
Molecular Dynamics Visualization with XML and VRML

B. Arun
arun@wiproge.med.ge.com

V. Chandru
chandru@csa.iisc.ernet.in

A. D. Ganguly
ganguly@cs.unc.edu

S. Manohar
manohar@csa.iisc.ernet.in

Department of Computer Science and Automation
Indian Institute of Science
Bangalore - 560012, India

Abstract

A new Extensible Markup Language (XML) application,
Molecular Dynamics Language (MoDL) has been devel-
oped. MoDL provides a simple, but powerful tool for molec-
ular dynamics visualization and has been developed by
combining, for the first time, the strengths of XML and the
Virtual Reality Modeling Language. The details of MoDL,
its implementation and examples of its use are presented in
this paper.

1. Introduction

Among all disciplines, chemistry needs to move away
from the restrictions of figures on two dimensional paper to
a dynamic 3D world the most. Chemical simulations out-
put enormous amounts of data; making sense out of it is a
herculean task. Being able to visualize a simulation, like
following the trajectory of one molecule as it moves within
other molecular structures can provide a better understand-
ing of the various concepts at work and provide new in-
sights.

Researchers in molecular dynamics at the Indian Insti-
tute of Science have long sought a way by which results of
their computational simulations can be visualized. A spe-
cific problem that has been of interest is that of the behav-
ior of a methane molecule when it interacts with a Zeolite
cage. It has been known by the simulations that the methane
molecule moves into the Zeolite cage and gets trapped in-
side. However, given the structure of methane and the bond
structure of the cage it was puzzling as to how the methane
molecule managed to get into the cage in the first place.
Even though the exact coordinates of all the atoms of the
cage as well as the coordinates of the methane molecule
were available from the simulations, it has not been possible

to visualize the exact moment when the methane molecule
entered the Zeolite cage. The institute has high end molec-
ular dynamics packages like Biosym running on SGI Onyx
machines; these and other packages were unable to provide
clear insights into the process.

At the Perceptual Computing lab we have brought to-
gether the expressive power of XML and the descriptive
power of VRML to create a simple but powerful visualiza-
tion tool for molecular dynamic visualization.

Extensible Markup Language (XML) is the emerging
standard for structured data exchange over the Web. XML is
a part of the World Wide Web Consortium’s standardization
efforts to make the Internet a better place to work in. XML
is a strict subset of Standard Generalized Markup Language
(SGML) which is the mother of all markup languages. The
XML Specification lays down rules that allows users to de-
fine a set of tags which makes sense to a particular commu-
nity. Since the release of the XML specification in February
1998, hectic activity has been going on both in the industry
and the academia. As a result, numerous XML applications
and tools are available and many more are being developed
by the month. Mathematical Markup Language (MathML),
Synchronized Multimedia Markup Language (SMIL), Web
Interface Description Language (WIDL), to name just a few,
are some of the XML applications that have made it big.
XML is not being used as extensively as HTML due to lack
of adequate development in related technologies like Exten-
sible Style Language (XSL) and Document Object Model
(DOM). Once these technologies are ready for use, XML
will be all set to rule the Web.

Virtual Reality Modeling Language (VRML) is the ISO
standard for representing 3D content on the Web. It is a
text based file format for describing 3D objects and worlds.
Along with 3D graphics, it also combines multimedia -
audio and video. VRML already has extensive usage in
medicine, engineering and scientific visualization, enter-

0-7695-0643-7/00 $10.00 � 2000 IEEE

tainment and education. VRML worlds can be viewed from
inside browsers like Netscape and IE by using a VRML plu-
gin. Various standalone VRML viewers also exist.

We have combined XML and VRML for visualizing
chemical simulations over the web. The simulation data is
marked up in a new XML application which is then con-
verted to VRML for display on a Web browser using a plu-
gin. We present the details of the language, the implemen-
tation and the results of this work in this paper.

2. Related Work

Among the first community of users of XML were the
Chemists. The Chemical Markup Language (CML) that
predates XML, is a powerful generic tool for management
of molecular and technical information. Although it is pos-
sible to view 2D and 3D structures using a CML viewer,
visualization is not a design goal of CML. Moreover, it
does not provide support for chemical reactions or molec-
ular dynamics in its present state of development. CML is
still evolving and efforts are on to make its scope as wide
as possible. Programs like MolScript and Prolet generate
VRML from popular chemical data formats like MOL and
PDB. Other tools like Rasmol can read in many file formats
and display the structure in various forms like ball-stick and
space-filling. It also provides the option of saving the struc-
ture as an image file like GIF. All the packages mentioned
above deal only with static structures. X-Mol is a pack-
age that allow dynamics to be viewed. Using this software,
users can view dynamic simulation given the coordinates of
various atoms/molecules over the simulation period. X-Mol
also allows the simulations to be saved as a movie.

