

Point Based Rendering of Implicit 4-Dimensional Surfaces

Ron J. Balsys, Kevin G. Suffern
Faculty of Business and Informatics, Central Queensland University,

Rockhampton M.C., Qld. 4702, Australia
Faculty of Information Technology, University of Technology Sydney,

P.O. Box 123, Broadway NSW 2007, Australia
balsys@cqu.edu.au, kevin@it.uts.edu.au

Abstract
We present a point based rendering algorithm that uses

hyper-cubes to perform spatial subdivision in a 4D volume.
A 4D function interval exclusion test is used to speed up the
rendering of 4D Implicit surfaces in this hyper-volume. A
4D orthonormal basis function is used to define a 4D cam-
era, which projects isometric or perspective views onto a
plane in 4D for viewing. The technique requires evalua-
tions of 4D implicit surface functions and gradients to ren-
der shaded images. The technique also allows for hidden
surface elimination using a z-buffer modified for use in a
4D space. We give examples of its use in rendering some
4D surfaces and discuss problems with the technique. The
algorithm can be generalised to higher dimensions.

Keywords—points, intervals, 16-tree, 4D implicit surfaces

1 Introduction
There is a large literature on 4D geometry, including the

classic books by Abbot [1], Manning [2], and Rucker [3].
A useful web site is hosted by the University of California
Irvine [4].

Because this paper is on the rendering of mathematical
surfaces in 4D, we cite here some of the relevant litera-
ture on this topic. First, there’s the book by Coxeter [5],
who developed a foundation for geometry in hyperspace.
Banchoff has produced a number of works on geometries
beyond 3D, including a classic text [6] and a full list of
his work can be found on his homepage [7]. Burton et al.
[8]-[10] was another early contributor to computer graph-
ics techniqiues for rendering in higher dimensional space.
A recent thesis by Hollasch [11] discusses ray tracing in
4D. Bhaniramka et al. [12] develop an algorithm based on
a marching cubes approach for rendering n-dimensional
surfaces. Their algorithm renders polygons in the sub-
hypercubes of hypercubes.

Relevant work that we have carried out for rendering
surfaces in 3D is as follows. Jones et al. [13] and Bal-

sys and Suffern [14] presented a point based algorithms for
rendering parametric and implicit surfaces and features on
surfaces. In common with other point based techniques,
in these works we render singular and non-manifold sur-
faces, and in [14] we render slabs parallel to the principle
planes, slabs located along a principal axis and rotated by
arbitrary steps, slabs of constant Gaussian and Mean curva-
tures and produce contour maps of surfaces redered using
point primitives.

Balsys et al. [15] presented a point based algorithm that
uses octree space subdivision with an interval exclusion
test to speed up rendering of implicitly defined surfaces
in <3. Interval arithmetic is discussed in [15]-[21]. Octree
adaptive subdivision prior to point sampling greatly speeds
up the rendering of implicit surfaces as the nodes converge
to the surface. The use of a natural interval exclusion test
for the function guarantees that no parts of the surface are
missed. This is also discussed in Stolte et al.[19], and
Stolte [20]. In Balsys [15] we also discuss criteria to gau-
rantee that each plotting node is smaller than its projected
image on the image plane so that complete surface cover-
age by points is assured in 3D.

If a parametric form for the 4D surface exits then para-
metric methods extended into 4D are a highly efficient
method of redering the 4D surface. However a number
of surfaces do not have a parametric representation and so
other forms of representation must be used. We present
here an algorithm for point rendering of shaded implicit
surfaces in 4D. An efficient algorithm for rendering a sur-
face would generate a point on the surface each time we
generate a sample point as discussed in Balsys et al. [15]
and here we modify our algorithms in [15] to work in 4D.

For implicit surfaces in <4 we replace the cubic node
decomposition used in octrees with a hypercube based
space subdivision scheme using a 16-tree. This is a tree
with 16 children per node. We use the natural interval ex-
tension of the surface in <4 to exclude from the render-
ing process, parts of the hypercube that do not contain the

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

surface. This means we only generate points in volumes
tightly clustered around the surface.

