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Abstract 

Optimization of a real world application BLAST is used to demonstrate the limitations of 

static and profile-guided optimizations and to highlight the potential of runtime 

optimization systems. We analyze the performance profile of this application to determine 

performance bottlenecks and evaluate the effect of aggressive compiler optimizations on 

BLAST. We find that applying common optimizations (e.g. O3) can degrade performance. 

Profile guided optimizations do not show much improvement across the board, as current 

implementations do not address critical performance bottlenecks in BLAST. In some cases, 

these optimizations lower performance significantly due to unexpected secondary effects of 

aggressive optimizations. We also apply runtime optimization to BLAST using the ADORE 

framework. ADORE speeds up some queries by as much as 58% using data cache 

prefetching. Branch mispredictions can also be significant for some input sets. Dynamic 

optimization techniques to improve branch prediction accuracy are described and 

examined for the application. We find that the primary limitation to the application of 

runtime optimization for branch misprediction is the tight coupling between data and 

dependent branch. With better hardware support for influencing branch prediction, a 

runtime optimizer may deploy optimizations to reduce branch misprediction stalls. 
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1. Introduction 

Compiler optimizations aim to generate the most efficient code for a program. Optimization 

algorithms follow general rules of efficiency. For example, fewer instructions will result in 

improved execution efficiency. Thus, redundancy elimination optimizations such as loop 

invariant code motion, common sub-expression elimination and many others are commonly 

implemented in compilers. These optimizations are indeed valuable, and applying these 

optimizations sometimes leads to vastly improved performance. However most modern day 

applications are dominated by two critical performance bottlenecks (1) Cache misses and (2) 

Branch mispredictions.  
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Figure 1: Breakdown of cycles for SPECint2000 benchmark programs on systems with It anium-2 
processors [16].  
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Figure 2: Breakdown of cycles of some real worl d applications on systems with Itanium-2 processors.   
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Figure 1 and Figure 2 show that SPEC benchmarks and some real world applications are 

dominated by such bottlenecks. Traditional optimizations cannot effectively address these 

bottlenecks. For example, in most compilers, loads are scheduled assuming they hit in the cache 

as scheduling for higher latency may lead to inferior performance. In particular, if such 

performance bottlenecks shift from one place to the other depending on the input data set, a 

statically generated binary is unlikely to address the performance needs effectively. 

Profile-based optimizations that collect the runtime behavior of certain input sets have been 

applied successfully in code layout [4] [5], trace [6], super-block [7] and hyper-block formation 

[8]. Using execution profiles to identify biased branches has been quite effective. Hence, recent 

research has attempted to extend the idea of branch profile to value [9], cache miss [10] and data 

dependency [11] profiling. Many research results indicate that by using a few input sets one can 

accurately predict the program behavior of other input sets. This seems to suggest that a profile 

generated by a set of candidate inputs may be used to generate an optimized binary that is 

generally better than the original binary. However, the effectiveness of such optimizations in 

commercial compilers has so far been limited to improving program layout and trace/super-block 

formation. Recent research has also reported the difficulty in collecting a representative profile 

[12]. For real-world applications, since the input sets can vary significantly, it is not clear whether 

performance-critical cache misses and branch misprediction events can be accurately predicted by 

using a small set of training profiles.  

In this study, we use a popular real world application, BLAST, to understand and evaluate the 

effectiveness of aggressive static optimizations, and compare it to a preliminary runtime 

optimization system. While it is difficult to improve the performance of the application using 

existing compiler optimizations, the application can benefit significantly from a runtime 

optimization system. This raises the question whether it is more effective to identify  and optimize 

for certain performance critical events at runtime, or to rely entirely on profile-based 

optimizations in a compiler to achieve the same. 
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We begin with a brief discussion of the algorithm of BLAST in section 2, followed by the 

performance profile of BLAST with different queries in section 3. Section 4 discusses the effect 

and limitations of static and profile-based compiler optimizations. The performance of dynamic 

optimizations on BLAST is evaluated in section 5. Branch mispredictions are discussed in section 

6 and section 7 discusses related work. Conclusion and future work are discussed in section 8. 