XML-VRML combination has been used previously for
some stock-exchange data visualization and web-site maps.
In the latter case, the web page is described using a set of
tags and this data is then converted into a VRML world that
allows users to navigate the page in the 3D space.

3. Molecular Dynamics Language (MoDL)

During the design of this new markup language for vi-
sualizing chemical simulations; the foremost thing in our
minds was to keep the language simple. We also have tried
to make it intuitive for chemists, who are the prime target
group of users.

The primary elements in this markup language are atom,
molecule and bond which are self-explanatory. Each of
these can be assigned types and attributes can be specified.
Other elements like bond-table, plot and curve provide ad-
vanced capabilities and will be explained later.

3.1. Basic Features

A MoDL file begins with the tag modl and ends with the
tag modl which means everything is included in the modl
element. A modl document is then divided into a head and
a body. The body contains information related to the vari-
ous objects being visualized while the head holds informa-
tion about the properties of the system. The head is used
to specify attributes like the duration of the simulation, the
size of the steps if the user wants to step through the simu-
lation, whether bonds should be generated automatically or
not, whether the visualization should loop through the sim-
ulation continuously or stop after one run. This tool can also
be used to visualize static models. In this case, the code size
of the VRML file can be reduced by assigning the value off
to the animation attribute of the head.

The body contains the atoms, molecules and bonds to be
displayed. For every atom, radius, color and position can
be specified. Molecules can contain atoms and bonds. Ev-
ery molecule is specified a position, an axis and an angle
of rotation about this axis to uniquely specify its location in
3D. Bonds can be specified between atoms by first assign-
ing unique identifiers to the atoms (using the id attribute)
and then specifying these identifiers in the attributes of a
bond element. There is a DEFINE construct which allows
users to define particular types of atoms, molecules, bonds
or radicals and then use them later to instantiate objects of
that type. The use of these tags are illustrated with some
examples below:

Oxygen and hydrogen atoms can be defined like this:

<DEFINE type=’atom’ name=’O’
radius=’0.3’ color=’0 0 1’ />

<DEFINE type=’atom’ name=’H’
radius=’0.2’ color=’1 0 0’ />

Here oxygen atoms are blue and have radius 0.3, hydro-
gen atoms are red and have radius 0.2. Using this we can
now define a water molecule:

<DEFINE type=’molecule’ name=’Water’ >
<atom type=’O’ id=’o1’

position=’0 0 0’ />
<atom type=’H’ id=’h1’

position=’-2 1 0.5’ />
<atom type=’H’ id=’h2’

position=’2 1 0.5’ />
<bond from=’h1’ to=’o1’ />
<bond from=’h2’ to=’o1’ />

</DEFINE>

Typically, bonds form between atoms when the distance
between them is less than some particular value. We have
used this concept so that authors don’t have to explicitly

2

0-7695-0643-7/00 $10.00 � 2000 IEEE

write every bond they want in the molecular structure. The
maximum inter-atomic distance between pairs of atoms can
be recorded in the head of the document in a bond-table el-
ement, and bonds will be put automatically between atoms
where the distance is less than the specified value. In ad-
dition to this, authors can still explicitly put bonds between
atoms where they want to.

3.2. Dynamics

Until now, everything has been static. To introduce dy-
namism to the visualization, we need to specify things like
period of the clock, whether the clock should loop or stop
after one period. The clock period and looping are specified
in the head. Meta elements and DEFINE constructs also
appear in the head. The body holds the elements for visual-
ization. To place two water molecules in 3D space we write
in the body the following:

<molecule type=’Water’ id=’w1’
position=’0 0 0’ />

<molecule type=’Water’ id=’w2’
position=’4 0 2’ />

To move the atoms/molecules we have two elements
TRANSLATE and ROTATE. To translate one needs to
specify a time-instant and the position of the atom/molecule
at that time instant. To rotate one needs to specify an axis
and the angle of rotation about it. The axis of rotation will
be passing through the centre of mass of the object being ro-
tated. Both of these elements are generic which means they
can move either an atom or a molecule; the id of the ob-
ject to be moved needs to be specified in the object attribute
of TRANSLATE and ROTATE. ROTATE-ing an atom will
have no effect since atoms are represented by spheres.

