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Abstract

In this paper, we describe a generalized approach to
deriving a custom data layout in multiple memory banks
for array-based computations, to facilitate high-bandwidth
parallel memory accesses in modern architectures where
multiple memory banks can simultaneously feed one or
more functional units. We do not use a fixed data layout,
but rather select application-specific layouts according to
access patterns in the code. A unique feature of this ap-
proach is its flexibility in the presence of code reordering
transformations, such as the loop nest transformations com-
monly applied to array-based computations. We have im-
plemented this algorithm in the DEFACTO system, a de-
sign environment for automatically mapping C programs
to hardware implementations for FPGA-based systems. We
present experimental results for five multimedia kernels that
demonstrate the benefits of this approach. Our results show
that custom data layout yields results as good as, or better
than, naive or fixed cyclic layouts, and is significantly bet-
ter for certain access patterns and in the presence of code
reordering transformations. When used in conjunction with
unrolling loops in a nest to expose instruction-level paral-
lelism, we observe greater than a 75% reduction in the num-
ber of memory access cycles and speedups ranging from
3.96 to 46.7 for 8 memories, as compared to using a sin-
gle memory with no unrolling.

1. Introduction

The performance gap between processor and memory
speeds [23] has inspired numerous strategies over the last
several years to increase memory bandwidth. For example,
there is a recent trend toward tightly coupling multiple inde-
pendent memories or memory banks with one or more func-
tional units, so that multiple independent memory accesses
occur in parallel. This approach is being used at all system
scales and for a variety of architectural platforms, from Blue
Gene L at the high end, to a number of recent systems-on-
a-chip research platforms, including MIT’s Raw [3], UT’s

TRIPS [1] and Stanford’s Smart Memories [13], as well as a
growing number of commercially available embedded pro-
cessors, such as Motorola DSP56000 series, NEC 77016,
SONY pDSP, Analog Devices ADSP-210x, Starcore SC140
processor core, and FPGA-based computing platforms from
Annapolis Systems and others.

¿From a software perspective, these architectures in-
creasingly expose data storage and data movement to soft-
ware control, enabling intelligent compilers or heroic appli-
cation developers to simultaneously organize data and com-
putation so that the full memory bandwidth of the architec-
ture is exploited.

There are a number of techniques being developed to
increase the likelihood that nearby memory accesses will
be to independent memories, thus enabling parallel mem-
ory accesses. Most compiler solutions assume a fixed data
layout in memory, usually standard row or column major,
and transform the code to access memory in parallel when-
ever possible. A number of techniques examine the low-
level output of the compiler and, given a fixed mapping of
data to memory, reorder individual accesses and operations
to increase memory parallelism [24]. Most closely related
to our work is what is done for array-based computations in
the Raw compiler [4], where data layouts are in modulo un-
rolling order, a fixed layout, cyclic across multiple memory
banks in the most quickly varying dimension of the array.
The Raw compiler combines loop unrolling with renaming
accesses and offsets to derive optimized code.

In this paper, we propose an alternative approach
whereby we derive a custom data layout in memory in
an application-specific way, according to the access pat-
terns in a loop nest computation. Our approach is more flex-
ible than techniques that assume a fixed data layout. This
difference is particularly important when used in conjunc-
tion with code reordering transformations, such as loop nest
transformations commonly performed on array-based com-
putations. Our compiler has more degrees of freedom in
transforming code, and can thus preserve memory par-
allelism while accomplishing other optimization goals.
For data structures with different access patterns in dif-
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ferent portions of the code, the compiler can choose
between reducing memory parallelism within each com-
putation, or reorganizing the data between computations,
depending on what is more profitable.

Our approach has been fully automated in the DEFACTO
compiler [20], a Design Environment For Adaptive Com-
puting TechnOlogy, which integrates compilation and be-
havioral synthesis to automatically map computations ex-
pressed in C to field programmable gate array (FPGA)
based computing platforms. The target architectures do not
have data or instruction cache, but have multiple external
memories feeding a single FPGA in parallel; internal to the
FPGA, significant instruction-level parallelism is exploited
on the computation. Thus, although this is a novel com-
puting platform, it nevertheless shares commonalities with
more conventional ones in which either multiple memories
feed a single or multiple functional units in parallel.

A previous paper motivated the need for this approach,
and presented a high level overview of the algorithm [21].
In this paper, we present a detailed algorithm that derives a
custom mapping in memory directly from the subscript ex-
pressions, so that the array is mapped to memory according
to access patterns in the code. We also describe how to reor-
ganize the data in memory from the standard layout in a sin-
gle memory to the custom layout in multiple memories. We
provide proofs of correctness of the approach. We present a
comprehensive set of performance results, derived automat-
ically by our compiler for five multimedia kernels.

The organization of the paper is the following. The next
section describes an example to motivate the approach. Sec-
tion 3 presents the the overview of the custom data lay-
out algorithm. Section 4 describes the analyses and trans-
formations to identify the parallel memory accesses in vir-
tual memories and how we reorganize array data from/to a
naı̈ve layout in a single memory to/from a custom layout in
multiple memories. Section 5 describes how to map virtual
memories to a limited number of physical memories. Sec-
tion 6 presents a set of experimental results derived auto-
matically by our compiler. We survey related work in Sec-
tion 7. In Section 8 we present some preliminary conclu-
sions and future work.