2. Why BLAST? 

BLAST, which stands for Basic Local Alignment Search Tool, is an open-source application 

developed at the National Center for Biotechnology Information (NCBI). It is the most popular 

Bio-Informatics application. It has more than a millio n lines of code and uses a huge database of 

known DNA and amino acid sequences. It is updated regularly as new sequences are discovered. 

It demands high computational resources and this demand keeps increasing. BLAST uses a 

similarity searching heuristic that determines sequences from a database that are most similar to a 

query sequence. These sequences could be base-pairs or proteins. Similarity measures generally  

start with a matrix of similarity scores for all possible pairs of residues. Similarity score of two 

aligned sequences is the sum of similarity scores of each pair of aligned residues. The basic 

strategy is to find a pair of segments of identical length from two sequences such that extending 

or shortening both segments will not improve the similarity score of the segment pair. BLAST 

uses a heuristic that compromises selectivity (number of matched segments) for speed. The 

detailed algorithm and many other performance enhancements are discussed in [1], [2] and [3]. 

BLAST runs on a broad set of inputs with different options based on the type of sequence 

comparison. We performed all experiments using a set of queries containing genes or amino acid 

sequences. Two databases, nt and nr, were used in our experiments. The nt database is a 

nucleotide sequence database and the nr database is non-redundant protein sequence database. A 

summary of various modes along with the databases used is detailed in Table 1. A set of gene 

sequence queries are contained in files nt.1 and nt.10. nt.10 has 10 such queries while nt.1 has 
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only one query. Similarly amino acid sequences are contained in files aa.1 and aa.10. Each mode 

in BLAST uses a particular combination of query and database type which is also described in the 

table. To refer to the 5th query in file nt.10, for example, we will write it as nt.10(5). 

Modes Database Queries Sub-
Queries 

nt.1 None blastn – compares gene sequences nt (May 28, 2003) 
nt.10 10 
aa.1 None blastp – compares amino acid sequences nr (June 29, 2003) 
aa.10 10 
nt.1 None blastx – compares translated genes with amino 

acids 
nr (June 29, 2003) 

nt.10 10 
aa.1 None tblastn – compares translated amino acids with 

gene sequences 
nt (May 28, 2003) 

aa.10 10 

Table 1: BLAST execution modes with databases used and queries tested. 

3. Performance Profile of BLAST 
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Figure 3: Relation between query length in characters and execution time for all queries in BLAST. 

In general, the execution time of a BLAST query depends on two factors: (1) Query length 

and (2) Query Content. Figure 3 shows that for some cases query length does not necessarily 

affect execution time. This is accentuated by nt.1 and nt.10(4) queries  in blastn mode. Both 

queries have almost the same query length and one query runs for a minute and the other for 

about 3 hours. To understand the reason for this behavior we collected function profiles and cycle 

breakdown information for all queries and modes listed in Table 1. All data in this paper was 
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collected on HP zx6000 workstations (dual Itanium-2 processors) running Enterprise Redhat 

Linux 2.4.18. 

Function Name blastn 
nt.1 

blastn 
nt.10(5) 

blastp 
aa.10(1) 

blastx 
nt.10(6) 

Tblastn 
aa.10(9) 

BlastNtWordFinder 77.42% 2.33%    
BlastNtWordExtend 11.73%     
ALI GN_packed_nucl 2.96% 4.62%    
RealBlastGetGappedAlignmentTraceback  65.40%    
BlastCheckHSPInclusion  21.44%    
BlastWordFinder_mh_contig   54.03% 52.20% 66.93% 
SEMI_G_ALIGN_EX   23.29% 25.63% 7.82% 
BlastWordExtend_prelim   17.66% 18.39% 4.53% 
BlastTranslateUnambiguousSequence     18.75% 

Table 2: Top function profile for selected queries. Only the most dominant functions along with the 
percentage of time spent in those functions are listed. Cells that are blank represent functions that 
are not dominant for that query. 

Top function profiles and cycle breakdown data were obtained from Intel’s ORC (Open 

Research Compiler v2.1) compiled binaries at O2 optimization level. Top function profile in 

Table 2 shows that for different queries and modes of execution a different profile is obtained. 

Not all queries are listed in this table, but only the ones that differ from one another. Other 

queries show function profiles very similar to some of these profiles.  
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Figure 4: Cycle breakdown for selected queries from every mode. Queries not shown have a cycle 
breakdown similar to one of these queries in the same mode. 