We use an orthonormal basis function to implement a
4D camera, and use the 4D surface function’s gradient
to shade points on the 4D surface. We illustrate our ap-
proach with a number of example surfaces and discuss the
strengths and weaknesses of our approach and compare
this approach to other existing approaches. We also show
how contours can be rendered as slabs in 4D. The algo-
rithms can be generalised to higher dimensions.

2 Point Based Rendering of Implicit Sur-
faces in 4D

An interval I = [a, b], a ≤ b is a set of real
numbers defined by [a, b] = {x | a ≤ x ≤ b}.
The natural interval extension of a rational function
f(x1, . . . xn) : <m → < denoted by F (X1, . . . Xn), is
obtained by replacing the xi’s by the intervalsXi and eval-
uating the resultant interval expressions according to the
rules of interval arithmetic. See Moore [17], Suffern and
Fackerell [16] and Synder [18]. We have implemented in-
terval arithmetic as a C + + class. Algorithm 1 details
the subdivision where the natural interval extension of the
function is used as the subdivision criteria for a hypercube
subdivision process.
Algorithm 1. Algorithm for adaptive subdivision of a
viewing volume in 4D with an interval exclusion test.

void SubDivide (int depth, double x1, double x2,
double x3, double x4, double d)

{
for (int j = 0; j ≤ 1; j++)

for (int k = 0; k ≤ 1; k++)
for (int l = 0; l ≤ 1; l++)

for (int m = 0; m ≤ 1; m++)
CreateNodes (depth+1, x1+j*d/2, x2+k*d/2,

x3+l*d/2, x4+m*d/2, d/2);
}

void CreateNodes(int depth, double x1, double x2,
double x3, double x4, double d)

{
int surfacePresent = SurfacePresent (f, x1, x2, x3, x4, d);
if (!surfacePresent)

; // Discard node if surface is not present
else {

if (depth == plotDepth) {
if (surfacePresent) {

RenderPointsInNode (f, x1, x2, x3, x4, d);
}

}
else

SubDivide (depth, x1, x2, x3, x4, d);

}
}

Algorithm 1 shows the details of the 16-tree subdivi-
sion, and how the interval extension of the function is used
to discard nodes that do not contain the surface. The al-
gorithm starts with a call to CreateNodes() with depth
set to the maximum plot depth, x1, x2, x3, and x4’s val-
ues are set to the centre of the root node in 4D space, and
d is the width of the root node.The centre and width de-
fine a hypercube that is used as the viewing volume and
the function Subdivide() divides this viewing volume into
16 sub-hypercubes (nodes) in 4D. Each node is checked
to see if it may contain a section of the surface by calling
the function SurfacePresent() which performs the inter-
val exclusion test. If it may contain the surface, the node
is recursively subdivided. The recursion proceeds down
to a fixed maximum depth in the tree. The efficiency of
this algorithm is due to the use of intervals to drive the
subdivision down to a depth where the sub-hypercubes are
tightly clustered around the neighbourhood of the surface.
This means points are generated in a thin shell around the
hyper-surface rather than throughout the solid 4D region.
In nodes that may contain the surface at the final depth we
use a point in the node to render the surface using a 4D
shading algorithm.
Algorithm 2. Algorithm that implements an interval ex-
clusion test. IntFunct has 4 spatial parameters. The
in interval() method tests if the real number 0.0 is in the
resultant interval. The interval test is readily extensible to
n-dimensions as indicated.

int SurfacePresent(functPtr intervalFunct, double x1,
double x2, double x3, double x4, double d)

{
interval A(x1-d/2, x1+d/2), B(x2-d/2, x2+d/2),

C(x3-d/2, x3+d/2), D(x4-d/2, x4+d/2);
interval intervalTemp = (*intervalFunct)(A, B, C, D);
if (intervalTemp.in interval(0.0))

return 1;
else

return 0;
}

Algorithm 2 shows the details of the function
SurfacePresent(). Here, the interval type is a C++
class that implements interval arithmetic and functions as
discussed in Moore [17]. Hansen [21] developed infinite
intervals as discussed in Suffern and Fackerell [16] and
we extend their use into 4D. For arbitrary (non algebraic)
mathematical functions, intervals can only provide an ex-
clusion test. Some inefficiency can result in the use of in-
tervals as false positives can be retuned where the surface

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

does not lie in the interval but the interval test still returns
0 as a member of the interval.

