of them. We first gathered a 



dataset of networks spanning several domains, which 
constitutes our first contribution. We processed the most 
widespread topological measures for these networks, and used 
them as feature vectors to characterize them. We then applied 
standard data mining tools to study them depending on these 
features. We finally analyzed and interpreted this outcome.  

The rest of the article is organized as follows. In the next 
section, we define the measures we selected to characterize the 
networks. In section III, we describe the tools we used to 
analyze the dataset. In section IV, we first present our dataset, 
before describing and interpreting our results. We conclude 
with a discussion of our work, its limitations and how these can 
be solved. 

II. TOPOLOGICAL MEASURES 

In this section, we briefly describe the topological measures 
we used in our study. We decided to focus on the most popular 
ones in the network analysis literature. Here, we distinguish 
between local and global measures, i.e. those concerned with 
individual nodes or links, and those describing the network as a 
whole. In a given network, we note   the node set and   the 
link set. The number of nodes is   | | and that of links is 
  | |. We note A the adjacency matrix, whose binary 
element     is   if there is a link between nodes   and  , and   
otherwise. 

A. Local Measures 

Degree. This nodal measure  ( ) corresponds to the 
number of links attached to a node  .. In real-world networks, 
it often follows a power law, leading to the so-called scale-free 
property [2]. The degree  ( ) of a node   can be formally 
defined using the adjacency matrix: 

 ( )  ∑   
   

 
(1) 

Distance. The geodesic distance  (   ) between two 
nodes   and   corresponds to the length of the shortest path 
between them. The distance distribution has been especially 
studied in the context of computer networks such as the 
Internet. When it increases logarithmically with the size   of 
the network, the system has the so-called small-world property 
[2]. 

Eccentricity. This nodal measure  ( ) corresponds to the 
largest distance between a node   and any other node     
  [5].  

 ( )         (   ) (2) 

Betweenness centrality. This nodal measure   ( ) is the 
number of shortest paths going through a node  . Let us note 
    the total number of shortest paths between nodes    and  , 
and    ( ) the number of shortest paths between   and   
going through   [5]. We have: 

  ( )  ∑
   ( )

   
     

 
(3) 

Closeness centrality. This nodal measure   ( ) is the 
inverse of the sum of distances between the node of interest   

and all the other nodes      . It quantifies how close a 
node is from the rest of the network, in average.  

  ( )  
 

∑  (   )   

 (4) 

Edgebetweenness.  This measure   ( ) represents the 
number of shortest paths containing the link  . Links with high 
edgebetweenness centrality corresponds to bridge-like 
connectors between two parts of a network [6]. In the 
following formula,    ( ) is the number of shortest paths 
between   and   containing the link  . 

  ( )   ∑
   ( )

   
   

    
(5) 

Local transitivity. This nodal measure  ( ), also called 
clustering coefficient, corresponds to a ratio: the number of 
triangles including the node of interest  , to the number of 
possible triangles centered on this node. It can be interpreted as 
the probability for a link to exist between two randomly picked 
neighbors of the node of interest [3]. Let us note  ( ) the 
neighborhood of node  , then we have: 

 ( )   
|            ( )|

  (    )  ⁄
    (6) 

B. Global Measures 

Density. This global measure noted  ( ) corresponds to 
the ratio of existing to possible links in network  . It ranges 
from   (no link at all) to   (all nodes are connected). Real-
world networks are generally considered to be very sparse, 
with densities close to    . 

 ( )   
 

 (   )
 (7) 

Diameter & radius. The diameter  ( ) is the maximum 
eccentricity over the network, i.e. the maximal distance 
between two nodes in  :  

 ( )     
   

 ( ) (8) 

On the contrary, the radius  ( ) is the minimum eccentricity 
of the network [7], i.e.: 

 ( )     
   

 ( ) (9) 

Transitivity. This measure, also called clustering 
coefficient, corresponds to the proportion of triangles in the 
network [2]. As such, it ranges from   (no triangles) to   (all 
possible triangles exist). It can be interpreted, when picking 
randomly a node, as the probability for two of its neighbors to 
be connected. According to the literature, the transitivity ranges 
from     to     in real-world network [2]. Let us note   ( ) the 
number of subgraph with   links and   nodes (i.e. triangles) 
and  ( ) is the number of subgraphs with at least   links and   
nodes (i.e. triangles and incomplete triangles). Then, the global 
transitivity is: 

 ( )   
  ( )

 ( )
 (10) 



Modularity. This measure assesses the quality of a 
community structure. It corresponds to the proportion of links 
located inside the communities, minus an estimation of the 
same qua ntity obtained for a null model. 
Consequently, its upper bound is 1 while 0 means the 
community structure is equivalent to a random one. Values 
observed in real-world networks possessing a community 
structure are relatively high, in general. Let us define the 
function   such that  (   ) is equal to   if nodes   and   
belong to the same community, and   otherwise [8]. Then the 
modularity is:  

    
 

  
 ∑ [     

    
  

]  (   )

     

 (11) 

We note  ( ) an estimation of the maximal modularity one 
can get on network  . 

