Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 04-038

Performance of Runtime Optimization on BLAST

Abhinav Das, Jiwei Lu, Howard Chen, Jinpyo Kim, Pen-chung Yew,
Wei-chung Hsu, and Dong-yuan Chen

October 15, 2004

Performance of Runtime Optimization on BLAST

Abhi nav Das, Jiwei Lu, Howard Dong- Yuan Chen (M croprocessor

Chen, Jinpyo Kim Pen-Chung Research Lab, Intel
Yew, Wei-Chung Hsu Cor por at i on)
{adas, jiwei, chenh, jinpyo, dong- yuan. chen@nt el . com

yew, hsu}@s.umm. edu

Abstract

Optimizationof a real world application BLAST igsed to demonstrate the limitations of
static and profile-guidé optimizatons and to highlight te potential of runtime
optimizationsystems. Wanalyze the performangwofile of thisapplication b determine
performancebottlenecks and evaluate the effe€taggressive cmpiler optimizations on
BLAST. We fid that appling common optimizens (e.g. O3) can degrade performance.
Profile guided optimizations do not showehumprovement acss the board, as current
implementations doot address critical perfanancebottlenecks in BLAST. losie cases,
these optimizations lowgerformancesignificartly due to unexpected secondary effects of
aggressive optimizations. We also apply runtime optimizati®L&ST usinghe ADORE
framework. ADORE speeds up some queries dsy much asb8% using data cache
prefetching. Branch mispredictionsrcalsobe significant for some input sets. Dynamic
optimization techniques to improve alboch prediction accuracy are described and
examined for the ggication. We find thatthe primary limitation to theapplication of
runtime optinization for branch mispediction is the tight copling between dat and
dependent branch. ¥ better hardwee support for influencing branch prediction, a

runtime optimizemay deloy optimizationgo redu@ branch misprediction stalls.

1. Introduction

Compiler optimizations aimto generate the ost eficient code for a program. Optiration
algorithrrs follow general rules of efficiencyFa exanple, fewer instructins will result in
improved execution efficiencyThus, redundang elimination optinizations such adoop
invariant codemotion, common subx@ressionelimination andmany others arecommonly
implemented in campilers. These optimations are indeedvaluable, ad applyng thee
optimizations sametimes leads to vasyl improved performance. Howevenost modern day
applications are doinated bytwo critical perfomance bottlenecks (1) Caemissesand (2)

Branch nispredictions.

100%

80% I Register dependency stalls

O RSE Stalls

B FPU Stalls

B Branch Mispredictions

& I-Cache Stalls

G ¢ d &S &Q\\ 0\\@“00& @0{\ B D-Cache Stalls
& O Unstalled Cycles

SPECiInt2000 Benchmarks

60%
40%
20%

% of total cycles

0%

Figure 1: Breakdown of cyclesfor SPECint2000 benchmak programs on swtems with Itanium-2
processrs [16].

100% -

80% E Register dependency stalls

60% - O RSE Stalls

40% A B FPU Stalls

20% - & Branch Mispredictions
| B I-Cache Stalls

voter B D-Cache Stalls

O Unstalled Cycles

% of total cycles

0%

blastn test-
nt.10(4) | connect

blastn
nt.1

test-atis sqrt

BLAST MySq SPICE

Real World Applications

Figure 2: Breakdown of cydes ofsome real worl d applications on systems with Itanium-2 procesors.

Figure 1 and Figure 2 show that SPEC bemuks and some real world applications are
domnated by such bo#hecks. Traditional dpnizations cannot effectively address these
bottlenecks. For exaofe, in most canpilers, lads are scheduled assng they hit in the cache
as scheduling for highelatency may lead to ifierior performance. In auticular, if such
performancebottlenecks shift fronone place to the other demkng on theinput data &, a
staticallygenerated binarig unlikely to address the perforane needs effetively.