2. Motivation

We illustrate the difference among several different data
layouts using the example code in Figure 1(a). At the com-
piler level, the standard approach is to view data as being
mapped to a single memory. We refer to this as a naı̈ve data
layout. Figure 1(b) shows the code after we unroll loops i
and j by one (equivalent to an unroll factor of two) and jam
the copies of the loop j. Figure 2(a) depicts a possible naı̈ve
layout for the transformed code shown in Figure 1(b). The
entire array A and the entire array B are mapped into mem-

int A[32][16]; int B[32][16];
for (i = 0; i < 32; i++)

for (j = 0; j < 16; j++)
A[i][j] = B[i][j] + 1;

(a) Original code

for (i = 0; i < 32; i+=2)
for (j = 0; j < 16; j+=2) {
A[i][j] = B[i][j] + 1;
A[i][j+1] = B[i][j+1] + 1;
A[i+1][j] = B[i+1][j] + 1;
A[i+1][j+1] = B[i+1][j+1] + 1;

}
(b) After unroll-and-jam

for (i = 0; i < 16; i++)
for (j = 0; j < 8; j++) {
A00[i][j] = B00[i][j] + 1;
A01[i][j] = B01[i][j] + 1;
A10[i][j] = B10[i][j] + 1;
A11[i][j] = B11[i][j] + 1;
}

(c) Final code

Figure 1. An example of custom data layout.

ory M0. Even though the code is transformed to execute
four loop iterations in parallel, it will execute serially due
to memory stalls. Additionally, other memories will be idle
while the computation stalls for data.

Modulo unrolling involves unrolling a loop in the nest
that accesses the lowest order dimension of an array so that
the accesses in an unrolled loop body are to statically fixed
memory banks. Figure 2(b) shows the modulo unrolling lay-
out for the code in Figure 1(b). This layout scheme dis-
tributes across four memories in a cyclic fashion the ele-
ments of array A and B along the second array dimension,
which is the fastest changing dimension in the loop nest.
The code in Figure 1(b) now can fetch two elements of ar-
ray B at a time. Two memory banks are still idle while the
computation stalls for the other two array elements. It is
only if the j loop were unrolled by four, that modulo un-
rolling would fetch all four elements of B at the same time
and thus take advantage of the available parallelism in the
system.

Figure 2(c) illustrates the custom data layout for the code
in Figure 1(b). Custom data layout distributes arrays A and
B across four memories according to the particular data ac-
cess pattern in the kernel. As such, we reduce the possibility
of computation stall due to memory accesses. It distributes
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(a) Naı̈ve data layout.
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(b) Modulo unrolling.
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(c) Custom data layout.

Figure 2. Comparison of three data layouts.

the four array elements, B[i][j], B[i][j+1], B[i+1][j], and
B[i+1][j+1], accessed in the unrolled loop body. Since all
four memory elements required by the loop body are placed
in separate memory banks, no memory will be idle, thus
achieving better use of the machine’s memory to computa-
tion bandwidth. The four statements in the loop body can
now execute in parallel since there are no data dependences
among them and each of the array references is accessing a
different memory bank.

This example illustrates an advantage of using a custom
data layout as opposed to a fixed layout such as the cyclic
one used by modulo unrolling. A compiler might want to
apply iteration-space reordering and code reordering trans-
formations that conflict with the modulo unrolling transfor-
mation, thus impacting memory parallelism. For example,
the DEFACTO compiler uses unroll-and-jam to increase
both memory parallelism and instruction-level parallelism.
Unrolling outer loops provides additional opportunities for
memory parallelism which can not be exploited by mod-
ulo unrolling. Further a custom layout gives the compiler

1. Normalize the step size of each loop to have a unit
stride.

2. Virtual mapping for each array; i.e.,

(a) Analyze the data access pattern from the sub-
script expression in each array dimension of each
array reference; i.e., a stride and an offset.

(b) Partition array references such that accesses to
independent array elements belong to separate
partitions. In each partition, we reanalyze the
data access patterns of references.

(c) Map each partition to a separate virtual memory,
and rewrite array references to represent the ac-
cesses to different virtual memories by combin-
ing the results of rewriting each dimension.

(d) Where needed, insert code to copy data to/from
naı̈ve layout in one memory from/to a custom
data layout across multiple memories.

3. Physical mapping: based on the access orders of the
arrays accessed in a particular loop nest, and taking
memory operation scheduling scheme into account,
bind virtual memories to physical memories.

Figure 3. Steps of custom data layout.

more freedom to accomplish other optimization goals with-
out impacting memory parallelism.

3. Overview

Custom data layout increases the parallel array accesses
across multiple memories using a three-phase algorithm, in-
dependent of other common loop transformations. Figure 3
provides an outline of the custom data layout algorithm. The
first step is normalizing the step size, which involves replac-
ing all the instances of the loop index variable l with s × l,
where s is the step size of loop l. Loop normalization is al-
ways legal.

In the second step, virtual mapping, we divide a set of ar-
ray references into partitions that access independent array
elements, and map each partition to a separate virtual mem-
ory. This mapping is a one-to-one mapping between the
original array indices and new array indices in virtual mem-
ories, based on array access pattern information. We first an-
alyze the data access pattern (stride and offset) of each indi-
vidual array reference. Since the data access patterns of dif-
ferent array dimensions are orthogonal, each dimension can
be treated independently. Assuming arrays accessed within
their bounds, if two array references access mutually exclu-
sive array indices in at least one dimension, they access in-
dependent array elements. In this case, we put them in sep-
arate partitions. Otherwise, we put them in the same parti-
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tion, and derive a single unified data layout for them based
on their common data access pattern1. To maximize the op-
portunities of parallel memory accesses, we create as many
partitions as possible. The compiler rewrites each array ref-
erence so that the transformed subscript expression takes
into account both the data element’s virtual memory assign-
ment and position within the newly formed array in the vir-
tual memory. Based on the data access patterns of the code,
we insert array distribution/gathering code to/from multiple
memories.

In the third step, physical mapping, the compiler binds
virtual memory to physical memory, taking into account
memory access conflicts based on the array access order in
the program, to exploit both memory access and instruction-
level parallelism.

The algorithm in Figure 3 is most effective in the affine
domain, but it can handle some non-affine array subscript
expressions. For simplicity of presentation, the bulk of this
paper assumes all dimensions are affine, but non-affine ref-
erences are briefly described in Section 4.4. In the remain-
der of this paper, Mp refers to the total number of physi-
cal memories available in the system, and Mv the number
of virtual memories to which the arrays in a specific parti-
tion will be mapped. The next section describes step 2 in
Figure 3. Step 3 is discussed in Section 5.