Averages. Besides the mentioned measures, which are 
global by construction, we also consider as global measures the 
averages of the previously listed local measures: average 
distance, average local transitivity, etc. 

III. ANALYSIS METHODS 

In this section, we describe the methods we applied to 
analyze our dataset. We first explain the method we used to 
normalize the data, in order to be able to compare the various 
considered measures. We then describe the clustering tools we 
selected to detect groups of networks. Finally, we present the 
measures we used to assess the cluster qualities and compare 
them. 

A. Preprocessing 

The first step in our preprocessing is to normalize the 
values obtained for the selected measures. Then, these 
normalized data can be used to process the distance between 
networks. 

Normalization. Not all measures are defined on the same 
range. This can be a problem when performing cluster analysis, 
because certain algorithms are sensitive to large differences in 
attribute values, and might give more importance to those with 
the largest magnitude [9]. To avoid this, we apply the same 
Min-Max normalization to all measures. Let   (       ) 
be a vector of values we want to normalize, where   is here the 
number of values. Then, the Min-Max normalization consists 
in processing    (         ) such as: 

    
      

     
  

   
     

      
     

  
 (12) 

However, we treat local and global measures differently. 
For the global ones, each network is described by a single 
value: we consequently normalize a series of values over the 
dataset. This way, we can consistently compare networks, 
knowing the minimal and maximal values a network can reach 
in our dataset are   and  , respectively. 

For the local measures, we obtain a series of values for each 
network. Each value corresponds to a node, a link or a pair of 
nodes. We separately normalize these series, so that   and   
now correspond to the minimal and maximal values one can 

find for a given network (and not for the whole dataset, like 
before). Indeed, our goal here is to compare distributions, so 
relative differences are more important than absolute ones. 
After this normalization, the distribution is processed under the 
form of histograms, containing    bins with a step of     . 

Distance Matrix. Once the measures have been 
normalized, it is possible for us to process the distances. We 
first calculate a partial distance for each measure taken 
separately. We then combine all of them to get the overall 
distance between two networks. Again, we distinguish between 
global and local measures.  

For each global measure, we compare two networks by 
simply considering the Manhattan distance   , i.e. the 
absolute value of the differences. The result is necessarily a 
value ranging from   to  , thanks to our normalization. For the 
local measures, we process the Earth Mover’s (EM) distance 
    [10] between both histograms. Because we apply the EM 
distance to normalized histograms, it ranges from   to  .  

The overall distance is obtained by simply averaging all 
partial distances. By construction, it will also range from 0 to 1. 
The overall distance is processed for each pair of networks, in 
order to build the matrix distance required by the clustering 
algorithms. Let us note   the number of global measures, and 
  the number of local measures. Each normalized global 
measure is noted    (     ) and each normalized local 
measure is noted    (     ). The overall distance    

between two networks   and   is: 

  (   )  
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B. Cluster Detection 

Cluster analysis consists in empirically forming groups of 
objects, called clusters, with high intra-cluster similarity and 
low inter-cluster similarity. One can distinguish various general 
approaches: partitional, hierarchical and density-based 
algorithms. We chose to apply one tool of each these families, 
in order to be able to compare them and obtain consensual 
clusters. 

Partitional approaches. They first split the dataset in 
several mutually exclusive clusters, and then maximize (resp. 
minimize) the intra-cluster (resp. inter-cluster) similarity by 
moving objects from one cluster to another. The most 
widespread algorithm is  -means, however it requires to 
perform averages objects, which we can since we only have 
access to the distances. For this reason, we selected a variant of 
 -means called Pam (Partitioning Around Medoids) [11]. This 
approach requires the user to specify the number of desired 
clusters. When this information is unknown, as it is for us, the 
classic approach consists in using a broad range of values, and 
selecting the one leading to the best clusters according to some 
criterion. 