The camera system used is similar to the standard
OpenGL camera, but extended to higher dimensions. For
n-dimensional space we require n orthonormal basis vec-
tors to define a world to camera transformation system.
We start with a point, Pc, that specifies the camera po-
sition and another point, Pl, that specifies the look at
point. These two points define a basis vector, b1 in
n−dimensional space.

In 3D an arbitrary up vector is given to define the sense
of up along the camera to look at point vector. In 4D these
are referred to as ana and kata as first given by Hinton [22].
In higher dimensions n − 2 arbitrary vectors must also be
specified in such a way. These, together with the camera-
look vector, define n − 1 basis vectors. The final basis
vector can be determined as the outer product of vectors
b1,b2, . . .bi, see for example D’Zmura et al. [23].

In the 4D case we take the basis vector b1 and ar-
bitrarily define two other basis vectors b2(1, 0, 0, 0) and
b3(0, 1, 0, 0). The outer product of these 3 basis vectors
yields the fourth basis vector b4.

We can always obtain an isometric view of n-
dimensional objects by only plotting the first two dimen-
sions on the view plane. For perspective views we can
project from our 4D space onto a 2D plane (embedded in
the 4D space) as is done in 3D camera systems. This is
similar to the approach in Hollasch [11]. For perspective
projection we use the following

xtemp = V PD ∗ x1

x4

ytemp = V PD ∗ x2

x4

zeye = V PD ∗ x3

x4
(1)

This takes us to a surface in 3D space where the normal
3D to 2D perspective formula is used to find the eye coor-
dinates on the view plane as follows:

xeye = V PD ∗ xtemp
zeye

yeye = V PD ∗ ytemp
zeye

(2)

Here (xeye, yeye) is on the 4D view plane, based on the po-
sition of the point (x1, x2, x3, x4) in 4D, and the distance,
V PD, from the camera position to the 4D view plane.

We get special cases above due to the arbitrary choice of
the two up vectors (the Ana and Kata vectors) in our deriva-
tion of basis vectors. In 4D we get 16 such special cases
(rather than the 1 in 3D). These occur when the camera
and look at vector are aligned along any of the principle

4D axes, or the x1x2, x1x3, x1x4, x2x3, x2x4, x3x4 direc-
tions. These require us to modify the basis vectors we use
to define the orthonormal basis function, to include these
special cases.

For shading in 4D, we use the approach of Hanson and
Heng [24] who use the Phong [25] model

I = Iaka + Ii[kd(L ·N) + ks(N ·H)n] (3)

where L is the 4D light position, N is the 4D vector nor-
mal to the surface at the point, H is the half angle approxi-
mation, and the other terms are all constants as defined for
the 3D case.

Our shading primitive is a 4D point, and we can apply
the above Phong formula provided we can find the normal
to the surface at each point. To define a 4D normal we
require 3 orthonormal 4D basis vectors, or for implicit sur-
faces we can calculate the normal with the 4D gradient of
the function δ

δxi
f, i = 1..4. The inner product also gener-

alises to 4D.
For planar surfaces there may be a problem as there

are n − 2 orthonormal vectors normal to a 2D plane in
a n−dimensional space. In our 4D case these orthonor-
mal vectors define another 2D plane and an infinite numer
of vectors can be embedded in this plane, all of which are
normal to our original 2D plane. For example, the 4D hy-
percube has two axes normal to each 2D face of the 3D
faces of the hypercube. These two axes define a plane and
all vectors in that plane are normal to the 2D face and thus
a unique normal to the 2D face cannot be found. In our
work we use the term 2D face to refer to a 2D bounded
planar region in 4D space.