Figure 4 shows the cycle breakdown for some queries obtained using hardware performance 

monitors. For the blastn mode, the 4th nt.10 query stalls for more than 90% of the execution time, 

and almost all of it due to data cache misses. All of the long running queries in blastn have a 
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cycle breakdown similar to this. Other queries do not have such a high percentage of data cache 

stalls. They are spread among data cache stalls, branch mispredictions and register dependency 

stalls. Execution profiles of BLAST queries show the dynamic behavior of this application under 

different inputs. Since execution time is content dependent many other queries not in this 

evaluation could show a different execution profile. It is also clear that the major performance 

bottlenecks are data cache stalls and branch misprediction stalls.  

4. Effect of Static Optimizations 

In order to understand and evaluate the performance of aggressive static optimizations, we 

tried to apply optimizations at varying levels to see their effect on performance. We compiled 

BLAST with various optimizations levels, using three different compilers. The compilers used are 

the GNU C compiler (GCC v2.96), Electron C compiler (ECC v7.1) and the Open Research 

Compiler (ORC v2.1). Our goal was to identify a compiler and an optimization level that resulted 

in the fastest binary and eliminated most of the bottlenecks seen in the previous section.  
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Figure 5: Effect of static optimizations on various modes of BLAST across selected queries. The bars 
represent speed-up over GCC O1 optimization. Same compilers with different optimizations have the 
same color . Different compilers with the same optimization level are placed together.  

Figure 5 shows the speed-up of three optimization levels for the three different compilers with 

GCC O1 as the baseline for selected queries. For ORC, O2 optimization has the best performance 

across most BLAST modes and for most queries. ORC O3 performs only slightly worse than 
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ORC O2. GCC also shows similar results. However, ECC O3 has a significant slowdown as 

compared to ECC O2. For some queries, ECC O3 is around 12% slower than ECC O1. Further 

investigation revealed that ECC aggressively optimizes programs at higher levels of 

optimizations, so much so that performance is hampered in many cases. In one case, we found 

that ECC inserts prefetch instructions in a hot loop where prefetching is not needed. We discuss 

the effect of redundant prefetch instructions in section 4. Queries 4, 5, and 7 in nt.10 in the blastn 

mode (only nt.10(4) is shown, nt.10(5) and nt.10(7) are similar) do not show much performance 

improvement. These queries are dominated by data cache stalls. The three compilers used could 

not issue the needed prefetches, so they were not able to optimize these queries. We will discuss 

more about the performance characteristics of these queries in section 5.2. 
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Figure 6: Performance of profile based optimization using ECC 8. The X-axis shows the queries that 
were used as profiles to generate profile trained binaries. The bars show the speed-up of various 
queries on profile trained binaries.  

Since BLAST shows dynamic program behavior we tried profile-guided optimizations (PGO) 

using GCC, ORC and ECC to see if profiling can identify and eliminate major performance 

bottlenecks. To test the performance of profiling, we collected a profile for each query and 

applied them individually and also by combining all profiles. When a compilation failed, we 

reduced the optimization levels for failed modules to obtain a profile-trained binary. Despite our 

best efforts we were unable to generate an instrumented binary using GCC v3.4.0 (as this version 

supports profiling) ORC and ECC v7.1. However, we were successful in generating profile-
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trained binaries using ECC v8, so we present the results of profile based optimizations using this 

version of ECC. Figure 6 shows minor speed-up in some cases (blastn, nt.1) while others suffer 

significant slowdown. Even when the binary is trained with the same input, the aa.1 query on 

blastp mode slows down significantly. A 100 fold increase in the system time caused by data 

TLB misses, which increased from several hundred misses to more than 2 million misses, resulted 

in the slowdown. This increase was caused by a speculative load that generated a software 

exception on a TLB miss. This is the default behavior of Linux on Itanium-2 platform.  
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Figure 7: Speed-up obtained from PGO after reconfiguring the kernel to defer TLB miss exceptions 
on speculative loads to hardware. 