Hierarchical approaches. They build a hierarchy of 
clusters, called dendrogram. Two different methods exist for 
this matter: bottom-up or agglomerative, and top-down or 



divisive. In the former, each object is initially considered as a 
cluster, and those are iteratively merged until only one cluster 
containing all objects remains. In the latter, on the contrary, all 
the objects are in the same unique cluster, which is then 
repeatedly divided until obtaining only singleton clusters. The 
choice of the final clusters is made by selecting a level, called 
cut, in the dendrogram, according to some criterion of interest. 
We selected two popular algorithms: one agglomerative tool, 
Agnes (Agglomerative Nesting) [12], and one divisive tool, 
Diana (Divisive Analysis) [12].  

Density-based approaches. Starting from an initial object 
called seed; a cluster is constituted by iteratively aggregating 
close objects. The cluster grows as long as some conditions 
regarding its density still hold. When it is not the case anymore, 
the cluster is complete (its limits have been reached). Another 
seed is then picked, in order to constitute a new cluster. We 
selected the DBscan implementation of this approach [13]. It 
requires the user to specify two parameters allowing defining 
the notion of cluster density: first, a radius defining the 
neighborhood of an object; second, the minimal number of 
object required inside this neighborhood, so that it is 
considered as dense. 

C. Cluster Evaluation 

Each selected clustering method outputs several partitions 
of the dataset, either because it is hierarchical (Diana, Agnes) 
or because some parameters must be tuned (Pam, DBscan). In 
order to identify the best partitions, we therefore need to be 
able to quantify their quality. For this matter, we used the 
average Silhouette width. Moreover, once the best partition has 
been identified for each tool, we want to compare them from 
tool to tool, in order to check for agreement. For this purpose, 
we used the Adjusted Rand Index. 

Silhouette. This measure is based on two quantities noted 
 ( ) and  ( ) [14]. The former is the average distance between 
an object of interest   and the rest of the objects located in the 
same cluster. For the latter, we first perform the same 
operation, but for objects located in a different cluster.  ( ) is 
the minimum of this quantity processed over all other clusters. 
From  ( ) and  ( ), we can process the silhouette width for the 
object of interest: 

 ( )   
 ( )   ( )

    ( ( )  ( ))
 (14) 

The overall value is obtained by averaging  ( ) over all 
objects. Its range is [    ], and higher value means better 
quality. 

Adjusted Rand index. This measure was designed to 
compare two partitions of the same set [15]. Let us note     the 

number of instances belonging to cluster   in the first partition, 
and to cluster   in the second one. We can then note    the 
number of instances belonging to cluster   in the first partition, 
whatever their cluster in the second partition is, and    the 

symmetric quantity: number of instances in cluster  , 
independently from their cluster in the first partition. The 
Adjusted Rand Index is defined as: 
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A value of   corresponds to perfect agreement, while   means 
random agreement. 

IV. RESULTS AND DISCUSSION 

Our dataset consists of a collection of     networks, all of 
them publicly available on the Internet. One of our goals was to 
study how the type of system represented by the network 
affects its topology. For this reason, we grouped them in   
different domains: social interactions, scientific citations, 
communication, ecological systems, biomolecular interactions, 
computer networks and transportation systems. Social 
networks correspond to acquaintances, sexual and trust 
networks. Scientific citations represent bibliographic 
references. Communication networks include email and phone 
networks. Ecological networks are constituted of taxa and their 
predator-prey relationships.  Biomolecular networks include 
protein, metabolic and genetic interaction networks. Computer 
networks include various representations of the Internet and the 
Web. Transportation networks correspond to airport 
interconnections and road systems. The number of networks 
for each domain is represented in TABLE I. In this section, we 
present our analysis of these data, using the methods described 
in section III. 

TABLE I. DISTRIBUTION OF NETWORKS OVER DOMAINS 

Domain Number of Networks 

Social 25 

Citation 20 

Communication 28 

Ecology 20 

Biomolecular 32 

Computer 21 

Transportation 5 

A. Topological Properties 

Let us describe our datasets in terms of the topological 
measures presented in section II. Those results are summarized 
in TABLE II, which contains lower and upper bounds, mean 
( ) and standard deviations ( ) for the main measures, and for 
each domain. The notations are the same than in section II, 
namely: size, density, average degree, global transitivity, 
average distance, diameter, radius and modularity. 