3 Surface Examples
We present here a number of surfaces to illustrate the

utility of point based rendering in 4D. The 4D ellipsoid is
given by the implicit equation

f(x1, x2, x3, x4) =
x2

1

a2
+
x2

2

b2
+
x2

3

c2
+
x2

4

d2
= 1. (4)

Figure 1 shows the 4D ellipsoid a = 3, b = 6, c =
9, d = 12 viewed from a number of directions. Note that
these views all appear like 3D ellipsoids. In Figure 6 we
render (x1, x2, x3, x4) contours on the ellipsoid and to aid
the visualisation of the 4D nature of the surface. Figure 2
shows the 4D implicit surface for the function

f(x1, x2, x3, x4) = x1 + x2
2 + x3

3 + x4
4 = 0. (5)

As a further example, the iso-potential surface defined
by a series of point charges in 4D is given by

f(x, y, z, t) =

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

n∑
j=1

qj
(x− xj)2 + (y − yj)2 + (z − zj)2 + (t− tj)2

−c = 0. (6)

Here, (xj , yj , zj , tj) is the location of the charge, with
charge value qj , and c is the value of the potential surface.

According to Schlafli [26] there are 6 regular Platonic
4D solids, which have from 5 to 600 vertices. Several peo-
ple have rendered these as wire frame images, for example
Smith [27] and Bourke [28]. We can use the above point
charges to illustrate the Platonic 4D solids by locating a 4D
point charge at each of the vertices of the 4D platonic solid.
In Figure 3 we illustrate the resultant surfaces.

Our method can also be used to view surfaces embed-
ded in 4-space. A classic example is the flat torus surface
given in Hanson and Heng [24] by the parametric formula
x1 = cosu, x2 = sinu, x3 = cos v, x4 = sin v. Here
we can generate points directly on the surface using the
parameters u and v and there is no need to do spatial sub-
division. Figure 4 shows various views of the 4D flat torus.
As an analytic formula for the normal to this surface can-
not be determined the torus is flat shaded. The problem in
determining the normal in this case is due to a dimension-
ality issue and is not due to an inability to determine an
unique normal as described previously for a plane. The flat
torus is not a true 4D surface as can be determined from the
formula used to define it. The x1, x2 parameters are only
dependant on u and independant of v and the reverse holds
for x3, x4. For a hypersurface in <4 there should also be
a relationship to a third parameter, say w, with at least one
of the parameters x1, x2, x3, x4.

We can also use this method to render non implicit sur-
faces in 4D such as the hypercube. Figure 5 (a) we show
the outlines of the edges of a hypercube and Figure 5 (b)
shows a view of the hypercube rendered with different
colours for each of the 2D faces, and with the edges of
the 2D faces rendered in black. To allow for shading of the
faces of the hypercube it is necessary to specify a unique
normal for each of the faces of the hypercube so they can
be independently shaded. This results in determining 24
normals unique to each face and is a tedious process.

4 Summary and Discussion
We have presented a new algorithm for rendering

shaded images of 4D implicit and parametric surfaces us-
ing 4D points as the rendering primitive. The implicit sur-
face algorithm is based on the recursive spatial subdivi-
sion of a hypercube driven by a 4D natural interval ex-
clusion test. This considerably speeds the rendering pro-
cess compared with rendering points throughout the view-
ing hypercube, because the plotting nodes make up only a
small fraction of the volume of this hypercube. In addition,
the interval test guarantees that no sections of the surface

in the hypercube are missed. Because 16 sub-hypercubes
are generated in each subdivision, the algorithm is fairly
slow. However use of high plot depth results in high res-
olution images. This approach is generalisable to higher
dimensions. Affine arithmetic, see for example Stolfi and
de Figueiredo [29], may be used instead of interval arith-
metic as this generally has a tighter bound on the function
in a plotting node, at a slighter higher numerical cost.