Profile-based optimations that collect the runterbehavior of ertain input gts have been
applied successfullin code layput [4] [5], trace[6], super-block [T and hyer-block fornation
[8]. Using execution profiles to identify biased brhas has been quite effective. Hencegre
reseach has attepted to extend the idea of brangfofile to value [9, cache misq10] and data
dependeng [11] profiling. Many reseach results indicate that hysing a few input sets oroan
accuratelypredict the progranbehavior of othernput sets. This seems to suggest that a profile
generated by a set of candidateutspmay be ugd to generate an optired binay that is
generally better than the original bina However, the effectiveess of suchoptimizations in
commercialcompilers hasso far been fited toimproving progran layout andtrace/super-taick
formation. Recent resuch has also ngorted tle difficulty in collecting a representative gfile
[12]. For realworld appli@tions, since the inpsets can vary significantlyt is not clear whether
performanceeritical cache misges and branch isprediction eventsan be accutaly predicted by
using a small set of trainingrofiles.

In this stug, we use a popular real world digjation, BLAST, to uinderstand and evaluate the
effectivenes of aggressive static optizations, ad conpare it to a préminary runtime
optimization system While it is difficult to inprove the performance of the applicationngsi
existing compiler optinzations, theapplicdion can benefit significantl from a runtime
optimizationsystem Thisraisesthe quation wheher it ismore effective to ideify and optinize
for certain performancecritical eveits at wntime, or to rely entirely on profile-based

optimizations in a compiler to achieve the same.

We begin wih a brief disussion of te algorithmof BLAST in section 2, fdiowed ty the
performanceprofile of BLAST with different quegsin section 3. Section 4 discussiheeffect
and limtations of static and pfile-based cmpiler optimzations. The perfanance of dynarc
optimizationson BLAST & evaluatedn section 5.Branchmispredections are disussed irsecton

6 and sectio? discusses tated work. Conclusionmal future workare discussd in section 8.

2. Why BLAST?

BLAST, which stands for Basic LacAlignment Search Tool, is an open-source apphboati
developed at the National Center for Biotechnglogiormation (NCBI). It is themost popuiar
Bio-Informatics application. It has ane thana million lines of code and useshage database of
known DNA and anmo acid sequence#. is updatd regularlyas new sequenceseatiscoered.

It demands high coputational resources arttlis demand keeps increasing. BLAST uses a
similarity seaching heuristic that detenines sequensdrom a dathase that armost similar to a
query sequence. Thesequences could be base-aor proteins. Snilarity measure geneslly
start witha matrix of similarity scoresfor all possilbe pairsof residues. Shilarity score of two
aligned sequences is thenswf simlarity scores of each paiof aligned residues. Thieasic
strategyis tofind a pairof segnents of idetical length fromtwo sequences shitchat extending

or shortening both segmis will not improve thesimilarity score of the segment pair. BLAST
uses a heurie that comprorises setctivity (number of matched segients) for speed. The
detailed algorithnandmany other performancenhancaments are bcussed in [[2] and [3.

BLAST runs on aroadset of inputswith different optons based orhé type of sequence
comparison. We perforied all experiments usirg set of queriesontaining gaes or arimo acid
sequences. Wo databasg® nt and nr, were usedin our expeiments. Thent databasesi a
nucleotide sequence database anchthgatabase iaon-redundant ptein sequence database. A
summary of various nodes along witithe databasessed is detailed in Table A set ofgene

sequence quies ae contaned in filesnt.1 andnt.10. nt.10 has 10 such queries white.1 has

only one query. Siharly amino acid equences & mntained in files al and a.10. Eachmode

in BLAST uses a particular cobination of query att database type which is also describedén th

table. To refer to the"squeryin file nt.10, for exanple, we will write it ant.106).