Size. For all domains, the size of the smallest networks is of 
the same order of magnitude: a few tens of nodes. However, 
this is not the case for the largest ones. The largest Ecological 
and Transportation networks contain a few hundred nodes. For 
Social, Communication and Biomolecular networks, it is 
several thousand nodes. And Citation and Computer Science 
networks reach several tens of thousands of nodes. This 
highlights the fact real-world network sizes are very 
heterogeneous, spanning   orders of magnitude. This is 
confirmed by the generally large standard deviations. 

Density. Similarly to what can be observed in the literature, 
most of our networks are very sparse, as seen in the average 
density and standard deviation of all domains. For some of 
them, the density is even as low as     . However, the average 



density of Social and Transportation networks is clearly higher 
(roughly the double of the others). Moreover, some networks 
are remarkably dense in the Social, Communication and 
Biomolecular domains, as highlighted by their upper bounds.  

Degree. According to the Kolomogorov-Simirnov tests we 
performed, all the studied networks have a power-law-
distributed degree, a prominent feature in complex networks 
literature. For most domains, degree bounds have the same 
order of magnitude: a few units for the lower bound, several 
tens for the upper bound. The exceptions are Transportation, 
Communication and Citation networks, whose upper bounds 
reach several hundreds. For the Citation domain, this can be 
explained by the fact the networks are larger (in terms of 
nodes), compared to other domains, while they are as dense. 
For the Transportation and Communication domains, the 
networks are small but dense, which can explain these high 
upper bounds. 

Transitivity. The literature highlights the fact real-world 
networks generally have a high transitivity. It does not seem to 
be the case so much when looking at the average values 
obtained on our dataset, which range from      to     . A look 
at the bounds shows us the smallest values are almost zero, and 
the highest ones are not so large (around        ), with the 
exception of Social and Transportation networks (     and 
    , respectively). The relatively large standard deviations 
highlight the heterogeneity of the networks in terms of 
transitivity. However, when comparing with values expected 
for ER networks with the same size and density, it turns out the 
networks of our dataset are more transitive.  

Distance. The order of magnitude of the average distance 
and both distance bounds are roughly the same for all domains: 
the lower bounds are close to  , the upper bounds are close to 
  , and the average distances lie in between. All networks 
consequently have a very small average distance, when 
compared to their size in terms of nodes. Larger networks have 
a higher distance, but the increase is marginal. The observed 
average distances are higher than those expected for ER 

random networks of same size and density. This means the 
observed values alone are not sufficient to decide if the 
networks are small-world.  

Eccentricity. For most networks, we observe a bimodal 
distribution of eccentricity, most of the nodes having very low 
or very high values. In terms of diameter, the order of 
magnitude of the diameter is the same for most domains, 
independently from the network size: it ranges from a few hops 
to a few tens. However, this is not true for the Social and 
Ecological networks, since the upper bound is tens of 
thousands of hops for them.  This means that, even if the 
average distance is of the same order of magnitude than in 
other domains, it is possible for nodes to be much farther from 
the network center in Social and Ecological networks. 
Interestingly, the same observation does not hold for the radius, 
which is roughly similar for most domains. Computer networks 
stand out though, with a radius of hundreds of hops, instead of 
tens for the other domains.  

Centrality. For most networks, the betweenness and 
edgebetweenness centralities are homogeneous, following a 
normal-like distribution. This means that, in a given network, 
most nodes and links lie on the same number of shortest paths, 
and only a few have extreme values. The presence of only a 
few central links supports the assumption the networks are 
modular: those links are known to connect communities. On 
the contrary, the closeness centrality distribution is bimodal. 
Both modes are extreme values like for the eccentricity.  

Modularity. The modularity ranges from close to zero, or 
even slightly negative values, to as high as     . Most 
networks have a clearly non-zero modularity, though. The most 
modular networks belong to the Citation domain. Most 
domains have a relatively high average (       ). However, 
this is not the case of the Transportation and Ecological 
domains, whose average modularity values are      for the 
former and almost zero for the later. Thus, modularity seems to 
be exceptional for those domains, whereas it is the norm for the 

TABLE II. OVERVIEW OF TOPOLOGICAL MEASURES RELATIVELY TO DOMAINS 

 𝒏 𝜹  𝒌  𝑪  𝒅  𝑫 𝑹 𝑸 

Social 

[11, 1882] 

𝜇:143.88 

𝜎: 448.52 

[0.0004, 0.38] 

𝜇: 0,29 

𝜎: 0,25 

[1.85, 66.69] 

𝜇: 11.39 

𝜎: 14.54 

[0.01, 0.87] 

𝜇: 0.38 

𝜎:0.25 

[1.26, 9.33] 