The technique described here has a number of advan-
tages and disadvantages compared to the marching cube
polygonisation discussed in Bhaniramka et al. [12]. As
a high subdivision depth and a large number of points
are needed to completely cover the surface (without using
splatting) this approach is slower than that for polygoni-
sation. An advantage however is that it can render non-
manifold features of surfaces (such as cusps, ridges and
curves of self-intersection) that are difficult or cannot be
rendered with polygonisation approaches. The speed of
performance is probably similar to that achieve in ray trac-
ing 4D surfaces as given in Hollasch [11] but this has not
been verified. An advantage over the ray tracing approach
of Hollasch [11] is that the ray-surface intersections do not
need to be calculated, as a rendered point in the plotting
node results from node convergence based on interval anal-
ysis. This means that surfaces for which the ray-surface in-
tersection equation cannot be solved can still be rendered
by this approach.

The algorithm can also be used to render contours on
the 4D surface to aid their visualisation, if we can find
an expression for ∇f for the surface. In 4D, ∇f =
fxi+fyj+fzk+fwl. We show this in Figure 6 for the 4D
ellipsoid surface where we render slabs of constant thick-
ness on the 4D ellipsoid. To maintain the slab thickness
we modified the formula given in Balsys and Suffern [14]
to work in 4D. As this is straight forward we do not give
details here.

A number of applications for rendering n-dimensional
data are described in the literature. In Bhaniramka et al.
[12] morphing between two 3D solid endpoints is achieved
via a rotation in 4D. Also in that work the surface of a par-
ticular hydrogen orbital is rendered. D’Zmura et al. [30]
developed a novel interface for animations based on the
idea of a space-time diagram. In this paper the various
frames of a 3D animation give coordinates for x1, x2, x3,
with the time axis used for x4. This results in a 4D surface.
Interaction with the surface allows for individual frames to
be chosen. The space-time diagram allows for the spread
of data in the animation to be visualised.

Another application for n-dimensional surface render-
ing is in data mining and visualisation. Conventionally,
only 3 dependant variables can be simultaneously ren-
dered. With the ability to show surfaces whose shapes de-

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

pend on more than 3 dependant variables (as is done in this
work), exploration of multi-dimensional variation can be
achieved. An example is the work of Miller and Gavosto
[31].

5 Future Work
A number of issues need attention in this work. The

main issue is the speed with which rendering takes place.
Rendering times for 4D objects are much longer than that
of equivalent 3D objects (for example 3D ellipsoid versus
4D ellipsoid). As this approach is esentially a point sam-
pling approach it will be subject to aliasing issues and these
need to be addressed.

Our algorithm can be used to generate a point cloud
which is then used as input to a splatting algorithm. Pfister
et al. [32] introduced the concept of the surface element or
surfel, developed algorithms to render geometries based
on these elements, and used surface splatting for visibilty
testing. Similarly, Rusinkiewicz and Levoy [33] developed
an algorithm that speeds up rendering of point based ob-
jects based on splatting. Zwicker et al. [34] used the el-
lipitical weighted average filter, EWA, of Heckbert [35],
to avoid aliasing problems with textures when using splat-
ting to render point clouds. The algorithms in this work
can be used to generate a sparse point cloud data set which
is then rendered using splatting based approaches with all
the benefits and limitations of the splatting approach.

One aspect of the work we must consider is how we
should go about the visualisation of higher dimension ob-
jects. It is apparent that changing the camera view of the
object results in a different cross-sectional shape for the
image on the view plane. This is not an error in the dis-
play system, but rather this is the nature of the objects we
are viewing. Our camera system can do fly a-rounds of the
object. These images can be made into movies and the re-
sultant change in image shape over time can be used to help
shape the minds image of the surface. This has been done,
for example, by Hanson and Heng [36]. We can also view
stereo pairs of the surface. We do this by defining two 4D
lines defining our left and right eye camera views which
have an angle of separation of 2o - 4o. This is illustrated in
Figure 7 for the ellipsoid surface.

6 Acknowledgment
The authors wish to acknowledge the support given for

this work by their respective universities.

References
[1] Abbott, E.A, 1884. Flatland: A Romance of Many

Dimensions, New American Library.