. Sub-
Modes Database Queries .
Queries
nt.1 None
blastn — compares gene sequences nt (May 28, 2003)
nt.10 10
. . aa.l None
blastp — compares amino acid sequences nr (June 292003) 22,10 10
blastx — compares transkd genes withraino nt.1 None
: P 9 nr (June 292003)
acids nt.10 10
tblastn — conrpares tanshted anino adds with aa.l None
p nt (May 28,2003)
gene sequences aa.1l0 10
Table 1: BLAST exeation modeswith databases used andueriestested.
3. Performance Profile of BLAST
‘ Execution Time —e— Query Length
5000 1000
£ — 4000 | L 800 3
o 2 c
§ & 3000 - - 600 9
- <]
~ S 2000 - L 400 &
' ®© °
:3;@ 1000 - - 200 ¢
0 o F
S IINIDISIIE N SN ASICSIIE ANINI SISO DINIDS
B e e s S s e e s S e s e
BEEEEEEE S gmmmmg EEEEEEEE mmmgmg
blastn blastp blastx tblastn
Queries

Figure 3: Relation betweenquery length in charaders and execution time for all queries in BLAST.

In general, te execution tira of a BLAST quey depends on two factors: (1) Quelgngh

and (2) Quer Content. Figure 3 showthat for sone caes quey length dos not necesxily

affect executon time. Thi is accentuded bynt.1 and nt.10(4) queries

inblastn

mode. Both

queries havalmost the same querlength andone quey runs for aminute and the other for

about 3 hoursTo understand theeason for this behavior we collected functpofiles and cygle

breakdown nformation for all queries and odes lised in Tabé 1. All data in thigpaper was

collected onHP zx6000workstations (dual &nium-2 processors) runnirignterprise Redhat

Linux 2.418.

Function Name blastn blastn blastp blastx Thlastn

nt.1 nt.10(5) | aa10@) | nt.10(6) | aa.10(9)

BlastNtWordFinde 77.42% 2.33%
BlasiNtWordExtend 1173%
ALIGN_ padked nul 296% 4.62%
RealBlastGetGappi\lignmentTracéadk 65.40%
BlastCheckHSPInclusion 21.44%
BlastWordFinder mh_catig 54.03% | 5220% | 66.93%
SEMI_G_ALIGN EX 23.29% | 25.63% 7.82%
BlasWWordExtend prelim 17.66% | 18.39% 453%
BlasiTransbteUnanbiguowsSequence 18.75%

Table 2: Top function profile for selectel queries.Only the most dominant functions along with the
percentage of time spent in those functions are lisleCells that are blank represent functions that
are not dominant for that query.

Top function profiles andcycle breaklown d&a were obtained fronmintel's ORC (Open
Research Copiler v2.1) compiled binaies at O2optimization level. Top faction pofile in
Table 2 shows that for different queries anddes of execution a different profile is @lied.
Not all queries are listeth this table, but ol the ones that differ firm one another. Other

gueries show functioprofiles verysimilar to some of these profiles

o 100% -

80% - @ Register dependency stalls

60% - O RSE Stalls

B FPU Stalls

B Branch Mispredictions
B |-Cache Stalls

40% -

20% -

0%

% of total execution cycle

B D-Cache Stalls
nt.l ‘ nt.10(4) aa.l nt.l aa.10(1) O Unstalled Cycles
blastn blastp blastx tblastn
Queries

Figure 4: Cyde breakdown for selectedqueries from every node. Queries not iown havea cycle
breakdown similar to oneof these queriesn the sasme mode

Figure 4shaws the cyle breakdown ér sone queries obtainedsing hardwee performance
monitors. For thélastnmode, the # nt.10 quey stalls for nore than 90% of the execution time,

and alnost all of it due to data cachmisses. All of the long running queries blasn have a

cycle breakdown siitar to this. Other queries do hbave such a high percegé of data cache
stalls. Theyare spread among data cache stallanch mspredictionsand register dependency
stalls. Execubn profiles of BLAST quees show tk dynanic behavior othis application under
different inputs. Since execution time is conmtelependentmany other queries notni this
evaluation could show aifterent execution profilelt is alsoclear that themajor perfomance

bottlenecks are data carhtalls and branchispredicion stalls.