4. Virtual Mapping

In this section, we present how we derive a virtual map-
ping for each array as outlined in Step 2 of the algorithm in
Figure 3.

4.1. Analyzing Data Access Patterns

For each array reference, we analyze the data access pat-
tern of each array dimension independently. We first trans-
form array subscript expressions into a canonical form by
performing constant propagation, constant folding, and al-
gebraic simplification; i.e., A[a1L1+ · · ·+anLn+b]. We de-
note an affine array subscript expression in each array di-
mension as a Single Index Variable (SIV)2 subscript expres-
sion if there is only one non-zero coefficient. If there is more
than one non-zero coefficient in the array subscript expres-
sion, it is a Multiple Index Variable (MIV) subscript expres-
sion. If all the coefficients are zero, it is a Zero Index Vari-
able (ZIV) subscript expression.

1 A possible exception to step 2(b) is read-only arrays such that their ar-
ray references access common array elements. They can be replicated
to multiple memory banks if deemed cost effective. If replication is
used, renaming need not modify the subscript expressions.

2 In this paper, ZIV, SIV and MIV refer respectively to zero, single, and
multiple index variable subscript expression for brevity.

Basically, we identify two things from the affine sub-
script expression in each dimension of each array reference:
a stride and an offset. An offset is simply the constant term
b of the canonical array subscript expression. In the case of
MIV, the subscript expression may access array elements
with different strides on different loops; i.e., the stride on
each loop Li is ai. We define a stride si for a particular ar-
ray dimension i of a particular canonical array subscript ex-
pression as the greatest common stride among all n loops;
i.e.,

si =




0, if ZIV;
ai, if SIV;
GCD(ai

1, · · · , ai
n), if MIV.

(1)

Custom data layout attempts to map to memory only
those array elements that are accessed by the code. Thus,
some elements may be omitted, such as in strided accesses,
or accesses where the subscript for one or more dimensions
is held constant. For example, the stride and the offset of ar-
ray reference A[2i+4j+1] are 2 and 1, respectively. We map
only the odd array elements starting from array index 1.

4.2. Partitioning Array References

When two array references access mutually exclusive ar-
ray elements, and thus there is no data dependence between
them, we can put them in separate partitions. For example,
consider array references A[4i], A[4i+1], and A[2i]. A[4i]
accesses a subset of array elements accessed by A[2i], but
A[4i+1] accesses independent array elements. So, we de-
rive a unified data layout for A[4i] and A[2i], and a sepa-
rate data layout for A[4i+1]. The following theorem proves
a key property used by the partitioning algorithm.

THEOREM 1 Two m-dimensional array references A and
A′ access independent locations, and can be placed in sep-
arate partitions if the following condition holds:{
b′i �= bi, if both s and s′ are zero;
b′i mod GCD(si, s

′
i) �= bi mod GCD(si, s

′
i), otherwise.

(2)

where si and s′i are the strides, and bi and b′i are the off-
sets associated with two array references A and A′ for each
array dimension i.

PROOF. When both array references are ZIV in dimension
i, they access independent array elements if their constant
indices are different; i.e., b′i �= bi.

Otherwise, GCD(si, s′
i) represents the greatest common

stride of array indices that may be accessed by both A and
A′ on dimension i3. We prove Equation 2 by contradic-
tion. Let two array references access the same array index
in a particular array dimension in two different iterations
li and l′i of each loop Li; i.e., a1l1 + · · · + anln + b =

3 If either of two array references is ZIV, GCD(si,0)=si.
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a′
1l

′
1 + · · · + a′

nl′n + b′.
Rearranging terms, a′

1l
′
1 + · · ·+a′

nl′n−a1l1−· · ·−anln =
b − b′.
Let s = GCD(a1, · · · , an, a′

1, · · · , a′
n).

If we divide both sides by s, (a′
1l

′
1 + · · · + a′

nl′n − a1l1 −
· · · − anln)/s = (b − b′)/s.
The left hand side is an integer, since all terms are inte-
gers, and s is the common factor of a1, · · · , an, a′

1 · · · , a′
n.

For the right hand side to be an integer, s must divide b− b′.
Thus, (b − b′) mod s = 0 ⇔ b mod s = b′ mod s. �

The partitioning algorithm uses Equation 2 for each ar-
ray dimension to divide array references into partitions. We
define a common stride si for dimension i across k array ref-
erences as follows:

si = GCD(s1
i , · · · , sk

i ) (3)

The algorithm for partitioning the array references in
a loop nest is shown in Figure 4. Initially, all array ref-
erences belong to a single partition, Set. Then, procedure
Partition separates array references into different parti-
tions whenever it can prove they are accessing independent
array elements using Equation 2. In a specific array dimen-
sion i, array references within a partition are recursively par-
titioned according to Equation 2 until no further partition-
ing is possible. The recursive function SubPartition
derives a set of Pmax possible subpartitions (some are
empty). If all references are mapped to the same subparti-
tion, then that dimenion’s references cannot be partitioned,
so the algorithm returns the result of partitioning the next
dimension. Otherwise, it attempts to further partition a sub-
partition according to the current dimension.

For example, consider Set = {A[2i], A[4i+3], A[8i+1],
A[8i+5]}. The common stride GCD(2, 4, 8, 8) is 2. Accord-
ing to the condition in Equation 2, Set is divided into two
partitions {A[2i]} and {A[4i+3], A[8i+1], A[8i+5]}. The
second partition is further partitioned into two subpartitions
{A[4i+3]} and {A[8i+1], A[8i+5]}, since GCD(4, 8, 8) = 4
and (3 mod 4) �= (1 mod 4) = (5 mod 4). Further, the second
subpartition is divided into two subpartitions {A[8i+1]} and
{A[8i+5]}. Therefore, all four references in Set access com-
pletely independent array elements, and are mapped to sep-
arate virtual memories.

