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Abstract

In this paper, it is described a method of curved 
ray tracing capable of depicting phenomena that arise, 
under certain conditions, when light propagates 
through an inhomogeneous atmosphere. As an 
example application the distortions in the spherical 
shape of the sun during sunsets are modelled, 
including split suns, flattened suns and double suns. 
Nevertheless, the method is general and can be applied 
to any media in which the index of refraction is a 
function of the position. 

1. Introduction 

The modelling of nature scenes is one of the most 
ambitious goals of the Computer Graphics community 
[1]. There have been several examples that simulate 
the behaviour of light within the atmosphere, for 
example, the doctoral thesis of Musgrave [2] or the 
work of Berger and Trout [3], which studies the 
phenomenon of light scattering in the atmosphere.  

Up to now, most of the ray-tracing algorithms 
consider that light is propagated following straight 
lines. This is so because these algorithms presuppose 
either that there are no media through which the light 
travels, or that these media are homogeneous, that is, 
they have the same properties in all their points. 
However, most media are inhomogeneous, with 
properties varying continuously from point to point. 
For instance, the atmosphere is in fact an 
inhomogeneous medium, because the pressure, 
temperature and other properties vary from point to 

point, and so, its optical characteristic defined by the 
index of refraction is not constant in all the points. 

There are some previous works on the subject of 
curved ray tracing in inhomogeneous media, as well as 
papers talking about non-linear ray tracing. Among the 
former, we can mention [4], [5] and [6]. The first two, 
however do not present a generic situation in which the 
index of refraction varies throughout the atmosphere in 
an arbitrary way, and in fact focus only on mirages. 
While the approach in [6] is more closely related to 
ours, our method of resolution is different and more 
general.

Berger and Trout [4] are the first ones to observe 
that the ray tracing method only changes the trajectory 
of the ray when it intersects an object. Therefore, the 
slight changes in direction that rays experiment when 
going through the atmosphere were not considered. 
Those changes are, precisely, the origin of the mirages. 
According to Fermat’s law, light crossing a medium 
gets curved towards the areas with a greater index of 
refraction. The index of refraction of the air depends 
on both humidity and density, but the effect of the 
former on light is very small and can be ignored. On 
the contrary, density, which is a function of pressure 
and temperature, can significantly change the light 
rays’ trajectories. In the case of the mirage effects, 
these occur in a very small altitude range, where 
pressure is practically constant; therefore, the change 
in the index of refraction can be supposed to be owed 
only to temperature variations. In their work, they 
solve the problem dividing the medium into various 
homogeneous layers. The proposed solution is to 
subdivide the atmosphere in multiple horizontal layers 
with a different index of refraction for each one. When 
using ray tracing, the ray launched from the observer is 
refracted every time it crosses a boundary between 
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layers. This method is then only valid for situations
where the index of refraction is only a function of the
height; on the other hand, it is impossible to obtain the
real curved path followed by the ray, coming up 
instead with an approximation made of straight
segments.

Musgrave [5] points out a few considerations
regarding the interpretation of the model in [4] and its 
implemented version. He indicates that the primary
bending agent in the formation of mirages is total
reflection, instead of refraction as is proposed in [4].
As a consequence, a purely reflective model might
suffice, without the need for refraction. Musgrave
reinforces this idea by stating that, if refraction were 
the primary engine in mirage formation, one would
then expect to see the effects of dispersion in a mirage,
smearing the image into its component colours. On the
contrary, there is little to no dispersion in mirages
observed in nature.

Stam and Languénou [6] present their work on ray
tracing in non-constant media. They do not use Snell’s
law to calculate the trajectory of the light ray, unlike
the previous works described. On the contrary, they
obtain the differential equation that describes the
trajectory of the ray from the equation of the light
wave, coming to the following expression:
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where l is the arc’s length, n is the index of refraction

and jxr (j = 1,2,3) are the coordinates of a given

point. In [6] they also observe that the index of
refraction of the atmosphere is inversely proportional
to the temperature of the air:
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where T0 = 273 and n0 = 1.00023. 
For a given hot horizontal surface at a temperature

Ts, the temperature above it has an exponential falloff
characterized by the attenuation distance d0. Using
equation 2, the expression for the index of refraction
would be the following:
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where the hot horizontal surface is defined by its origin 
 and its normal . If the attenuation distance is big

enough, the rays follow approximately a parabolic
trajectory, and the method described in [4] yields good

results. However, if the attenuation distance is small,
the trajectories become hyperbolic, and the
approximation in [5] works better by using total
reflection.

o n

To solve equation 1, Stam and Languénou propose
a perturbation method [7], and apply it to two
particular cases. The first one consists on a
superposition of N hot nuclei, whereas in the second 
one the distributions of the index of refraction are
defined by a stochastic model, that is, Fourier’s
transform of a random index of refraction.