𝜇: 2.80 

𝜎: 1.68 

[2, 305124] 

𝜇: 12212.12 

𝜎: 61023.31 

[2, 16] 

𝜇: 3.2 

𝜎:4.07 

[-0,03, 0.89] 

𝜇: 0.31 

𝜎: 0.29 

Citation 

[35, 27779] 

𝜇:3424.53 

𝜎: 7547.97 

[0.0004, 0.26] 

𝜇: 0.07 

𝜎: 0.09 

[3.24, 516.80] 

𝜇: 39.81 

𝜎: 104.77 

[0.03, 0.69] 

𝜇: 0.23 

𝜎: 0.17 

[1.76, 8.46] 

𝜇: 3.88 

𝜎: 1.55 

[3, 37] 

𝜇: 13.93 

𝜎: 0.26 

[2, 49] 

𝜇: 8.29 

𝜎: 13.67 

[0.14, 0.93] 

𝜇: 0.41 

𝜎: 0.20 

Communication 

[12, 3861] 

𝜇: 427.93 

𝜎:103.822 

[0.0004, 0.36] 

𝜇: 0.12 

𝜎: 0.11 

[1.83, 27.70] 

𝜇: 7.50 

𝜎: 5.66 

[0.01, 0.88] 

𝜇: 0.25 

𝜎: 0.22 

[1.21, 6.53] 

𝜇: 2.98 

𝜎: 1.50 

[3, 33] 

𝜇: 10.35 

𝜎: 8.42 

[2, 22] 

𝜇: 5.25 

𝜎: 6.64 

[0.01, 0.79] 

𝜇: 0.42 

𝜎: 0.24 

Ecological 

[24, 128] 

𝜇: 65.38 

𝜎: 35.00 

[0.0816, 0.23] 

𝜇: 0.15 

𝜎: 0.03 

[5.13, 33.39] 

𝜇: 18.15 

𝜎: 10.11 

[0.25, 0.49] 

𝜇: 0.38 

𝜎: 0.08 

[1.81, 3.36] 

𝜇: 2.31 

𝜎: 0.35 

[8, 947493] 

𝜇: 133126.5 

𝜎: 302590.7 

[2, 11] 

𝜇: 3 

𝜎: 2.16 

[0.01, 0.53] 

𝜇: 0.04 

𝜎: 0.12 

Biomolecular 

[23, 3839] 

𝜇 1099.44 

𝜎:889.27 

[0.0012, 0.34] 

𝜇: 0.02 

𝜎: 0.06 

[2.15, 15.88] 

𝜇: 5.34 

𝜎: 2.37 

[0.02, 0.57] 

𝜇: 0.07 

𝜎: 0.14 

[1.80, 7.65] 

𝜇: 4.66 

𝜎: 1.16 

[3, 35] 

𝜇: 13.03 

𝜎: 5.33 

[2, 63] 

𝜇: 9.79 

𝜎: 15.90 

[0.01, 0.78] 

𝜇: 0.52 

𝜎: 0.17 

Computer 

[18, 10680] 

𝜇: 158.28 

𝜎:2973.78 

[0.0002, 0.50] 

𝜇: 0.05 

𝜎: 0.11 

[2.54, 39.1] 

𝜇: 6.95 

𝜎: 8.67 

[0.01, 0.50] 

𝜇: 0.12 

𝜎: 0.14 

[1.49, 18.98] 

𝜇: 4.31 

𝜎: 3.48 

[2, 46] 

𝜇: 11.65 

𝜎: 8.71 

[2, 352] 

𝜇: 38.13 

𝜎: 86.11 

[0.01, 0.88] 

𝜇: 0.43 

𝜎: 0.26 

Transportation 

[75, 332] 

𝜇:174.40 

𝜎: 107.60 

[0.0327, 0.24] 

𝜇: 0.22 

𝜎: 0.26 

[4.23, 194,64] 

𝜇: 37.90 

𝜎: 69.61 

[0.01, 0.84] 

𝜇: 0.32 

𝜎: 0.26 

[1.21, 3.48] 

𝜇: 2.37 

𝜎: 0.70 

[3, 19] 

𝜇: 6.94 

𝜎: 6.27 

[2, 16] 

𝜇: 4.28 

𝜎: 5.67 

[0.01, 0.44] 

𝜇: 0.15 

𝜎: 0.16 

 



other ones. 