4.3. Array Renaming

Once all m array dimensions are partitioned, the next
step of virtual mapping is to map each partition to a dis-
tinct virtual memory independently. We rewrite array refer-
ences in a partition P to represent accesses to the same vir-
tual memory. To rename each array reference and to form
the new subscript expression within a partition, we must de-
rive the following three components for each array dimen-
sion:

Procedure Partition(Set)
Set: a set of references to an array
m: number of dimensions of array
Q: a set of partitions; i.e., {P}

Q = Subpartition(Set, 1, m); /* set of subpartitions of Set */
return Q

Procedure Subpartition(P, i, m)
P: a set of k references to an array
Q: a set of partitions; i.e., {P}
i: array dimension to be partitioned
m: total number of dimensions of array
A: an array reference in P

B[a1
1L1 + · · · + a1

nLn + b1] · · · [am
1 L1 + · · · + am

n Ln + bm]

sj
i : a stride on array dimension i of array reference j, where

1 ≤ j ≤ k
Pmax : maximum number of subpartitions for P in dimension i

k = |P |; /* cardinality of set P */
if (i > m or k = 1) return P

si = GCD(s1
i , · · · , sk

i ); /* common stride for k references */

if (si = 0) Pmax = max(b1
i , · · · , bk

i )
else Pmax = si

for j = 1, Pmax
/* create Pmax empty subpartitions */Pj = ∅

for each A ∈ P {
if (si = 0) insert A into Pbi

else insert A into P(bi mod si)

}
Q = ∅
for j = 1, Pmax {

if (Pj �= ∅ and Pj �= P )
Q = Q ∪ Subpartition(Pj , i, m)

}
if (Q = ∅) Q = Subpartition(P, i + 1, m)
if (Q = ∅) Q = P /* unable to derive subpartitions */
return Q /* a set of subpartitions */

Figure 4. Array partitioning algorithm.

1. suffix, to be concatenated to the original ar-
ray name, designating the virtual memory to which
this reference is mapped; and

2. offset, to be added to the loop index variables with
non-zero coefficients in the subscript expressions, des-
ignating the offset within the virtual memory; and

3. coeff, a new coefficient to represent the stride of ac-
cesses in the corresponding loop after the custom lay-
out.

We derive these components using the common stride using
the common stride in Equation 3 within a partition and the
offset b of each array reference.
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In this section, we first describe array renaming for one-
dimensional arrays. Then, we extend the approach to multi-
dimensional arrays.

4.3.1. Single Dimension A specific one-dimensional ar-
ray reference with ZIV, SIV, or MIV in a partition is rewrit-
ten as follows:

ZIV: A[b] ⇒ A • suffix[offset]
SIV: A[aL + b] ⇒ A • suffix[coeffL + offset]
MIV: A[a1L1+ · · ·+anLn+b]
⇒ A • suffix[coeff1L1+ · · ·+coeffnLn+offset]

The new array name A•suffix uniquely identifies a par-
tition and its corresponding virtual memory. The new sub-
script expression represents locations within the virtual
memory.

We derive suffix, offset, and coeff for a spe-
cific array reference as follows:

suffix =
{

b, if s = 0;
b mod s, otherwise.

(4)

offset =
{

b, if s = 0;
�b/s�, otherwise.

(5)

coeffi =
{

ai, if s = 0;
ai/s, otherwise.

(6)

In Equation 4, (b mod s) ensures that array references that
access the common array indices are mapped to the same
virtual memory.4 In Equation 5, b is divided by stride s be-
cause s is the unit of mapping to a virtual memory. A coef-
ficient of each loop variable is divided by s in Equation 6 to
represent the stride on each loop after virtual mapping.

Theorems 2 and 3 below prove that Equations 4, 5,
and 6 ensure a one-to-one mapping between the original
array indices accessed by two different array references
A[a1L1+ · · ·+anLn+b] and A[a′

1L1 + · · ·+a′
nLn+b′] and

the array indices in the virtual memories after virtual map-
ping. In the case of a s=0 where the partition consists of
ZIVs only, the proof of one-to-one mapping is trivial. We
also omit the proof for SIV, since SIV is a special case
of MIV. For this discussion, we assume array A has no
aliases.5

THEOREM 2 If two array references access the same ar-
ray index; i.e., a1l1+ · · ·+anln+b = a′

1l
′
1+ · · ·+a′

nl′n+b′

4 Note that one of b or s may be a negative number. Since C compilers
do not standardize on modulo arithmetic in the presence of negative
numbers, we would like to clarify and avoid confusion. The result of
(b mod s) should be a positive number ranging between 0 and abs(s)-
1. If b is negative, it is defined as (s − 1) − ((−b − 1) mod s). If s is
negative, it is defined as (b mod −s).

5 In the presence of aliases, we would form equivalence classes of
aliased objects and consider all elements of an equivalence class as
accesses to the same object. In the worst case, objects with compli-
cated aliases would be mapped to a single memory.

in two iterations li and l′i of each loop Li, then the corre-
sponding array element is accessed at the same array index
in the same virtual memory after virtual mapping; i.e.,

1. b mod s = b′ mod s, and

2. coeff1l1 · · · + coeffnln · · · + �b/s� =
coeff′

1l
′
1 · · · + coeff′

nl′n · · · + �b′/s�.

PROOF. The proof of b mod s = b′ mod s follows from the
proof of Theorem 1.

Rearranging terms, we know that a′
1l

′
1 + · · · + a′

nl′n −
a1l1 − · · · − anln = b − b′.
If we divide both sides by s, we obtain {a′

1l
′
1 + · · · +

a′
nl′n − a1l1 − · · · − anln}/s = (b− b′)/s, which is equiv-

alent to
coeff′

1l
′
1 + · · · + coeff′

nl′n − coeff1l1 − · · · −
coeffnln = (b − b′)/s.
Since (b mod s) = (b′ mod s), �b/s�−�b′/s� = b/s−b′/s.
Thus, coeff1l1 · · · + coeffnln · · · + �b/s� =
coeff′

1l
′
1 · · · + coeff′

nl′n · · · + �b′/s�. �

THEOREM 3 If two array references A and A′ access
two different array indices; i.e., a1l1 + · · · + anln + b �=
a′
1l

′
1 + · · · + a′

nl′n + b′, then the corresponding array ele-
ments are accessed either in separate virtual memories or
at different array indices within the same virtual memory af-
ter virtual mapping; i.e.,

1. b mod s �= b′ mod s, or else

2. coeff1l1 · · · + coeffnln · · · + �b/s� �=
coeff′

1l
′
1 · · · + coeff′

nl′n · · · + �b′/s�.