Now to move the water molecule named w2, we put w2
in a TRANSLATE element, like this:

<TRANSLATE object=’w2’ t=’0.2’
position=’3 0 1’ />

This means that when the clock is at 0.2 of the period,
the molecule w2 will be at (3,0,1). For the intermediate
time instants, the w2’s position is calculated by using lin-
ear interpolation. Using TRANSLATE again, w2’s position
can be specified at several time instants. The TRANSLATE
object is generic, i.e. it can move not only molecules, but
atoms, radicals and bonds as well.

Another useful thing is to be able to view the simulation
from any point in the 3D space. Users viewing the simula-
tion can navigate around in the 3D scene using the naviga-
tion controls present in VRML browsers. In addition, users
can specify any of the atoms or molecules to be viewpoints
in the MoDL file, jump to its position and view the simu-
lation. Users can also sit on one of the dynamic atoms and

go for a ride, seeing the simulation as that particular atom
would see it.

3.3. 2D and 3D Plots

Chemists typically want to see plots and graphs of vari-
ous variables when the simulation is running. To facilitate
this, MoDL has support for 2D and 3D plots, which can
be static or dynamic. In dynamic plots, users will be able
to see the graph changing as the simulation proceeds. Plots
are specified using the plot element. They can be positioned
anywhere in the 3D space of the visualization. A plot may
have any number of curves, specified by the curve element
inside plot. Three plot styles are supported - points, lines
or histograms. They are specified by assigning the type at-
tribute of curve to points, lines or histograms. Each curve
in a plot can be specified a different type and color, mak-
ing it easy to distinguish them (Fig 1). The data points are
specified inside curve using the element point. Every point
has an attribute t specifying the time when it should be dis-
played. To make a point static, t needs to be assigned a
value 0.

The image below shows a ”real-life” example. All the
atoms are same but have been given different colors to dis-
tinguish between the fact that atoms in the middle are fluid
while those on top and bottom form walls enclosing the
fluid. The blue wavy line in the plot shows the variation
of kinetic energy of the fluid atoms with time. The green
and red wavy lines show potential energy and the white one
shows the total energy of the system.

Figure 1. Plots of Potential, Kinetic and total
energy of the System

3

0-7695-0643-7/00 $10.00 � 2000 IEEE

3.4. Examples

Given below is an example of a methane molecule in
MoDL and a screen shot (Fig 2) of it in VRML.

<modl>
<head>

<meta name=’title’
content=’Example’/>

<DEFINE type=’atom’ name=’C’
color=’1 1 0’ radius=’0.3’/>

<DEFINE type=’atom’ name=’H’
color=’1 0 0’ radius=’0.2’/>

<DEFINE type=’molecule’ name=’Methane’>
<atom type=’C’ id=’c1’

position=’0 0 0’/>
<atom type=’H’ id=’h1’

position=’1 0.7 0.3’/>
<atom type=’H’ id=’h2’

position=’-1 0.7 0.3’/>
<atom type=’H’ id=’h3’

position=’-1 -0.7 0.3’/>
<atom type=’H’ id=’h4’

position=’1 -0.7 0.3’/>
<bond from=’c1’ to=’h1’/>
<bond from=’c1’ to=’h2’/>
<bond from=’c1’ to=’h3’/>
<bond from=’c1’ to=’h4’/>

</DEFINE>
</head>
<body>

<molecule type=’Methane’
position=’0 0 0’
viewpoint=’true’/>

</body>
</modl>

Figure 2. Methane

In the next example, referred to in the introduction,
a methane molecule enters a Zeolite Cage made up of
Sodium, Potassium, Sulphur and Oxygen, and gets trapped
in it.

Figure 3. Methane trapped in Zeolite

This was a prime example of how important visualiza-
tion is for chemists. Even though the methane molecule is
bigger than the ring through which it enters the cage, it is
able to do so by rotating itself to a suitable orientation - this
was perfectly captured by our visualization. Fig 3 shows
a screenshot of the Zeolite cage and methane at one time
instant.

For the next example, we have a Fullerene tube of about
1750 Carbon atoms and a mixture of two fluids flowing
through it. This was the first dataset with which we began
this work. Fig 4 gives a view of the fullerene tube with fluid
atoms inside it. Because of the number of atoms involved,
standard molecular visualization packages were unable to
provide the required visualization.