When we reconfigured the kernel to defer TLB misses on speculative loads, system time 

decreased to normal values and gave a speed-up of 11%. Figure 7 shows the performance of PGO 

using the reconfigured kernel. Figure 6 also shows that binaries trained using a single profile have 

a negative impact on performance of other queries. Even when the profiles are combined we see 

that moderate performance gains. These results indicate that the existence of a representative 

input is essential for profile-guided optimizations. For real world applications, such an input may 

be difficult to generate. We also see that in an effort to increase performance, profile-guided 

optimizations use aggressive speculative operations that might have unexpected secondary effects 

(such as speculation failure), reducing performance. 
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4.1. Effect of Inserting Prefetches 

In this section, we examine the negative effect of prefetches inserted imprudently by a static 

compiler. At high optimization levels, compilers become very aggressive in applying 

optimizations such as data prefetching. However, excessive use of prefetch instructions may add 

extra cycles in loops. It may also replace active data from the cache. There are also some subtle 

micro-architectural effects that one must take into consideration when issuing prefetches. For 

example, the Itanium-2 processor's L2 cache handles many demand loads and prefetch operations 

simultaneously in a non-blocking fashion by using a queue. Issuing excessive prefetch operations 

could fill up this queue and delay demand loads from being issued to the L2 cache. Earlier, we 

saw that ECC O3 is slower than ECC O1. For a query in the blastx mode, we found that a 

prefetch instruction is added in a loop with an average trip count of 10. Data for 64 iterations in 

the future was fetched, so the prefetched data was infrequently used. We found that micro-

architectural bottlenecks also contribute to the slowdown. We used performance counters to 

quantify the slowdown due to micro-architectural bottlenecks. Figure 8 shows a stall-cycle 

breakdown of this query using ECC O1 and O3 optimizations and a hand optimized O3 binary.  
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Figure 8: Breakdown of stalls for ECC O1 and O3 and for a binary with the useless prefetch 
instruction converted to a NOP called ECC O3 (NOP).  The line indicates the percentage increase of 
counters in ECC O3 over O1 (this scale is logarithmic). 

Two observations can be made:  



 11

1. The number of stalls due to the register stack engine (RSE) has gone up by more than 800%. 

Register stack engine stalls correspond to an increased register pressure. This is expected as 

aggressive optimizations tend to use more registers due to larger basic blocks and from 

speculative and prefetch operations. However, it is a small percentage of the total stall cycles.  

2. A large increase is seen in the number of stall cycles in the execution unit (EXE). This was 

due to an increase in the latency of loads causing an increase in the execution unit stalls. 

Load Operations Measures ECC O1 ECC O3 ECC O3 
(NOP) 

Total Latency 519,209 540,465 594,354 
Average Latency  16.74 17.02 18.08 Prefetched Load 

Frequency of Samples 16.76% 16.57% 20.52% 
Total Latency 559,195 784,085 587,684 

Average Latency 12.16 12.37 12.24 Another Load 
Frequency of Samples 24.80% 33.03% 25.38% 

Table 3: Information about two loads in a hot loop collected by sampling on data cache misses for  a 
query in blastx mode. Note that total latency is the sum of individual latencies of samples. Actual 
"T otal Latency" for this load would be much higher. The unit of latency is a clock cycle. 

We sampled performance counters to determine latencies of individual loads. Table 3 lists 

some statistics collected for loads in the hot loop. ECC at O3 issues a prefetch for a load in the 

hot loop. Due to the prefetch, another load in the same trace now has a higher total latency and 

also has a higher frequency of occurrence in the samples collected, which implies a higher miss 

ratio for this load. The load that is prefetched has no improvement in the total latency. On 

removing the prefetch, total latency for this load does not change by much. However, the second 

load's total latency goes down significantly, close to that in ECC O1. This indicates that either 

cache pollution has occurred due to the useless prefetch or that some micro-architectural 

bottleneck occurs due to the extra memory operations. This argues for the fact that the compiler 

cannot always make intelligent decisions about the behavior of loads, and aggressive 

optimizations may lead to slowdown.  

Static optimizations generate a single optimized binary to target performance bottlenecks 

across different inputs and runtime conditions. If the inputs show conflicting behavior across 
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inputs, or certain runtime constraints limit the effectiveness of optimizations, static and profile-

guided optimizations may negatively impact performance. In the face of such restrictions in 

compiler optimizations, we tested performance of BLAST on a runtime optimization framework, 

called ADORE, which is discussed next. 