PROOF. The first case occurs when two array references
are accessing mutually exclusive array indices, and thus be-
long to separate partitions. They access array indices with
the common stride s, starting from b and b′, respectively. If
s does not divide the difference between b and b′, array in-
dex b′ is never accessed by A, and array index b is never
accessed by A′ in the entire iterations of loop Li. Thus,
(b′ − b) mod s �= 0 ⇔ b mod s �= b′ mod s.

The second case occurs when an array index accessed
by an array reference is also accessed by another reference
in some iterations other than l′i, since they are mapped to
the same virtual memory. For example, consider A[2i] and
A[2i + 4]. A[2] is accessed by A[2i] when i=1, and A[8]
is accessed by A[2i + 4] when i=2. These array elements
are mapped to different locations in the same virtual mem-
ory. The proof is omitted, but is similar to the proof for the
second equation in Theorem 2, substituting inequality for
equality. �

4.3.2. Multiple Dimensions To rename multi-
dimensional arrays, we combine the results of renam-
ing each dimension, as will be discussed in this sec-
tion. For all applicable dimensions, Equations 4, 5, and 6
from the previous section can be applied. We rewrite
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m-dimensional array references in an n-deep loop nest as
follows:

A[a1
1L1 + · · · + a1

nLn + b1] · · · [am
1 L1 + · · · + am

n Ln + bm]
⇒ A • suffix1 • · · · • suffixm

[coeff1
1L1 + · · · + coeff1

nLn + offset1] · · ·
· · · [coeffm

1 L1 + · · · + coeffm
n Ln + offsetm]

Again, since ZIV and SIV subscript expressions are a spe-
cial case of MIV, we treat them identically. The new ar-
ray name in each virtual memory is now the concate-
nation of the original array name and a set of suffixes,
suffix1, · · ·, suffixm, for each array dimension. Each
suffixi, offseti, and coeffi

j is computed by Equa-
tions 4, 5, and 6, respectively, whenever array renaming is
applicable for dimension i.

The partitioning decision is based on Equation 2 in The-
orem 1, and following the partitioning algorithm, each par-
tition is mapped to a unique virtual memory id. Thus, the
number of virtual memories is equivalent to the number of
partitions. Therefore, for each m-dimensional array, the car-
dinality of the set of distinct suffix values determines the to-
tal number of virtual memories Mv; that is,

Mv = |{suffix1 • suffix2 • · · · • suffixm} |
If the total Mv exceeds Mp, then the physical mapping
phase decides which virtual memories are mapped to the
same physical memory.

The proof that array renaming is a one-to-one mapping
for multi-dimensional arrays follows from the proofs of
Theorems 3, and 4, and the observation that each dimen-
sion can be treated independently.

4.3.3. Array Renaming Algorithm Once all m array di-
mensions are partitioned, we call Array Renaming in
Figure 5 for each array in the code. Array Renaming
maps each partition to a distinct virtual memory.
Based on the common stride computed in the proce-
dure Subpartition in Figure 4, we compute stride,
offset, and coeff using the Equations 4, 5, and 6.

4.4. Examples

Table 1 shows examples of virtual mapping. Two array
references in Table 1(b) access respectively even and odd
elements with the same stride GCD(2,2) = 2, but two dif-
ferent initial indices 0 and 1. According to the condition in
Equation 2, each reference accesses mutually exclusive ar-
ray elements, and they are mapped to two virtual memo-
ries A0 and A1. The new coefficients are both 1, and the
new offsets within each virtual memory are both zeros. As
such, two references in each virtual memory becomes con-
secutive accesses. In Table 1(b), two array references have
strides 2 and 6, respectively. The common stride is GCD(2,6)

Procedure Array Renaming(Q)
Q: a set of partitions of array references = {P}
A: an array reference in P

B[a1
1L1 + · · · + a1

nLn + b1] · · · [am
1 L1 + · · · + am

n Ln + bm]
si: the common stride on array dimension i in P

for each P ∈ Q {
for each A ∈ P

for i = 1, m {
if (si �= 0) {
suffixi = bj

i mod si;
offseti = bj

i/si;
for j = 1, n /* for each loop of n-deep loop nest */
coeffi

j = ai
j/si;

}
else { /* all references in P are ZIVs */
suffixi = bi;
offseti = bi;
for j = 1, n /* for each loop of n-deep loop nest */
coeffi

j = ai
j ;

}
}
Replace A with

B • suffix1 • · · · • suffixm

[coeff1
1L1 + · · · + coeff1

nLn + offset1] · · ·
· · · [coeffm

1 L1 + · · · + coeffm
n Ln + offsetm].

}

Figure 5. Array renaming algorithm.

= 2, and the two array references access mutually exclusive
array elements.

The rest of the examples are two-dimensional ar-
rays. We will consider one dimension at a time. In looking
at the first dimension in Table 1(c), [2i] and [4i] are access-
ing common indices, but [2i+1] is accessing independent
indices. So, we group three array references into two par-
titions {A[2i][2j+1], A[4i][[4j]} and {A[2i+1][2j]}.
Next, looking at the second dimension of the first parti-
tion, [2j+1] and [4j] are accessing independent indices.
Thus, we further divide the first partition into subparti-
tions {A[2i][2j+1]} and {A[4i][[4j]}. Each reference is
independently renamed. Table 1(d) includes ZIV sub-
script expressions. In looking at the first dimension, the
common stride is GCD(2,0,2,0) = 2. Thus, we divide ar-
ray references into two partitions {A[2i][2j], A[4][2j]} and
{A[2i+1][2j+1], A[5][6]}. In looking at the second dimen-
sion of the second partition, the common stride is GCD(2,0)
= 2, and (1 mod 2) �= (6 mod 2). Thus, the second parti-
tion is further divided into two subpartitions.