[2] Manning, H.P., 1910. The Fourth Dimension
Simply Explained: A Collection of Essays Se-
lected From Those Submitted in the Scientific

American’s Prize Competition available at:
etext.lib.virginia.edu/toc/modeng/public/ManFour.html

[3] Rucker, Rudolf, 1977. Geometry, relativity and the
fourth dimension, New York Dover Pub.

[4] UC Irvine Virtual Reality lab 2004.
The 4D Web Page, Available at:
cvr.uci.edu/dzmura/4D/default.htm

[5] Coxeter, H.S.M., 1973. Regular Polytopes, 3rd Ed,
New York Dover Pub.

[6] Banchoff, Thomas F. 1990. Beyond the third di-
mension. Geometry, computer graphics and higher
dimensions. Scientific American Library Series. Sci-
entific American Library, New York.

[7] Banchoff, Thomas F. Available at:
math.brown.edu/h̃owison/newbanchoff/publications/

[8] Carey, S.A., Burton, R.P., and Campbell, D.M., 1987.
Shades of a Higher Dimension, Computer Graphics
World, X, 10, pp. 93-94.

[9] Donald B. Curtis, D.B., Burton, R.P., and Campbell,
D.M., 1987. An Alternative to Cartesian Graphics,
Computer Graphics World, X, 6, pp. 95-98.

[10] Steiner, K.V., and Burton, R.P., 1987. Hidden Volume
Removal in Four Dimensions, Computer Graphics
World, X, 2, pp. 71-74.

[11] Hollasch, S.R. 1991. Four-Space Visualisation of 4D
Objects, Available at: stevehollasch.com/thesis/

[12] Bhaniramka, P., Wenger, R., Crawfis, R., 2004. Iso-
surface Construction in Any Dimension Using Con-
vex Hulls, IEEE Visualization & Computer Graphics,
10:2, pgs 130–141.

[13] Jones, H., Balsys, R.J., Suffern, K.G. 2003. Point
Based Rendering of Surfaces With Singularities.
ACM/GRAPHITE2003, 11-14 February 2003, Mel-
bourne, Australia.

[14] Balsys, R.J., Suffern, K.G., 2004. Point Based
Rendering of Non-Manifold Surfaces With Contours.
ACM/Graphite 2004, 15-19 June, Singapore. pp. 1–8.

[15] Balsys, R.J., Suffern, K.G., Jones, H., 2007. Point
Based Rendering of Non-Manifold Surfaces. Com-
puter Graphics Forum, Dec. 2007.

[16] Suffern, K.G., and Fackerell, E.D. 1991. Inter-
val methods in computer graphics. Computers and
Graphics, 15:331–40.

[17] Moore, R.E. 1966. Interval analysis. Prentice-Hall,
Englewood Cliffs, NJ.

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

[18] Synder, J.M. 1992. Generative modelling for com-
puter graphics and CAD. Academic Press, Boston,
MA.

[19] Stolte, N., Kaufman, A. Parallel Spatial Enumera-
tion of Implicit Surfaces using Interval Arithmetic for
Octree Generation and its direct Visualization. In Im-
plicit Surfaces’98, 81-87, Seattle, 1998.

[20] Stolte, N. Graphics using Implicit Surfaces with In-
terval Arithmetic based Recursive Voxelization in
Computer Graphics and Imaging CGIM 2003, 398-
024, Honolulu, 2003.

[21] Hansen, E.R. 1980. Global optimisation using inter-
val analysis the multidimensional case. Numerische
Mathematik, 34:247270.

[22] Hinton, C.H. 1884. Speculations on the Fourth Di-
mension, Selected Writings of Charles H. Hinton,
Copyright 1980 by Dover Publications, Inc.

[23] D’Zmura, M., Colantoni, P., Seyranian, G., 2001. Vir-
tual environments with four or more spatial dimen-
sions. Presence 9, pp. 616–631.

[24] Hanson, A.J., Heng, P.A., 1992. Illuminating the
fourth dimension, IEEE Computer Graphics and Ap-
plications, 12:4, pp. 54–62.