5. Effect of Dynamic Optimizations 

Dynamic optimization is a technique that deploys optimizations based on runtime 

characteristics of programs. Many applications show dynamic phase behavior. For example, a 

load may hit in the cache during one phase and miss in the other. It is difficult to optimize such 

load operations using static or profile-guided optimizations. Dynamic optimization is a viable 

solution as it can detect such phase changes and tweak optimizations on phase changes. Dynamic 

optimization can also compliment profile guided optimizations, by modifying the deployed 

optimizations to adapt to the current runtime environment. For example, if the dynamic optimizer 

detects an increased number of TLB misses or data speculation failures due to speculative loads, 

it can decide to convert these speculative loads to standard loads to reduce TLB misses or the cost 

of recovery code. Since a runtime optimizer deploys optimization strategies based on the current 

input, it can effectively address code regions not optimized by PGO. This section details our 

experience using a recently proposed dynamic optimization framework called ADORE 

[13][14][15]. We discuss the system briefly followed by an explanation of its effect on 

performance.  

5.1. The ADORE Framework 

ADORE (ADaptive Object-code REoptimization) is a completely transparent dynamic 

optimization system that optimizes programs in 4 phases: (a) Profiling (b) Phase Detection (c) 

Optimization and (d) Deployment. Profiling involves collecting runtime characteristics of a 

program to determine a stable phase (a portion of execution that has stable characteristics for the 
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purpose of prefetching) and to provide information about loads that frequently miss in the cache. 

In the case of prefetching, a stable phase occurs when the program executes almost the same code 

with a relatively stable CPI and data cache miss rate. The Itanium architecture [16] provides 

various counters for analyzing performance. These counters can be sampled periodically to get 

the latest performance characteristics of the program. Profiling is carried out by monitoring the 

Linux perfmon [18] interface in another thread attached to the original program. Samples of 

performance events are collected from this interface and stored in a buffer. Every 1 second this 

buffer is analyzed to decide if the main program incurs a phase change. A phase detector is 

invoked periodically that calculates the CPI, the data-cache misses per instruction (DPI) and the 

average value of the program counter. Comparing these values with values from the earlier 

computations, a phase change can be detected. Along with this measure, each sample provides 

information to build a single-entry multiple-exit unit of code called trace on which optimizations 

are performed. This information includes the current program counter and a history of the last 

four taken branches from which an execution path leading to the sampled bottleneck can be 

formed. Many traces can be formed in a stable phase with each trace being optimized by the trace 

optimizer. Currently, ADORE does data prefetching for three types of references (1) direct array 

(2) indirect array and (3) pointer chasing. For direct array references, a stride is calculated and 

prefetch instructions are generated several iterations ahead. The Itanium architecture provides an 

instruction called lfetch for issuing such prefetches. It is a non-binding and non-faulting load, so 

this optimization is architecture-state safe. Prefetching for pointer chasing is initiated using an 

approach similar to induction pointers. Once the collected traces are optimized, the memory 

image of the binary must be patched to execute these traces instead of the original code. This is 

achieved by modifying the bundle at the beginning of the trace, so it can jump to the optimized 

trace. This modification is also recorded by ADORE so that it can undo the optimization, if 

needed.  
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5.2. Performance of ADORE 

Figure 9 shows the performance of ADORE on various queries. Binaries compiled at –O2 are 

used as baseline comparison because, they have the best overall performance. The graphs show 

some variance in speed-up on binaries compiled using different compilers due to the differences 

in code generation and optimization strategies of these compilers. Some queries benefit by a 

significant amount from ADORE while others suffer slowdown of about 0.7-3.5%. The queries 

that are optimized are the long running queries whose stalls cycles contribute a large percentage 

to the total cycles. One of the long running blastn queries (nt.10(4)) compiled by ECC runs as 

much as 58% faster. An immediate advantage of such a runtime optimization system is that only 

one implementation of various optimizations works for binaries compiled with different 

compilers. Due to space restriction we will discuss performance of ADORE on ORC compiled 

binaries only. 
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Figure 9: The speed-up from applying ADORE to GCC, ORC and ECC compiled binaries. All  
binaries are compiled at –O2 optimization. The speed-up is with respect to the O2 binary from the 
same compiler without runtime optimiz ations. Not all queries are shown here and those that are not 
shown suffer a minor slowdown similar to a query from the same mode that has a slowdown. 