On the other hand, Groeller [8] considers different
situations that cause non-linear paths. These can be the
result of underlying dynamic systems that act upon a
particle, such as gravity centres, gravity lines or
dynamic chaotic systems, or can be defined arbitrarily
in a explicit manner through equations.  In the first
case, the curved rays are the solutions of first-order
ordinary differential equations, that is,

)(xVx with an initial value 0x . Usually, the exact 

solution uduVxx )(0 cannot be calculated

analytically. It is then necessary to use numerical
techniques, and he chooses Euler's method to calculate
successive points of the curve path knowing the
position and the tangent vector at the previous point.

To calculate the position and velocity of a point in

the curved trajectory ),( 11 nn vx , knowing the

position and velocity in the previous point ),( nn vx ,

the following equations are used:
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where l is the integration step and ),( nn vxf is the

function to obtain the velocity in the next point. As it
has been said before, it can be based on physical laws
or be arbitrarily defined.

Another problem, inherent to curved ray tracing
and light, is obtaining the trajectory that goes from the
intersection point to a light source. Here, Groeller
proposes two possible solutions. The first one consists
of supposing that the light rays are only curved from
the intersection point to the eye, but travel in a straight
line from the light source to the intersection point. The
second one consists of assigning color to the
intersection point regardless of the light sources, for
instance by using textures with the illumination pre-
calculated.
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The method proposed in this work has none of the
limitations that appear in the articles previously
discussed, regarding the dependences of the index of
refraction function. This is so because we solve the 
problem of light propagation through an 
inhomogeneous media using the general equation,
based on Fermat’s principle, that describes the
phenomenon [9] [10]:
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where l is the length of the arc, n is the index of 

refraction of the medium and jxr with (j=1,2,3) 

are the coordinates of the point.
This way, we can reproduce any of the previous 

works while broadening the scope of possible
applications. Even though the proposed resolution
method is general, it is going to be applied here only to
atmospheric phenomena, specifically to simulate
distortions of the spherical shape of the sun during
sunsets (including the split sun, the flattened sun and
the double sun). 

The structure of this paper is as follows: in section
2, we present a numerical method for the resolution of
the problem posed by equation 5 as well as its
convergence. In section 3, to be able to compare the
behaviour of the method, we offer the exact solution
and two approximate solutions in the special case of an
atmosphere with linear variation with height of its
index of refraction. In section 4, we visualize the
sunset phenomena enumerated before. Finally, in
section 5, we comment on the conclusions, while
future work is discussed in section 6. 

2. General method of resolution of the path 
equation

The method to calculate the path of the ray in a
general case in which the index of refraction in all the
points of the medium is known, consists of calculating
the index of refraction and the slope of the curve at

step i, advancing a length along the direction of 

the tangent of the curve to reach step i+1, and then
calculating the new index of refraction and the
direction of the slope of the path at step i+1. Then, 

advancing a length along the new direction of 

the tangent and so on until we get to the intersection
point of the path of the ray with an object.

il

1il

For each step, it is necessary to calculate the 
direction of the tangent. To do this, we calculate a 
numeric approximation through a discretization of
equation 5, that is, replacing differentials by
increments and applying Euler's method. If we use xji

for the coordinate j of the point of the ray at step i and 
xji+1 for the coordinate j of the point of the ray at step
i+1 we get:
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Given an estimate of the tolerable error, the
optimum integration step can be selected for each 
instant. To do this we use the Richardson extrapolation
algorithm. Although Euler is a first-order method, this
process assures the convergence (stability plus 
consistency) of the method [11] even in the cases in
which sharp variations in the index of refraction occur.
This is so because the method fits the integration step 
to the characteristics of the problem in such a way that 
the accuracy obtained is inferior to a prefixed 
tolerance.

3. Behaviour of the general method 
through comparison with less general 
methods

We are going to analyse the behaviour of the
general method, in terms of speed and accuracy. To do 
so, we are going to compare it with three less general
methods for the special case of an atmosphere which
index of refraction varies linearly with height.