[25] Phong, B.T., 1975. Illumination for Computer Gen-
erated Pictures, Graphics and Image Processing, Vol.
18, No. 6, pp. 311–317.

[26] Schlafli, L. 1901. Theorie der vielfachen Konti-
nuitat, Auftrage der Denkschriften-Kommission der
Schweizer naturforschender Gesellschaft, Zurcher &
Furrer.

[27] Smith, T., 2005. Available at: valdostamu-
seum.org/hamsmith/24anime.html

[28] Bourke, P., 2005. Available at: astron-
omy.swin.edu.au/ pbourke/polyhedra/platonic4d/

[29] D’Zmura, M., Colantoni, P., Seyranian, G., 2000. Vi-
sualisation of events from arbitrary spacetime per-
spectives. In Erbacher, R.F., Chen, P.C., Roberts,
J.C. and Wittenbrink, C.M. (Eds.) Visual Data Ex-
ploration and Analysis, VII 3860, pp. 35–40.

[30] Miller, J.R., Gavosto, A.G., 2004. The Immersive
Visualization Probe for Exploring n-Dimensional
Spaces. , IEEE Computer Graphics and Applications,
24:1, pp. 76–85.

[31] Pfister, H., Zwicker, M., VanBaar, J., and Gross, M.
2000. Surfels: Surface elements as rendering prima-
tives. In SIGGRAPH 2000, 335–342.

[32] Rusinkiewicz, S., Levoy, M. 2000. QSplat: A mul-
tiresolution point rendering system for large meshes.
In SIGGRAPH 2000, 343–352.

[33] Zwicker, M., Pfister, H., Van Baar, J., Gross, M.
2001. Surface splatting In SIGGRAPH 2001, 371–
378.

[34] Comba, J. L. D. and Stolfi, J. 1993. Affine arithmetic
and its applications to computer graphics, Proc. SIB-
GRAPI’93 VI Simpsio Brasileiro de Computao Gr-
fica e Processamento de Imagens (Recife, BR), 9-18.

[35] Heckbert, P. 1989. Fundementals of texture mapping
and image warping. Master’s thesis, University of
California at Berkeley, Dept. of Elec. Eng. and Com-
puter Science

[36] Hanson, A.J., and Heng, P.A. 1992. Foursight. Sig-
graph Video Review, 85(11), 4:30 minute.

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

(a) (b)

(c) (d)

Figure 1: The 4D ellipsoid surface with a=3, b = 6, c = 9 and d = 12. The distance from the camera to the centre of the
ellipse is the same in all these figures. (a) viewed along x1 axis, (b) viewed along x2 axis, (c) viewed along x3 axis and (d)
viewed along x4 axis.

(a) (b)

Figure 2: The implicit surface given by f(x1, x2, x3, x4) = x1 + x2
2 + x3

3 + x4
4 = 0. Viewed along the (a) x1 and (b) x3

axes.

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

(a) (b)

(c) (d)

(e) (f)

Figure 3: Equipotential surfaces defined by 4D Platonic solids. (a) 4D simplex with 5 charges, (b) surface with 8 charges,
(c) surfaces with 16 charges, (d) Surface with 24 charges, (e) surface with 120 charges, (f) surface with 600 charges.

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

(a) (b)

Figure 4: The 4D parametric torus surface.(a) complete surface showing line of discontinuity on surface, (b) clipped 0 <
u < π and 0 < v < 2π to show u, v contours on the inside and outside of the surface.

(a) (b)

Figure 5: (a) Outline of hypercube. Red lines have x1 = 0, Black lines have x4 = 0. Green lines connect Red to Black
vertices. (b) View of the hypercube with each face shaded a different colour.

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

(a) (b)

Figure 6: (a) 4D sphere and (b) the 4D ellipsoid surface with a=3, b = 6, c = 9 and d = 12. Both surfaces are rendered with
contours along the x1, x2, x3 and x4 axes viewed from the (x1, x2, x3, x4) direction.

Figure 7: Stereo pair of the 4D ellipsoid surface rendered with contour lines on the surface.

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00 © 2007