4. Visualization Tool

As we have mentioned before, we are using VRML for
the visualization. The prime reason for this is that VRML
is already the standard for 3D content on the web. This
means numerous plugins exist to view VRML files; thus
users would not have to use any new software to utilize
MoDL. Another advantage of using VRML is that one
can utilize the navigation controls that VRML plugins pro-
vide. These controls allow users to move about inside the
molecular structure, zoom in on any part of the structure
and view it from far. The user can also rotate his camera
without changing his position. The controls also allow the

4

0-7695-0643-7/00 $10.00 � 2000 IEEE

Figure 4. Nanotube

atoms/molecules to be rotated and viewed from any position
and angle.

In most visualization packages atoms are represented by
spheres and bonds are represented by cylinders. We have
tried to optimize the rendering by using spheres to repre-
sent atoms only when they are near the user and by cubes
when they are far away by using the LOD node of VRML.
The distance after which the sphere is replaced by a cube
depends on the radius of the atom, so that big atoms don’t
show up as cubes when close to the user. We have not used
cylinders to represent bonds but triangular prisms. This way
we are saving on the rendering since only 3 surfaces of the
prism need to be rendered. We expect this will not jar the
users since bonds don’t have any physical existence and us-
ing cylinders to represent them was just a matter of con-
vention. We have tried to optimize further by replacing the
prisms by lines when the bonds are very far away from the
user.

A dashboard of buttons is provided near the bottom of
the screen, just above the VRML dashboard to allow the
user to control the visualization (see Fig 2).

The following controls are provided to the user, in addi-
tion to any browser provided controls:
� Start Stop Step Flip

� Reset Viewer Original Zoom
’Start’ and ’Stop’ buttons will start and stop the simu-

lation at any point. Here by simulation, we mean the vi-
sualization of the simulation; bear in mind that the actual
simulation has already been run and we are working with
data provided by the simulation program after it was com-
pleted. The ’Step’ button makes the simulation proceed in
steps; instead of continuous mode. This becomes very help-
ful when one wants to see a changing molecular structure
after say, every 1 second during the simulation. The ’Re-
set’ button resets the simulation clock to 0, ie. everything
rewinds to the initial state. The ’Flip’ button allows the user
to flip the direction of time - ie. the simulation can run both

forward and backward. Using this feature, users can rewind
the simulation back to a certain point and replay.

Our visualization tool allows the user to change the view-
point to the position of any atom/molecule and view every-
thing from that atom/molecule’s point of view. If this par-
ticular atom/molecule is dynamic, the user sits on it and
views the static structure (if present) go past him. To do
this, the user must first click the ’Viewer’ button. Now
all those atoms/molecules which can be viewpoints become
clickable, ie. they can be selected by a mouse-click and the
user will be transported to its position. Any atom/molecule
can be made a viewpoint in the MoDL file when it is instan-
tiated by assigning to the attribute viewpoint a value true.
The ’Original’ button is used to return the user camera to
its initial position after having changed the viewpoint any
number of times.

While working with a dataset which involved a large Ze-
olite cage and methane molecules getting trapped in it; we
found that the large number of atoms and bonds of the Zeo-
lite cage was cluttering the view, making it difficult to spot
exactly where in the cage the methane molecules entered or
left. This prompted us to include a Zoom/Occlude feature
in the visualization tool. This will allow users to zoom to
a particular dynamic atom/molecule; ie. only those objects
which lie within 10 units of the selected atom/molecule will
be displayed, the rest will not be shown. Users need to first
click the ’Zoom’ button and can then select any dynamic
atom/molecule to zoom. This feature will make it easier
for chemists to follow molecule trajectories inside complex
structures.

5. The Conversion from MoDL to VRML

Here we describe very briefly, some particulars of the
converter code and the VRML code which is produced by
the converter. We have written the MoDL to VRML con-
verter in Perl. We have used the Perl::XML module written
by Larry Wall and Clark Cooper, which is a Perl interface
over James Clark’s expat library - an XML parser in C. The
XML::Parser module is an event-based parser. This class
of XML API’s report parsing events (such as start and end
of elements) directly to the application through callbacks.
The application implements handlers to deal with the dif-
ferent events. This is in contrast to the class of XML API’s
known as tree-based in which the whole XML document
is compiled into an internal tree structure and the applica-
tion is allowed to traverse the tree. The main drawback of
the latter scheme is that it often puts a great strain on sys-
tem resources, especially if the document is large. Event-
based parsers, on the other hand, provide a simple and flex-
ible way of processing XML documents. Documents much
larger than the available system memory can be parsed and
required data structures can be constructed using the call-