B. Correlation Study 

We now examine the correlations between the topological 
measures studied in the previous subsection. As mentioned 
before, we distinguish two types of measures: global and local 
ones. To ease the interpretation of our results, we split the 
correlation study in three parts: global vs. global, local vs. local 
and global vs. local.  

Global vs. global. TABLE III shows the correlation 
between global measures only. Most of the values are close to 
zero, indicating no linear relationships between the measures. 
However, a few strong positive and negative correlations are 
also observed. The highest (    ) one is measured between the 
density and transitivity, which can be explained by the fact that 
when a network becomes denser, the possibility to find 
triangles increases, too. The average distance and radius are 
also highly correlated (    ). This is certainly due to the fact 
both measures reflect how compact the network is.  

Density and transitivity are both negatively correlated to 
average distance (      and      , respectively). When the 
network becomes denser, the average distance automatically 
decreases: because of the additional links, the shortest paths 
become even shorter. When the average distance is large, the 
probability for direct connections decreases, impacting the 
number of triangles.  

Modularity is positively correlated with average distance 
(    ), and like this measure, it is negatively correlated with 
both density and transitivity (      and       respectively). 
Indeed, the presence of a community structure requires links to 
be concentrated in communities. So, the network must be 
relatively sparse: if it is too dense, then the community 
structure cannot exist. The presence of a community structure 
increases the average distance: the sparsity of direct 
connections between nodes from different communities makes 
shortest paths longer, in average. 

TABLE III. CORRELATION BETWEEN GLOBAL MEASURES 

                   

  - 0.16 0.76 -0.45 0.02 -0.14 -0.71 

    - - 0.12 -0.16 -0.01 0.00 -0.13 

  - - - -0.43 0.04 -0.09 -0.51 

    - - - - -0.09 0.59 0.60 

  - - - - - -0.03 -0.12 

  - - - - - - 0.16 

  - - - - - - - 

 

Local vs. local. Local measures take the form of 
distributions, so it is not possible to compare them directly 
using Pearson’s coefficient. Instead, we considered two series 
constituted of the distances between these distributions, for 
each pair of networks in our dataset. So, we insist on the fact 
we do not consider the direct correlation between two measures 
here, but rather the correlation of the distances based on these 
measures. In other words, a strong correlation value means that 
if both measure are distributed similarly (resp. differently) in 
one network, they will also be distributed similarly (resp. 
differently) in the other. These results are presented in TABLE 
IV, using the same notation than in section II, namely: degree, 

local transitivity, eccentricity, betweenness, closeness and 
edgebetweenness. 

Some measures are not correlated with any other: it is the 
case for edgebetweenness. On the contrary, we observe a 
relatively strong correlation between the remaining measures. 
This is particularly true of degree and local transitivity (    ), 
which indicates their distributions change similarly from one 
network to another. This does not necessarily mean degree and 
transitivity are directly linearly dependent, but rather that when 
two networks have a similar degree distribution, they also have 
a similar transitivity distribution, and vice-versa. Betweenness 
centrality is strongly (eccentricity) or at least significantly 
(degree, transitivity, closeness) correlated with all other 
measures except edgebetweenness. More generally, the 
correlation between all measures but the edgebetweenness is 
never smaller than     . This indicates there is a certain 
redundancy in the information conveyed by these measures. 

TABLE IV. CORRELATION BETWEEN LOCAL MEASURE DISTANCES 

  ( )  ( )  ( )   ( )   ( )    ( ) 
 ( ) - 1.00 0.34 0.55 0.24 0.10 

 ( ) - - 0.23 0.43 0.33 0.01 

 ( ) - - - 0.79 0.40 -0.01 

  ( ) - - - - 0.45 0.01 

  ( ) - - - - - -0.01 

   ( ) - - - - - - 

 

Global vs. local. To study the correlation between global 
and local measures, we also used the distances. Here again, it is 
important to be cautious with our interpretation: a strong 
correlation means that when two networks are similar in terms 
of some global measure, they are also similar regarding the 
distribution of the considered local measure. TABLE V shows 
the results we obtained. 

Most of the measures are not correlated. However, we 
observe a relatively strong positive correlation for some of 
them. The highest is observed for density and eccentricity 
(1.00). This means that, when two networks have the same 
density, they tend to have the same eccentricity distribution 
(and vice-versa). At a much lesser extent, the same remark can 
be made for the closeness and betweenness centrality. 