To see why ADORE speeds up some queries and not the others, we plotted the running CPI 

(CPIoriginal) for each of these queries. We also calculated CPIunstalled by subtracting the stall cycles 

from the execution cycles to give the actual number of cycles the program needs in the absence of 

all bottlenecks. Since CPIunstalled is calculated on each interval for which the actual CPI is 
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calculated, CPIunstalled is as long as the CPI. CPIunstalled shows the maximum performance potential 

of a particular interval. Thus CPIunstalled in a way represents the inherent ILP of the program for 

this architecture. We also plot the CPI after applying runtime optimizations (CPIADORE). Figure 10 

shows a plot for a long running query in blastn mode that was sped up. The CPI starts off very 

close to the ideal or unstalled CPI. Then execution moves to a different function and the CPI goes 

above 3. However, the CPIunstalled remains at around 0.273. From the stall cycle breakdown, we 

can conclude that such a large departure from the idealized CPI is due to data cache misses. 
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Figure 10: Plot of running CPI calculated by sampling performance counters periodically. CPIADORE 

is shorter than original CPI due to speed-up from ADORE. 

for (index=0; index<hspcnt; index++) { 
    hsp = hsp_array[index]; 
    for (index1=0; index1<index; index1++) {  
        hsp1 = hsp_array[index1]; 
        if(... hsp1->query.offset ...) 

for (index=0; index<new_hspcnt; index++) { 
    for (seqalign_var=*head;  
           seqalign_var->next != NULL;) { 
                  seqalign_var = seqalign_var->next; 

(a) Indirect Loads (b) Pointer Chasing 

Table 4: Part (a) shows code that is optimized by prefetching indirect loads and part (b) shows 
pointer chasing code that is prefetched using an approach similar to induction pointers. 

Table 4 shows code snippets in which ADORE was successful using data prefetching. Table 

4(a) is the code that causes a CPI of around 3 and this is due to frequent misses in the indirect 

load hsp1->query.offset. ADORE initiated a prefetch for this load that decreases CPI to around 

1.23. In the next phase change, CPI increased to 4 and the bottleneck again was data cache misses 

due to indirect loads. However, ADORE was not able to prefetch this load as the branch in the 

trace was unbiased. This happens on low trip counts, and prefetching, if initiated, would not have 
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been useful. In the presence of unbiased paths and early exiting loops, ADORE does not apply 

prefetching to avoid bringing useless data into the cache. In the next phase, the program executes 

a pointer-chasing loop shown in Table 4(b) that causes very high latency cache misses. ADORE 

assumes that a stride exists between pointers, and uses the difference between successive 

addresses to prefetch for future iterations. Instrumenting this loop revealed that strides exist for 

some of the accessed data. Inconsistent stride coupled with very high latency caused the CPI to 

remain considerably higher than CPIunstalled but lower than the original CPI.  
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Figure 11: Plot of running CPI for a short running blastn query. The CPI plots for other modes and 
queries that do not speed up have CPI plots closely following this plot.  

Figure 11 shows the plot of CPI for a short running query in blastn mode. The running CPI 

(around 0.51) hardly changes and is close to CPIunstalled (around 0.28). There are no significant 

data-cache bottlenecks in this program. ADORE recognizes this fact and does not try to optimize 

the code. An attempt at prefetching for such queries could have increased the runtime due to 

reasons we discussed in section 4. For queries that are not optimized, ADORE adds only a 

minimum amount of overhead, which is the overhead of sampling and phase detection. 

Thus, ADORE dynamically detects dominating performance bottlenecks and deploys 

optimizations to the target code. As seen earlier, current implementation of PGO cannot take 

advantage of such opportunities due to lack of cache profile. The optimizations that ADORE 

deploys can also be deployed statically. However, there is a tradeoff of cost of optimization 

versus benefit of optimization. This forces a compiler to deploy such optimizations only if it is 
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sure that the optimization would benefit the application across all inputs. Furthermore, the 

compiler may not know the micro-architecture on which the optimized binary will execute. This 

complicates the decision as the bottleneck may be micro-architecture specific.  

6. Optimizing Branch Mispredictions 

Much research has been done on improving branch prediction using hardware schemes, but 

few software schemes have been developed for adapting to dynamic branch behavior [19]. 