Table 1(e) shows a more complex example where the
loop index variables appear in different dimensions between
two references. While one reference is accessing a row of
array elements, the other reference accesses a column of ar-
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Original GCD GCD Partitions After Renaming
Array References (s1

1, s
2
1) (s1

2, s
2
2) P1 P2 P3 P1 P2 P3

(a) A[2i], A[2i+1] 2 A[2i] A[2i+1] A0[i] A1[i]
(b) A[2i+4j], A[6i+6j+1] 2 A[2i+4j] A[6i+6j+1] A0[i+2j] A1[i+j]
(c) A[2i][2j+1], A[4i][4j], 2 2 A[2i][2j+1] A[2i+1][2j] A[4i][4j] A01[i][j] A10[i][j] A00[i][j]

A[2i+1][2j]
(d) A[2i][2j], A[4][2j], 2 2 A[2i][2j], A[2i+1][2j+1], A[5][6] A00[i][j], A11[i][j] A56[5][6]

A[2i+1][2j+1], A[5][6] A[4][2j] A00[2][j]
(e) A[i][2j+1], A[j][4i] 1 2 A[i][2j+1] A[j][4i] A01[i][j] A00[j][i]
(f) A[2i+1][3B[j]], A[2i][2j] 2 1 A[2i][2j] A[2i+1][3B[j]] A00[i][j] A10[i][B[j]]
(g) A[4i][4j × k+1], A[2i][2j] 2 2 A[2i][2j] A[4i][4j × k+1] A00[i][j] A01[i][j × k]

Table 1. Examples of virtual mapping in two-dimensional multiple UGSs.

ray elements. The algorithm in Figure 4 supports such refer-
ences, since only the stride and offset for each dimension is
used for partitioning. Looking at the first dimension in Ta-
ble 1(f), two array references are accessing common indices
whenever i = j; GCD(1,1) = 1. So, they remain in a single
initial partition. Similarly, in looking at the second dimen-
sion, the common stride is GCD(2,4) = 2. Thus, the two ar-
ray references are accessing independent indices in the sec-
ond dimension, so they are placed into separate partitions.

Table 1(f) and (g) show examples of non-affine array
subscript expressions such as [3B[j]] and [4j × k+1]. Non-
affine subscripts are not supported by the algorithm as de-
scribed in this paper, since the stride must be computed dif-
ferently. However, if accesses can be placed in separate par-
titions according to other dimensions that have affine ref-
erences, then the algorithm can skip the non-affine dimen-
sion during partitioning. Further, a conservative approxima-
tion of the stride could be used to extend the algorithm for
partitioning dimensions with non-affine references. For ex-
ample, the exact value of B[j] or j × k is unknown at com-
pile time. But, we know that 3B[j] should be a multiple of
3, and that 4j × k should be a multiple of 4. Looking at the
first (affine) dimension in Table 1(f), we can derive sepa-
rate layouts for the references. In Table 1(g), the common
stride of the second dimension is GCD(4,2) = 2. According
to Equation 2, the two references are divided into two parti-
tions.

4.5. Array Reorganization

For data that is upwards exposed to the beginning of the
transformed loop nest, or computed within the transformed
loop nest and live on exit, it may be necessary to reorganize
the data from/to a naı̈ve layout in a single memory to/from
a custom layout in multiple virtual memories. In this sec-
tion, we describe how to perform this reorganization based
on the data access patterns; i.e., stride (si) and offset (bi) in
each array dimension i.

Let LBj and UBj be the lower and upper bound of each
loop Lj , respectively. For simplicity, let’s assume si �= 0.
Based on si and bi in each dimension i, then, the array in-
dices accessed by array subscript expression [ai

1L1 + · · ·+
ai

nLn + bi] for the naı̈ve layout can be formulated to

[(bi mod si) + vi × si],

where vi in each array dimension i is an integer such that
ai
1LB1 + · · · + ai

nLBn + bi ≤ (bi mod si) + vi × si ≤
ai
1UB1 + · · · + ai

nUBn + bi

⇔ {ai
1LB1 + · · ·+ ai

nLBn + bi − (bi mod si)}/si ≤ vi ≤
{ai

1UB1 + · · · + ai
nUBn + bi − (bi mod si)}/si.

For a virtual memory computed using Equation 4 on
each dimension, we can construct a mapping from the naı̈ve
data layout to a custom data layout as follows:

A[(b1 mod s1) + v1 × s1][(b2 mod s2) + v2 × s2] · · ·
· · · [(bm mod sm) + vm × sm]

⇒ A • suffix1 • · · · • suffixm[v1][v2] · · · [vm].
(7)

The inverse mapping is equivalent. By considering all pos-
sible virtual memories, and combining the results for multi-
ple dimensions, we can map all elements from/to a standard
layout in a single memory.

THEOREM 4 Array reorganization described in Equa-
tion 7 ensures that the array references after array reor-
ganization access the correct data in a virtual memory; i.e.,

ai
1L1 + · · · + ai

nLn + bi = (bi mod si) + vi × si

⇔ coeffi
1L1 + · · · + coeffi

nLn + offseti = vi

PROOF. According to Equations 5 and 6, we can rewrite
the right hand side of ⇔ as (ai

1/si)L1 + · · ·+(ai
n/si)Ln +

�bi/si� = vi.
By dividing both sides of the equality on the left hand side
of ⇔ by si and rearranging terms, we get (ai

1/si)L1 + · · ·+
(ai

n/si)Ln + (bi − (bi mod si))/si = vi.
Thus, (bi − (bi mod si))/si = �bi/si�, which is always
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true, since (bi mod si) is the remainder of bi/si, and the re-
sult of applying a bottom operation to division bi/si is the
same as the result of removing this remainder from bi first
and then dividing by si. �

5. Physical Memory Mapping

Virtual mapping creates as many virtual memories as
needed to maximize opportunities of parallel memory ac-
cesses for each array in isolation, and in an architecture-
independent way. In this section, we describe how to map
virtual memories to a limited number of physical memo-
ries such that the exposed parallel memory access opportu-
nities are preserved as much as possible.