3.1. Exact method

We define a medium which index of refraction
varies linearly with height, that is, the index of
refraction verifies: 
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where  is the value of n at the middle level (for

y=0),  is the value of n at the upper level (for

y=h) and the function n(y) valid from y=-h to y=h.
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The solution of the differential equation allows to
express the path of the ray as a function of the
parameter l  (length of the curve). 

3.2. Rough methods

We propose the following rough methods that can 
be used to obtain an estimate of the result:

Rough method 1: we can think about dividing the
medium into various horizontal layers with a constant
index of refraction. In this way, to calculate the path,
we have just to apply Snell's law of refraction when 
the ray is going to change layers. For those cases in
which the refracted ray does not exist, we calculate the
reflected ray. This is the same method used by Berger
and Trout [4] to calculate images of mirages.

Rough method 2: the drawback to the solution
proposed by the rough method 1 is that rays that follow
almost an horizontal path need to travel a great 
distance before significantly changing direction. This
can be improved by calculating the refracted ray when
it has travelled a fixed distance l. In this way, the more
horizontal the ray, the thinner the layers become.

3.3 Test scenes 

We are going to analyse the different methods
proposed, computing the errors and rendering times
using four different scenes. The four scenes are
identical and the distribution of the index of refraction
n always follows equation 8, but the value at the lower
and upper levels varies as described in Table 1. The
values we have used for the test scenes to set the index
of refraction fall within the range of values found in
the atmosphere.

Table 1. Description of the four test scenes 

n(-h) n(h)
Scene I 1.0 1.02
Scene II 1.02 1.0
Scene III 1.0 1.5
Scene IV 2.0 1

We must emphasize that, in order to test the
proposed methods, neither the geometry of the scene
nor the output image size are important parameters.
What is being studied here is the curvature of the rays
travelling a long distance. Thus, the parameter that will
really give us meaningful data is the size of the scene
(made up of two infinite planes), hence the geometrical
simplicity. Parameter h has a value of 50 units and the
rendered image has a size of 100 by 100 pixels. The
coordinates of the points at the viewport window range 
from -50 to 50 units both in x and y and the camera is 
placed 100 units in front of the image plane. The scene 
is composed of a horizontal infinite plane located at 
y=-h as the ground and a horizontal infinite plane
located at y=h as the sky.

3.4. Comparison of the methods

For each method (the general method explained in 
section 2, plus the exact and rough methods 1 and 2 of
this section), we calculate the elapsed time: it is the
time necessary to generate the scenes using a Sun 
Sparc Station at 100 MHz.

In the comparison, we use rough method 1 with
three different subdivision levels (different number of 
layers), and rough method 2 and the general method
with two different preset values of l (the distance 
travelled along the curve before calculating its change 
of direction, measured in length units). For the general
method, the Richardson extrapolation algorithm has 
also been used in a third test to obtain this parameter at
each step, as explained in section 2. The results
obtained are shown in Tables 2 and 3.

The method of uniform subdivision of space (rough 
method 1) is the one with the poorest results error-
wise, so it should not be used in practice.

The method of non-uniform subdivision of space 
(rough method 2) takes roughly twice as long as the
general method based on equation 5 for a given, fixed
integration step.

The general method with l obtained through
Richardson extrapolation algorithm is almost four 
times slower than the same method with l preset to a 
fixed value of 0.5, and about seven times slower with
the fixed value of 1. This is owed to the greater
number of calculations that need to be done in order to
obtain each integration step. This aspect is merely
circumstantial, though, owed to the necessity to 
compare the methods in this paper. In a real-life
problem with a variable index of refraction, the
adequate value of l is not usually known beforehand.
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Table 2. Rendering time (in seconds) for the 
four test scenes using the four different methods 

Scene
I

Scene
II

Scene
III

Scene
IV

Exact method 2.3 2.3 2.1 2.1
100 lay. 17.5 17.4 18.4 17.4
500 lay. 89.5 88.2 90.0 85.1

Rough
meth. 1

1000 lay. 183.1 199.0 180.6 170.5
Rough l=1 119.9 119.5 56.3 43.8
meth. 2     l=0.5 249.6 239.5 112.4 87.2
General l=1 59.2 59.2 28.2 22.0
method     l=0.5 118.7 118.1 56.3 43.4