Predication can be used to eliminate branch mispredictions, but it is difficult to use predication 

with while loops. The cycle breakdown of BLAST (Figure 4) shows that, for some queries, there 

are a significant number of stalls due to branch mispredictions. To find out the reason for these 

mispredictions, we simulated an idealized hardware for branch prediction using an 

instrumentation tool called PIN [17]. Itanium-2 stores branch prediction information associated 

with each instruction cache line. It uses a 4-bit local history to select a 2-bit saturating counter 

from a 16K-entry pattern history table. These are the structures used for direct branches that 

represent almost all types of dynamic branch instructions found in BLAST. The simulated 

hardware stores m-bit saturation counter for all n-bit local patterns for a particular branch. We 

used the query nt.1 for the blastn mode as this query has a significant amount of branch 

mispredictions. Using performance counters and simulation, we found that a significant portion of 

branch mispredictions occur due to one branch. In most cases when the branch is mispredicted, it 

is not-taken while the counters are saturated at taken. We found that increasing branch history 

does not give any improvement. Even with a 10-bit local history, branch prediction did not 

improve. From the results of simulations, we concluded that the pattern of branch outcomes is 

such, that it is difficult to predict the not-taken branches using branch histories.  

An optimizer can do better branch prediction, if the prediction is based on the data that 

determines branch outcome, rather than on branch history. Since branch prediction is done by the 

front-end instruction fetch engine and the data that decides branch outcome is computed in the 
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back-end, there should be a sufficient distance between the data and the dependent branch. The 

prediction mechanism of an indirect branch, in Itanium-2, is based on the assumption that the 

branch target is the value that is stored in the branch register at the time of instruction fetch. If we 

convert the direct branch into an indirect branch and compute the target of the branch (fall-

through or taken path in the original code) in the branch register early enough for the instruction 

fetch engine to see the correct branch target, branch mispredictions would be eliminated.  

 
Figure 12: The conversion of direct branch to an indirect branch in a loop for the Itanium-2 
processor using pseudo-assembly code. 

Figure 12 shows a loop with a conditional direct branch converted to an unconditional indirect 

branch. The target of the indirect branch is conditionally changed to the taken or not-taken target. 

Target address calculation should be a fair distance away (> 6 L1 instruction accesses in Itanium- 

2) from the branch for the front end to see the correct value of the target register. This is the main 

constraint in using indirect branches for perfect loop prediction. The benefit of this scheme is that 

branch prediction will be accurate for branches with unpredictable patterns. In the case for blastn, 

the loop is very tight causing the mov instruction to be very close to the branch. Due to this we 

could not apply this transformation to BLAST. To see if this scheme could be applied to other 

programs, we analyzed the top five mispredicting branches for programs in the SPECint2000 

benchmark suite. We estimated the number of execution cycles between data and dependent 

branch, by moving the data dependence chain as far away from the branch as possible. Figure 13 

shows that dependence chain is very tight, with an average of 2.2 execution cycles between data 
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and branch, except for eon that has an average distance of 12 execution cycles. A distance of 6 

L1I accesses would need at least a distance of 6 execution cycles between data and branch 

instruction.  
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Figure 13: Average number of execution cycles between data and dependent branch for 
SPECint2000 benchmarks. 

Branch misprediction is still a significant bottleneck in real-world applications. The proximity 

of data and dependent branch reduces the possibility of influencing branch prediction hardware, 

in time to affect prediction accuracy. However, when such opportunities are available, such as for 

Eon, a dynamic optimizer may be able to deploy our proposed technique to decrease branch 

misprediction stalls. As stated earlier, a compiler can deploy this optimization too, but the 

tradeoff still remains the same. A compiler must ensure that the optimization will provide 

performance benefit across inputs and across different micro-architectures before applying the 

optimization. 

7. Related Work 

The concept of traces is similar to Superblocks proposed by Pohua et Al in [20]. The 

Superblock aids the application of optimizations such as dead code elimination and some loop 

optimizations by generating single-entry, multiple-exit code regions. Path profiles are also used to 

perform new optimizations that improve the locality of instruction cache by re-ordering basic 
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blocks and splitting procedures. Pettis et al. in [21] discuss profile-guided code positioning and 

Cohn in [22] discusses Hot-Cold optimizations that make use of path profiles. 