TABLE V. CORRELATION BETWEEN GLOBAL AND LOCAL MEASURE 

DISTANCES 

                   

 ( ) 0.10 -0.09 0.25 0.13 0.01 0.00 0.00 

  ( ) 0.43 -0.09 0.23 0.00 0.01 0.00 0.00 

  ( ) 0.44 0.01 0.18 0.04 -0.04 0.00 0.00 

 ( ) 0.31 -0.06 0.33 0.02 0.01 0.00 0.00 

 ( ) 0.24 -0.25 0.04 -0.01 -0.01 0.00 0.00 

   ( ) 1.00 -0.12 0.43   -0.01 0.07 0.00 0.00 

 

Average degree, radius, average distance and modularity 
are correlated with no local measure. Average degree is not 
even correlated with degree distribution, and neither are radius 
and average distance with distance distribution. This 
observation is valuable, since it means those local measures are 
not summarized by the corresponding global measures, 
contrary to what one could a priori assume. For degree, this is 



consistent with our knowledge though: since it is power-laws-
distributed, we know the average is not a characteristic value. 

C. Domain Comparison 

The domains constitute the natural partition of our dataset. 
In order to understand what makes them different, we 
performed an ANOVA. This analysis aims at identifying which 
global measures allow discriminating domains. The ANOVA 
reveals   measures are significantly different in at least one 
domain: average distance (      ), density (      ), 
modularity (      ) and transitivity (      ). We 
performed Tukey’s post-hoc test to identify which domains 
have different average values for these measures. TABLE VI 
displays the significantly different measures by pair of 
domains. 

All four measures are significantly different between 
Biomolecular and Computer networks on one side, and 
Ecology and Social networks on the other side. One the 
contrary, Biomolecular and Computer networks are not 
significantly different, and neither are Ecology and Social 
networks. Although it is not as marked, Transportation 
networks are also different from both Biomolecular and 
Computer networks, but not from Ecology and Social 
networks. Finally, Citation networks lie somewhere in 
between, since they differ in one measure from all domains but 
Computer.  

In the end, a clear separation appears between two groups 
of domains. The first contains Biomolecular, Citation and 
Computer networks, and the other includes Ecology, 
Transportation, Social and Communication networks. The 
question is now to know if this separation, based on a subset of 
the global measures only, is confirmed when considering the 
whole available information, thanks to the cluster analysis. 

D. Network Clusters 

As mentioned in section III, we have applied all 4 selected 
clustering algorithms (Agnes, Diana, DBscan and PAM) over 
the whole dataset; using the Silhouette measure to identify the 
best partitions, and the Adjusted Rand Index (ARI) to compare 
them. All methods reach their maximal Silhouette value for   
clusters. Diana has the highest Silhouette with     , Pam being 
a close second with     , followed by DBscan (    ) and 
Agnes (    ). These values are not very high (the Silhouette 
upper bound being 1), but they still show there is a non-random 
separation between two groups of networks, as the lower bound 
of Silhouette is   .  

The clusters found by Diana and Agnes have largely similar 
structures, with an ARI of     . After them, Pam and Agnes 

show the second highest similarity with a      ARI, and Diana 
and PAM reach the value 0.41. On the contrary, the clusters 
found by DBscan are very different, since the ARI is almost 
zero when compared with all three other methods. Because of 
the nature of this algorithm, it certainly means it found non-
convex clusters. Those are worth exploring, however in the rest 
of this work, we decided to focus on the clusters identified by 
Pam, because it is highly similar to both hierarchical 
algorithms, and it is very close to Diana in terms of Silhouette. 
Therefore, we aimed at making a trade-off between the cluster 
quality and agreement between algorithms. 

 TABLE VII represents the distribution of networks of 
different domains over the two clusters detected by Pam. While 
Biomolecular, Citation and Computer networks are largely 
grouped in the first cluster, Ecological, Transport, Social and 
Communication networks are mostly grouped in the second 
cluster. The first cluster is dominated by Biological networks, 
whereas Social and Communication clusters dominate the 
second one. Interestingly, these clusters confirm the partition 
we previously inferred from the ANOVA conducted over the 
domains, using the global measures alone. However, the 
bisection is finer, since it is performed at the level of networks, 
and not at that of the domains. This allows highlighting the fact 
a small minority networks do not have topological features 
typical of their own domain, and therefore constitute outliers 
worth studying in further details. 