4. Effect of Static Optimizations

In order to understand and evaluate the pewoie of aggressie static optimizations, &
tried to apply optirizations at varing levelsto see their effect on perfoemce. We capiled
BLAST with various optineationslevels, using three different cgilers. The comilers usedare
the GNU C compiler (GCC v2.96),Electron C ompiler (ECC v7.1) and the Open Reart
Compiler (ORC v2.1). Our goal was to identid canpiler and an optinzation level that resulted

in the fastest bingrand elminatedmost of the bottlenecks seen in the previoast®on.

60%
50% -
40% -
30% -
20% -
10%

0% |
-10%

BOORCO1
B ECCO1
B GCCO2
OORC 02
EECCO2
B GCC O3

blastn nt.1 blastn blastp aa.1 blastx nt.1 tblastn Average OORC 03

nt.10(4) aa.10(1) BECC O3
Selected Queries

% Speed-up over GCC -O1

Figure 5: Effect of gatic optimizations am various modes of BLAST acrossseleted queries.The bars
represent sped-up over GCC O1 optimization. Samecompilers with different optimizations have the
same olor. Different compil ers with the same optimization level are placedtogether.

Figure 5 shass the speed-up of thregtonizationlevels for the three differemompilers with
GCCO1 asthe baseline foseleted queies. FOrORC, O2 optimzation has théest perfamane

across rost BLAST nodes and for mostqueries.ORC O3 performs onlglightly worse than

ORC 02. GCC abko showssimilar results. Howeer, ECC O3 has asignificant slowdownas
compared to ECC O2. For some queries, ECCi©®©aroundl12% slower than ECC O1. Further
investigation revealed that ECC aggressivaptimizes programs athigher levels of
optimizations, so mch sothat performance ibanpered in many cases. In one case, wmntb
that ECC inserts prefetdhstructions in a hokbop where prefetching is noeeded. We discuss
the effectof redundant predtch instructions in section 4. Querieb4and 7 in nt.10 in thielastn
mode (onlynt.10(4) is shownnt.10(5) andnt.10(7) are similar) do not shownuch performance
improveament. These quergeare daninated by data cache stalls. €hthree cmpilers used could
not issue theeeded prefetchesp theywere not able to optirpe these querie$Ve will discuss

more about the perfenance charaetistics of these queries in sectib.2.

‘ O blastn nt.1 @ blastn nt.10(5) O blastp aa.1 O blastxnt.1 Mthlastn aa.l ‘

10%
5% -

e) M I =

-10% nt. ‘ nt.10(5) aa.l 1 aa.l
-15%
-20% - —
25% blastn blasgtp blas|tx tblastn All

-30%

Speed-up w.r.t ECC 02

Queries used to generate profile

Figure 6: Performance of profile basedoptimization ushg ECC 8. The X-axis shows the queries hat
were used as profiles to geerate profile trained binaries. The bars show the speed-upf various
guerieson profile trained binaries.

Since BLAST shows dyamic program behaviowe tried profile-guidd optimizations (PGO)
using GCC,0RC and ECC to see if profilingan identifyand elminate major perfomance
bottlenecks. To test thperformanceof profiling, we collecteda profile for each querand
applied them individua}l and also bycombining all profiles.When a cmpilation failed, we
reduced the optiimation levels for failed mdulesto obtain a prdfe-trained binary Despite our
best effortave were unable to generatan instumented binaryusing GCC v3.4.0 (as this version

supports pofiling) ORC and ECC v7.1. Howevewe wee successful in generating pilef

trained binaries using EC@3, so we pesent theeasuts of profile based opthizations using this
version of EZC. Figure 6shows nmor speed-up isame caseslflastn, nt.) while others suffer
significant slowdown. Een when the bingris trained with thesame input,He aa.l quely on
blastp mode slows down significagtl A 100 fold increase inhe systemtime caused bylata
TLB misseswhich increased frorseveal hundredmisses tanore than 2 nillion misses, restgd
in the slowdown. This increaswas @used bya speculative load that generated avesaife

exception ora TLB miss.This is the default behaviaf Linux on Itanium2 platform

O blastn nt.1 mblastn nt.10(5) O blastp aa.1 mblastx nt.1 mtblastn aa.l

15%

N

8 10% ™ _

o 5%

%]]I t._[lﬂﬂ
=

S 5% aa.l nt.1 aa.l

D -10%

;’.)_ 5% blastn blastp blastx thlastn All

Queries used to generate profile

Figure 7: Speed-up obtained from PGO after reconfiguring the kernel to dder TLB miss exceptions
on geculative loadsto hardware.