Software cache optimization to predict cache misses and issue timely prefetches based on 

profile information is used by Abraham in [10]. He collected various statistics about loads/stores 

into a cache profile. This information is used to drive compiler-directed prefetching. Mowry in 

[23] proposed combining cache profiles with path information to form a correlation profile that 

provides information about the cache behavior of a load for a specific path. The main idea is that 

some loads may miss in the cache along certain paths and summarizing this information across all 

paths can lead to inferior cache profile.  

To deal with runtime profile challenges such as inaccurate mapping of profile from an 

optimized binary to source code, lack of availability  of source code (especially for library and 

legacy code) and necessity of recompilation, applying optimizations post-link was proposed. 

Post-link time optimizations for inter-procedural dead code elimination and loop invariant 

optimizations were evaluated in [24]. Luk [25] applied profile information post-link to find 

strides and initiate prefetching for loads that cannot be statically analyzed for regular patterns.  

Reality based optimization [12] applies profiling to real world applications. They collect and 

combine profiles over time to generate a representative profile.  Zilles [26] speculatively pre-

computes backward slices of delinquent loads that are identified by profiling. This method is 

effective if a representative profile is available. The central limitation of profiling is the 

assumption that runtime characteristics of programs will be insensitive to profiled inputs, which 

may not be the case for many applications. Dynamic optimization frameworks were proposed as a 

solution for these problems. Many systems besides ADORE (section 5.1) have been proposed. 

Dynamo [27] starts running statically compiled executables through interpretation, and generates 

code fragments into a fragment cache after a set number of code interpretations. Its trace selection 

policy can lead to improved I-cache performance for benchmarks with stable execution paths. 

DynamoRIO [29] is an x86 dynamic optimizer based on Dynamo that allows customization of 
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dynamic tasks through an API. When a hot trace is found, a fragment is formed that is natively 

executed. Continuous Program Optimization (CPO) [28] compiles an instrumented version of the 

intermediate binary to continually generate an execution profile of the program. An optimizer 

runs continuously in the background, using the collected profile information to drive profile based 

optimization (PBO) in parallel with program execution. Mojo [30] is a dynamic optimization 

system developed by Microsoft targeting x86 architectures that deploys optimizations through a 

trace.  

8. Conclusion and Future Work 

Cache misses and branch mispredictions remain significant bottlenecks in present-day 

applications. Such performance bottlenecks may move from one region to the other depending on 

the input data sets. Static and profile-guided optimizations generate one binary and hence are less 

likely to address these bottlenecks effectively. In this work, we used a real world application, 

BLAST, which highlights these issues and supports a case for the simplicity and efficacy of 

runtime optimizations.  

In optimizing BLAST, we found that traditional aggressive optimizations do not have a 

significant impact on performance. BLAST exhibits dynamic behavior for different input sets. 

Current implementations of profile-guided optimizations could not identify delinquent loads or 

initiate the needed prefetches, resulting in poor performance. The limiting factor in current 

profile-guided optimization was the absence of a representative input and other information in the 

form of cache profiles. We also found that certain optimizations may have secondary effects that 

are hard to predict at compile time. However, the application of runtime optimization using 

ADORE was quite simple. It was able to handle a large real-world application and optimize it 

across different compilers with no change in optimization strategy. It could target critical 

performance bottlenecks that led to speed-ups of up to 58% for some input sets. Runtime 

optimization can compliment existing compiler optimizations by deploying optimizations or fine 
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tuning existing optimizations, to gain better performance. Branch misprediction was found to be a 

significant bottleneck for some inputs, and we tried to eliminate stalls caused by such 

mispredictions. We found that the distance between data and dependent branch is generally too 

small to influence the branch prediction in time. However, the scheme we propose may be used 

for applications that have a greater distance between data and dependent branch such as Eon. 

In future, we plan to study more real world applications, like databases, flow modeling and 

circuit simulation applications, to understand and evaluate the effectiveness of different runtime 

optimization techniques. The question we have in mind is “What optimization strategies are most 

effective and are relatively simple to apply from the perspective of real world applications, the 

end user and the developers”? This work shows that runtime optimization could be successful in 

reducing stalls for large applications, while existing static optimizations are limited by several 

factors. With the analysis of more applications, we hope to identify the strengths and weaknesses 

of static and dynamic optimizations, so that both techniques can be further advanced. 
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