 TABLE VII. DISTRIBUTION OF DOMAINS OVER CLUSTERS 

 Cluster 1 Cluster 2 

Biomolecular 29 3 

Citation 16 4 

Computer 19 2 

Ecology 1 19 

Transportation 0 5 

Social 5 20 

Communication 5 23 

 
In order to identify the discriminant topological measures 

for our clusters, and compare them with those previously 
obtained for the domains, we conducted another ANOVA. It 
indicates not less than   measures differ significantly between 
the clusters. For global measures, we have transitivity (   
     )  diameter (        ), modularity (       )  
average distance (       ), density (      ) and average 
degree (       ). For local measures, it is closeness 
(      ), local transitivity (      ) and edgebetweenness 
(      ).  

Amongst the discriminant global measures, we find the 4 
ones already identified when studying the domains: modularity, 

TABLE VI. SIGNIFICANT MEASURES FOR NETWORK DOMAINS 

 Biomolecular Citation Computer Ecology Transportation Social Communication 

Biomolecular - 𝐶  𝐶, 𝑄,  𝑑 , 𝛿 𝐶, 𝑄,  𝑑  𝛿 𝐶, 𝑄,  𝑑  𝐶,  𝑑  
Citation - -   𝑑  𝛿 𝑄 𝛿 

Computer - - - 𝐶, 𝑄,  𝑑 , 𝛿 𝑄 𝛿, 𝐶,  𝑑 , 𝑄  𝑑  
Ecology - - - -  𝑄  

Transportation - - - - -   

Social - - - - - - 𝛿 

Communication - - - - - - - 

 



transitivity, density and average distance. The additional global 
measures are diameter and average degree, which means the 
only global measures considered as not discriminant are the 
radius, average centralities and average eccentricity. Out of the 
  selected local measures, only the   mentioned above are 
considered discriminant, the remaining ones being 
betweenness, degree, distance and eccentricity. Interestingly, 
closeness and edgebetweenness are considered as not 
discriminant when averaged, but they are discriminant when 
handled as distributions. It would be interesting to investigate 
why averaging them results in an information loss. 

V. CONCLUSION 

In recent works, specific topological properties have been 
identified as present in most complex networks, independently 
from the modeled system, or on the contrary, specific only to  
certain types of systems. In this work, we tried to extend this 
kind of work, by adopting a systematic approach. For this 
purpose, we constituted a dataset of     real-world complex 
networks, distributed over 7 applicative domains; and analyzed 
it using data mining tools. We first processed    widespread 
topological measures for each networks, including local and 
global ones. We then compared them relatively to the domains.  

Some measures, such as density, average degree and 
transitivity are very heterogeneous, even when considering a 
single domain. On the contrary, other measures such as average 
distance and modularity are ether generally more 
homogeneous, or at least homogeneous when considering 
domains independently. A correlation study showed strong 
positive relations between certain global measures: density and 
transitivity, average distance and modularity; and a strong 
negative relation between density and modularity. In terms of 
local measures, there are strong relations between degree and 
transitivity, and between eccentricity and betweenness. On the 
contrary, edgebetweenness is not related to any other local 
measure, but it is strongly related to density. 

An additional ANOVA performed on global measures, 
relatively to the domains, showed transitivity, modularity, 
average distance and density were the only significantly 
different measures. These differences are clear enough to allow 
distinguishing two groups of domains: Biomolecular, Citation 
and Computer networks on one side, and Ecology, 
Transportation, Social and Communication networks on the 
other. This dichotomy was confirmed by a cluster analysis 
based on both global and local measures, although it also 
allowed performing a finer separation of the networks, 
highlighting outliers amongst most domains. Moreover, the 
cluster analysis used additional topological measures to 
discriminate networks: diameter and average degree for global 
measures, and closeness centrality, local transitivity and 
edgebetweenness for local ones. 

The first contribution of our work was to tackle the problem 
of identifying discriminant topological measures by using a 
systematic approach, in terms of amount of data, topological 
measures and analysis tools. By opposition, previous works 
focused only on one or two measures, and on a small number 
of networks and analysis tools. Our second contribution is the 
constitution of a real-world complex network dataset. Our third 

contribution is the analysis of this dataset, mainly based on 
correlation study, ANOVA and cluster analysis.  

However, we are aware of certain limitations, too. First, the 
dataset is relatively small. We are currently still working on it, 
in order to considerably increase its size. Second, in this first 
work, we wanted to focus on the most widespread topological 
measures, but it is possible to consider many others, such as 
network centralization [5], fractal dimension [16], node roles 
[17], assortativity measures [18], etc. Third, more advanced 
tools can be used to study the relations between topological 
measures, and also to interpret the cluster analysis results. For 
example, discriminant analysis [19] would allow distinguishing 
topological measures in terms of discriminant power. 
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