Richardson 412.0 414.8 196.0 186.2

Table 3. Average error in the x coordinate of the 
pixels

Scene
I

Scene
II

Scene
III

Scene
IV

Exact method 0 0 0 0
100 lay. 4.7 5.4 4.9 4.6
500 lay. 1.7 2.1 1.7 1.4

Rough
meth. 1 

1000 lay. 1.2 1.9 1.1 0.9
Rough l=1 0.08 0.08 0.21 0.23
meth. 2     l=0.5 0.03 0.04 0.11 0.11
General l=1 0.10 0.13 0.13 0.13
method     l=0.5 0.07 0.03 0.06 0.07

Richardson 0.08 0.11 0.05 0.05

We must also emphasize that only the general 
method could be applied to a complex situation in 
which we had defined the index of refraction 
corresponding to a general inhomogeneous medium. 

4. Animation of sunsets 

As it has been stated before, the atmosphere is 
clearly an inhomogeneous medium. This is so because 
the density of the air is usually greater the closer to the 
earth. As the density of the air decreases with height, 
the index of refraction also decreases. We are going to 
depict here different situations that may arise due to 
differences in the index of refraction of the 
atmosphere. 

More precisely, we are going to model the 
distortions of the spherical shape of the sun during 
sunsets. We have generated animations of sunsets 
under certain distributions of the index of refraction of 
the atmosphere. Three different phenomena that may 
arise when watching a sunset are going to be depicted: 
the split sun, the flattened sun and the double sun [7]. 

To generate the animations for the sunsets, we have 
used astronomically precise dimensions. Our scene is 
made up of a black sphere of 6375 length units of 
radius representing the earth (here the units can be 
thought of as being kilometres). Another sphere of 
695000 units of radius represents the sun. The distance 
between the spheres is 150 million units. The observer 
is located at a small distance above the surface of the 
earth. We have also added several triangles over the 
surface of the earth to simulate irregularities over it. 

4.3.1. Split sun 

It is a curious phenomenon that may arise when 
there is a cold air layer near the earth and a warmer 
layer above it. The phenomenon of total reflection may 
take place when a ray passes from one medium to 
another with a smaller index of refraction with an 
adequate angle. In that situation there is no refracted 
ray, and the ray is reflected.

In Figure 1.a we have represented the earth and the 
layer of discontinuity, and we have traced three rays 
from the observer O. In Figure 1.b, we show the 
distribution of the index of refraction used. The index 
of refraction only depends on the distance from the 
point to the centre of the earth (radial coordinate). This 
distribution causes the split sun effect, with two 
portions of the sun separated by an empty strip located 
around the horizontal plane that passes through the 
observer. Figure 1.c shows several frames of the 
resulting simulation. In Figure 1.d a real picture of the 
effect can be seen. 

4.3.2. Flattened sun 

This is the most common case that appears in an 
atmosphere in which the index of refraction decreases 
with height, because the density of the air decreases as 
one moves away from the earth, and so the index of 
refraction decreases as well. As a result of this, the sun 
is not seen as a perfect circle, but appears rather 
flattened along the vertical axis. This happens because 
the rays become curved downwards, towards the areas 
with a greater index of refraction (see Figure 2.a). This 
causes a distortion of the image we receive from the 
sun. Moreover, the image of the sun appears higher 
than it should. Figure 2.b shows the distribution of the 
index of refraction for this scene, while Figure 2.c 
shows several frames of the results obtained. A real 
picture of the effect is shown in Figure 2.d. 
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4.3.3. Double sun 

This is the phenomenon that takes place when there 
is a very thin layer of warm air over the surface of the 
earth. In this case, the rays traced from the observer, 
that do not make contact with the ground are not 
affected by the warm layer. Therefore, the sun is 
perceived without distortion. However, the rays which 
do make contact with the warm layer become curved 
upwards. As a consequence, part of them intersect 
again with the sun, and as a result, we perceive a 
double image of the sun.  

The effect is explained in Figure 3.a. Figure 3.b 
shows the distribution of the index of refraction for 
this case. To add realism, we have also included a 
decrease of the index of refraction as a function of 
height. Figure 3.c shows several frames of the resulting 
animation while in Figure 3.d a real picture of the 
effect can be seen. The difference between the effect 
generated through curved ray tracing and the real one 
is owed to the thickness of the warm layer and the 
position of the sun relative to the observer. Different 
combinations of these two parameters yield different 
outputs based on the same double-sun effect. 