To map the transformed code to a specific target architec-
ture, we must take the following into account: (1) the num-
ber of physical memories Mp; (2) competing demands of
multiple arrays; and (3) the scheduling algorithm of mem-
ory accesses. Intuitively, we want to distribute Mv virtual
memories across Mp physical memory banks as evenly as
possible, since it preserves the exposed parallel memory ac-
cess opportunities, and minimizes the address bits required
for each physical memory.

The actual memory operations that can be scheduled
concurrently are affected by the physical memory mapping.
We denote ΣMv as the total number of virtual memories
across all the arrays in a loop nest. If ΣMv ≤ Mp, we dis-
tribute each virtual memory to a different physical memory.
If ΣMv > Mp, some virtual memories must be mapped to
the same physical memory, thereby possibly sacrificing po-
tential memory parallelism. Some virtual memories carry
a scheduling constraint such that the operations on the right
hand side of an assignment statement must be scheduled be-
fore the operations on the left hand side. We map the vir-
tual memories that carry the scheduling constraint to the
same physical memory to give other less constrained virtual
memories more freedom to be mapped to separate physi-
cal memories.

6. Experiments

This section presents experimental results for the pre-
viously described custom data layout algorithm for a set
of kernel applications written in C; namely, a digital finite
impulse response filter (FIR), matrix multiply (MM), pat-
tern matching (PAT), Jacobi 4-point stencil (JAC), and So-
bel edge detection (SOBEL).

The algorithm presented in this paper has been imple-
mented and is fully automated within the DEFACTO sys-
tem, which compiles C algorithms to FPGA-based systems.
As compared to a conventional architecture, FPGAs have no
instruction or data cache, and the microarchitecture is con-
figured specifically for the target application. The target ar-

chitecture for this experiment assumes a single FPGA with
multiple external SRAM memories (8 is the default), and an
external host processor that can load the data and configu-
ration onto the FPGA, initiate its computation, and retrieve
its results.

The following describes the compilation flow of the DE-
FACTO compiler. Within the SUIF compiler infrastructure,
DEFACTO performs a set of code transformations: loop
permutation, unroll-and-jam, scalar replacement, and cus-
tom data layout, to exploit instruction-level and memory
access parallelism. In collaboration with commercial syn-
thesis tools, DEFACTO performs an iterative design space
search [20], using timing and area estimates derived from
synthesis to determine the optimal unroll amount for each
loop nest. A custom data layout is derived on the unrolled
code and then incorporated into the final synthesized ver-
sion of the hardware. The final optimized task is synthe-
sized into an FPGA design.

In the following experiment, we compare the perfor-
mance obtained by our custom data layout with both a naı̈ve
and modulo unrolling layouts. We report results obtained
from hardware simulation of the designs derived after per-
forming these data and code transformations.

6.1. Memory Access Times

The first set of results in Figure 6, shows the time (in cy-
cles) spent accessing memory, for each of the three layout
schemes as a function of unroll factors. We show results us-
ing both four and eight memories, to see the trend as num-
ber of memories increases. With higher memory latencies,
the benefits of memory parallelism increase, so we conser-
vatively assign a low memory latency for both reads and
writes of one cycle each, which is the case on our target
platform when all memory accesses are fully pipelined.

In the graphs, the x-axis corresponds to different un-
roll factors for the inner and outer loops. For example, 1x2
refers to no unrolling on the outer loop, and an unroll fac-
tor of 2 on the inner loop.

For both JAC, in Figures 6(c) and (d), and SOBEL, in
Figures 6(g) and (h), which have multi-dimensional SIV
subscript expressions, we see enormous decreases in mem-
ory cycles due to both modulo unrolling and custom data
layout whenever the inner loop is unrolled by a factor as
large or larger than the number of memories, a 75% reduc-
tion for 4 memories, and an 87.5% reduction for 8 memo-
ries. This is because unrolling the inner loop by the num-
ber of memories allows for the maximum parallel data lay-
out to be used for arrays with the inner loop’s index in their
lowest dimension subscript expression. When only the outer
loop is unrolled, custom data layout outperforms modulo
unrolling since it distributes multiple dimensions of the ac-
cessed arrays. When the inner loop is unrolled by less than
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(c) JAC 4 memories
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(d) JAC 8 memories
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(f) PAT 8 memories
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(g) SOB 4 memories

1x1 2x1 1x2 4x1 2x2 1x4 8x1 4x2 2x4 1x8
Unroll Factors

0

1000

2000

3000

4000

5000

6000

M
em

or
y 

C
yc

le
s

Naive Layout
Modulo Unrolling Layout
Custom Layout

(h) SOB 8 memories
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Figure 6. memory access times versus unroll amounts

the number of memories and the outer loop is also unrolled,
although there is some performance improvement due to
modulo unrolling, yielding, for example, a 50% reduction in
memory access time for the 2x2 cases on 4 memories, it is
not as successful as custom data layout, which still achieves
a 75% reduction in this case. Results for MM are similar to
those of JAC and SOBEL.

For both FIR in Figures 6(a) and (b), and PAT, in Fig-
ures 6(e) and (f), which exhibit MIV subscript expressions,
both our custom layout and modulo unrolling achieve a
modest improvement over naı̈ve when only one loop is un-
rolled, i.e., one of the unroll factors is 1.

Overall, as we go from 4 memories to 8 memories, we
see the growing importance of custom data layout, since
larger unroll factors for the loop or loops representing the
most quickly varying dimension are needed for modulo un-
rolling to fully utilize the memory bandwidth of the plat-
form.

6.2. Speedups

Now we see how the reduction in memory cycles trans-
lates into an overall reduction in execution time as com-
pared to the naı̈ve implementation. Rather than examining

the performance relative to a large number of unroll factor
choices, we consider the reduction in memory access cy-
cles and overall speedup from the design space exploration
algorithm described in [20] for 4 and 8 memories using cus-
tom data layout, as compared to a naı̈ve layout with no un-
rolling and to the best modulo unrolling. We report the re-
sults in Table 2.