5

0-7695-0643-7/00 $10.00 � 2000 IEEE

back event handlers.
We have developed VRML prototypes for static and dy-

namic atoms, with viewpoints and without viewpoints. For
every instantiation in the MoDL file, these prototypes are
used to create new atoms, molecules and bonds. When a
new atom or molecule type is defined in the head of the
MoDL file, we emit prototypes for those types, which are
used to declare atoms or molecules of those types in the
body. The dynamics is implemented using the PositionIn-
terpolator and OrientationInterpolator nodes of VRML[2].
For the simulation clock, we have used the TimeSensor
node of VRML. This clock in VRML is continuous, we
have wrapped code over it to make it discrete, so that the
utility to step can be provided. The positioning of the user
camera on viewpoint atoms and molecules is achieved using
two ViewPoint nodes and javascripting. The Zoom/Occlude
feature has also been implemented by javascripting. When-
ever the position of a selected dynamic atom/molecule
changes; its distance from every static atom/molecule is cal-
culated, and the static atom/molecule is displayed or not ac-
cordingly.

6. Authoring tool for MoDL

Although, MoDL has been designed to be simple and
flexible, creating large documents by hand can prove to be
a cumbersome task. For chemical systems having few tens
of atoms, it is possible to edit the MoDL representation us-
ing any text editor. But when the systems contain few hun-
dreds to thousands of atoms and molecules along with dy-
namics, it is best to automate the process of generation of
MoDL documents. We have created a tool, MoDLEd, the
MoDL authoring cum editing tool. MoDLEd allows users
to specify format of their data and generates a Perl script
that converts data from that format to MoDL. The only con-
straints on the format is that each line has information for
one atom/molecule and various values in a line (like x,y,z)
are separated by space(s). Meta information about the types
of atoms and bonds in a molecule can be specified in a sep-
arate file. Minimal editing facilities are also made available
using the XML::DOM module. MoDLEd has been written
in Perl with the GUI built using Tk.

7. Using MoDL and the Visualization Tool

The prime usage of MoDL and our visualization tool is
to allow chemists to put their simulations on the web so that
other people can study them across platforms by using only
a web browser (eg: Netscape) and a VRML plugin (eg: Cos-
moPlayer). And putting up a visualization of the simulation
instead of numerical data makes it more friendly in addition
to the benefits of being able to visualize a simulation.

One way to do this would be to write or generate the
MoDL file, validate it, convert it to VRML and put the
VRML file on the web. Another way would be to create
the VRML only when someone wants to view the simu-
lation. To do this, a cgi-script is needed which will call
the MoDL2VRML converter. On clicking a link, the modl
file is read by this script - the vrml code is generated and
sent to the client along with the appropriate mime type so
that the VRML plugin is called up in the client browser.
This is a clumsy method of transparently invoking a VRML
browser from a MoDL file. However it is expected that
two emerging standards will make this process much more
cleaner. These are the X3D standard that is currently under
development by the Web3D consortium and XSL (Extensi-
ble Style Language) under development by the World Wide
Web Consortium.

8. Conclusions

The combination of XML and VRML can prove to be a
very effective way of conveying chemical information over
the Internet. Visualization of chemical simulations will get
a boost once streaming is introduced in VRML. This will al-
low us to visualize a simulation when it is actually running
in real-time. Other disciplines like Architecture and Plan-
ning can also benefit from the use of these technologies.

MoDL and the accompanying visualization can also be
used as an instructional tool. While explaining a physical
process, instructors can prepare a MoDL file from a simu-
lation of that process and show the visualization to the stu-
dents. This will allow the students to easily grasp ”what is
going on”.

Our current work is focused on improving the function-
ality of MoDL as well as to address visualization problems
in related areas. For instance, recently we have started work
on visualizing shear in fluid suspensions as well as problems
in crystallography.

9. Acknowledgements

The authors wish to thank Prof. Yashonath, Prof. G.
Ayappa and their group for providing us the driving problem
and the data sets, and for enthusiastically using our tools.

References
[1] Tim Bray, et. al. XML 1.0 Specification.
[2] W. Ihlenfeldt. Visualizing Chemical Data in the Inter-
net - Data Driven and Interactive Graphics.Computers and
Graphics,22(6):703-714,1999.
[3] International Standard ISO/IEC Virtual Reality Mod-
elling Language, 1997.

6

0-7695-0643-7/00 $10.00 � 2000 IEEE

[4] Peter Murray Rust. Chemical Markup Language.
[5] Jon Bosak, Tim Bray, XML and the Second-Generation
Web. Scientific American, May 1999
[6] Daniel Lipkin. Integrating XML and VRML: A Techni-
cal Discussion.

7

0-7695-0643-7/00 $10.00 � 2000 IEEE