4.5. Implementation details

The values chosen for the indexes of refraction are 
not really important; only the relative difference 
between the values in all the points matters. That is, we 
could double or half the values in all the points to 
obtain the same results. Despite this, the values we 
have used are the values we can find in nature. It is 
also worth mentioning the fact that slow variations in 
the index of refraction require big scenes in order for 
the effects to be visible. 

As explained by Groeller [8], simulating the 
lighting through light sources would involve tracing a 
curved ray from the intersection with the geometry to 
the light source. Here, the colours have been obtained 
directly from real photos instead, as proposed in [8], 
which is a much simpler process. This decision is 
justified by the facts that the geometry of the scene is 
very simple, and there is no artificial or secondary light 
sources that would contribute to the lighting. 

The scenes have been generated using the T3E [12] 
computers of the Edinburgh Parallel Computing Centre 
(EPCC) of the University of Edinburgh. The T3E is 
composed of 256 Alpha EV 5.6 processors with 128 
Mb of memory and 900 Mflops of peak performance 
each one, although only a maximum of 64 processors 
can be used. 

Resorting to these powerful machines was 
essential, because the curved ray tracing discretizes the 
curves using straight stretches, and therefore it is 
necessary to make the intersection test of each stretch 
with the objects of the scene, generating much more 
calculations than a conventional ray tracer. As the 
scenes used are geometrically simple, we have not 
employed any acceleration method. For a general case, 
it would be necessary to use some acceleration 
technique to reduce the computational cost, like the 
method of space subdivision in voxels [8].  

The rendering times for the 200 frames of each of 
the sunset animations were 14.1 seconds for the split 
sun scene, 421.4 for the flattened sun scene (about 
seven minutes) and 4358.7 seconds for the double sun 
scene (about 72 minutes). In all these cases we used 32 
of the T3E's processors in parallel. Each frame had a 
size of 200 by 200 pixels. 

For the split sun scene we did not use the curved 
ray tracing, since the change of the index of refraction 
is discrete at the discontinuity between layers. We 
therefore made a custom program to generate the 
animation, therefore keeping rendering times low. The 
double sun scene took much longer because the 
integration steps obtained through the Richardson 
extrapolation algorithm were very small in the 
vicinities of the earth in order to correctly obtain the 
curvature of the ray.

The parallelization method used was based on the 
procedure called processor farm [13], which consists 
of a controller processor which assigns tasks to various 
worker processors as they finish the previous ones. 
Although the tasks in a ray tracer usually correspond to 
portions of the image, in our case, the tasks were 
defined to calculate entire frames, which is generally a 
better approach for animations. In the implementation 
we used the standard MPI [14], suitable for the 
construction of parallel programs on machines with 
distributed memory. 

5. Conclusions

In this paper, we have succeeded in displaying 
various natural phenomena that are impossible to 
generate using the traditional methods of straight ray 
tracing: distortions of the spherical shape of the sun 
during sunsets (split sun, flattened sun and double 
sun).

To achieve this, we have solved numerically, in an 
adequate way, the differential equation of the ray path 
in an inhomogeneous medium.  

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE 



  a     b    c

d
Figure 1.  a: representation of the split sun effect, b: distribution of the index of refraction, c: real picture of the

effect. d: several frames of the resulting animation

a     b    c

d
Figure 2. a: representation of the flattened sun effect, b: distribution of the index of refraction, c: real picture of the

effect, d: several frames of the resulting animation.

  a    b     c

d
Figure 3. a: representation of the double sun effect, b: distribution of the index of refraction, c: real picture of the

effect, d: several frames of the resulting animation.
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Our method is valid independently of the 
distribution of the index of refraction of the medium, 
overcoming the limitations imposed by previous 
methods. 

Finally, even though we have only worked on 
inhomogeneous atmospheres, our technique could be 
generalized, with the proper changes, to any non-
homogeneous medium. 

6. Future work 

All the scenes have been generated using fixed 
colours for the objects, obtained from photographic 
textures. A more adequate process for more complex 
scenes would be to trace curved rays from the light 
sources and then to trace them from the point of view. 
For each intersection point, we would calculate the 
shading using the information obtained in the first 
stage. Several approaches could be used that involve 
different global illumination techniques: some 
references can be found in [15], [16], [17], [18]. 

The method is also being applied to simulate other 
atmospheric phenomena such as the distortion of the 
line of horizon, mirages or the visual perturbations 
owed to turbulences in the air caused by fire. 
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