Even under the constraints of our target FPGA platform,
we see a reduction of memory access cycles of more than
75% and fairly significant speedups for all kernels, that
increases as we employ more external memories. Lower
speedups were obtained for JAC and SOBEL because these
kernels are highly compute bound and are not able to take
advantage of the additional memory parallelism exposed by
our custom layout due to the available FPGA area.

As compared to modulo unrolling, our approach yields
speedups ranging from 1 to 6, for the selected unroll factors.
In some cases, modulo unrolling exposes the same amount
of parallelism given a sufficient unrolling of the appropri-
ate loop, but custom layout may require less unrolling. For
example, two array references A[i, j] and B[j, i] require a
different loop to be unrolled, assuming the low-order in-
terleaving layout. Thus, each loop must be unrolled suffi-
ciently for each reference to exploit memory parallelism.
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Program 4 mems 8 mems
% reduction speedup / naı̈ve speedup / mod. unr. % reduction speedup / naı̈ve speedup / mod. unr.

FIR 87% 17.35 1.45 93% 22.29 1.94
JAC 77% 5.73 3.67 89% 10.25 5.93
PAT 92% 34.85 1.51 96% 46.7 2.35

SOBEL 75% 3.96 2.25 75% 3.96 3.96
MM 76% 13.37 1.86 85% 16.5 2.21

Table 2. Percentage of reduction in memory cycles and Speedups

On the other hand, custom data layout can exploit memory
parallelism no matter how two loops are unrolled, thereby
requiring much less unroll factors. This same is true for the
MIV examples such as FIR – this is where we show a per-
formance advantage no matter how unrolling is selected for
modulo unrolling.

To be fair, these overall results show not just the benefits
of increased memory parallelism, but also increased opera-
tor parallelism resulting from both loop unrolling and cus-
tom data layout. On the other hand, operator parallelism
often depends on exploiting memory parallelism, so that
serialization of memory accesses does not inhibit opera-
tor parallelism. Further, note that the design space explo-
ration algorithm limits unroll factors for a variety of rea-
sons unrelated to memory parallelism, including the limited
logic capacity of the FPGA device, and balance of memory
accesses and computations. Thus, speedups related to in-
creased memory parallelism could potentially be even bet-
ter on larger devices or with higher latencies to memories.

7. Related Work

Large-scale multiprocessor systems are highly affected
by computation and data partitioning across processors and
memory and to that end, much work [10, 11, 2, 12, 18,
5] derives coarse-grain layouts that avoid communication
among processors. Kim and Prasanna [12] propose a fine-
grain data distribution scheme, perfect latin squares, to
map rows, columns, diagonals, and subarrays to multi-
ple memory modules, without considering the data access
pattern of the code. Thus, they support parallel array ac-
cesses only if the code is accessing consecutive locations
within the square subarray. Petersen et al. [17] develop a
type construct, and the Napa-C compiler effort [7] [8] de-
fines C language extensions to capture the data layout. Oth-
ers [16, 14, 15, 6] have developed scheduling algorithms ei-
ther in software or hardware to deconflict memory hierar-
chy traffic.

Custom memory architectures [9, 22, 19], derived from
the application characteristics, also form part of the solution
to the memory-computation unit performance gap. For tiled
architectures such as Raw, the Maps [4] compiler performs
modulo unrolling as described earlier in the paper. Other

features of the compiler include equivalence class unifica-
tion for pointer analysis and static versus dynamic promo-
tion of memory accesses.

In this work, we solve for a fine-grain data layout to de-
crease memory access latencies in hardware. Our user in-
put is unannotated and we assume a fixed memory architec-
ture. We use the application specific data access patterns to
directly calculate our data layout and automatically derive
the variable mapping. We replace array accesses from mem-
ory with scalar register accesses in our design for increased
on-chip storage of array elements that will be reused. We
leave the details of the scheduling to the Monet scheduler
in our system.

8. Conclusion and Future Work

In this paper, we described an algorithm for deriving cus-
tom data layouts in multiple memory banks for array-based
computations, to facilitate high-bandwidth parallel memory
accesses in modern architectures where multiple memory
banks can simultaneously feed one or more functional units.
By examining data dependences and array subscript ex-
pressions, our algorithm automatically derives application-
specific layouts in multiple memories.

As compared to solutions that reorganize computation
to optimize for memory parallelism assuming a fixed data
layout, our approach yields high memory parallelism for a
fixed computation order by reorganizing the data. We ob-
serve greater than a 75% reduction in the number of mem-
ory access cycles and speedups ranging from 3.96 to 46.7
for 8 memories, as compared to using a single memory
with no unrolling. This difference is particularly important
when used in conjunction with code reordering transfor-
mations, such as loop nest transformations commonly per-
formed on array-based computations. In addition, our data
layout supports more varied data layouts than HPF-like no-
tations (block, cyclic, block-cyclic) can do. Our compiler
has more degrees of freedom in transforming code, and
can thus preserve memory parallelism while accomplish-
ing other optimization goals.

A key consideration when applying this custom data lay-
out algorithm is the feasibility of reorganizing data in mem-
ory. Here we considered loop nest computations, but when
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expanding to full applications, either the compiler must use
the same layout throughout the program, or it must reorga-
nize between computations with different layouts. Depend-
ing on the architecture and the application, such a reorgani-
zation could be more costly than the performance gain from
increased memory parallelism. On an FPGA platform such
as ours, data reorganization in on-chip buffers has very low
cost since it can be done in parallel; also, the cost of read-
ing from and writing to external memories to perform reor-
ganization can be reduced using parallel memory accesses
for one organization order and reorganizing in parallel on
chip.

A major focus of our current work is to formulate this
custom data layout optimization as an interprocedural and
global analysis problem, and compare the results with solu-
tions that use efficient data reorganization. These results are
currently being integrated with communication and pipelin-
ing analysis to eliminate from consideration data that need
not go through memory.
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