When we reconfigured the kernel tiefe TLB misses on speculative loads,swm time
decreaed tonormal values and gave apeed-umf 11%. Figure 7shows the péormance of PGO
using he reconfigurekemel. Figure6 also showshat binaries trained ugjna $ngle profle hawe
a negative impact on perfoemce of other queriekEven whentte profiles ae¢ canbined we see
that noderae performane gains. These resuliadicate that the existence of a represirda
input is essential for proélguided opthizations. Foreal world applications,ush an inpumay
be difficult to generateWe alsoseethat inan efort to increae perfomance, profile-guided
optimizations use aggress speculative operatiotisatmight have unexpected secondaffects

(such as speculation faik)r reducing prformance.

4.1. Effect of Inserting Prefetches

In this section, we exame the negative effeadf prefetches inserteanprudently by a statcc
compiler. At high optimization levels, copilers becone very aggressive in apply
optimizationssuch as datprefetching. Howeverexcessiveuse @ prefetch inguctions may add
extra cyles in loops. It ray also replae active datdrom the cabe. There are also some subtle
micro-architetural effects that onemust takeinto consideration when issugnprefetchesFor
exanple, the Itaniurr2 processos L2 cache hands manyderrand loads and prefetch operations
simultaneously in a non-blockinfashion by using gueue. Issuip excessive prefetch operations
could fill up this queue and dejfadenand loads fron being issed to the L2cache. Earlierwe
saw that EC O3 is slower than ECC O1. For a quénythe blastx mode, we foundhat a
prefetch instruction is a@d in a loopwith an aerage trip countf 10. Data for 64 iteratits in
the future was fetched, so the prefetcheth daas infrequentlyused. We found that micro-
architecturalbottlenecks also contribaitto the slowdown. Weused performance counters to
quantify the slowdown due to roro-architectural bottlenecks. Figure Bows a statcycle

breakdown othis quey using ECC OXnd O3 ofimizations and a handgtmized O3 binay.

—

» 50 1000% O

g /.\ ®)
g = 40 » O | mmmmECCO1

S o L 100% W
3 30 $ |C—JECCO3

= 20 ™ 3 |==Ecc o3 noP)

T F10% o
& 10 ﬂ % |—e—ECCO3

(]

0 A ; | .J:U:L, 1% B

[

L1D and EXE Flush Front End =

FPU
Back End Bubbles

Category of Stalls

Figure 8: Breakdown of gtalls for ECC O1 and O3 and for a binary with the useless prietch
instruction converted to aNOP called ECC O3 (NOP). The line indicates the pecentage incrase of
counters in ECC O3 over O1 (this scdeis logarithmic).

Two observations can be made:

10

1. The nunberof stalls due to the registstackengine(RSE) has gone upylmore than 800%
Register stack engine stalls correspond to areased register pressure. Tl®xpected as

aggressive optiimations tend to usenore registess due to larger basic blocks ananfr

speculative ad prefetch operations. However, itismall perentage of the total stall cles

2. A largeincrease § seen inthe number of stall cycles in the exeaution unit (EXE). This \as

due to an increase in thedaty of loadscatsing an increasin the execution unit stalls.

Load Operations Measures ECC O1 ECC O3 E(ﬁgp?)g
Total Latency 519,209 540,465 594,354
Prefetched bad Average Latency 16.74 17.@ 18.8
Frequencyof Sanples 16.7%6% 16.5/% 20.2%
Total Latency 559,195 784,085 587,684
Another Load Averagelatency 12.16 12.3 12.24
Frequencyof Sanples 24.8% 33.(8% 25.33%

Table 3 Information about two loads n a hot loop mllected ky sanpling ondata cache misses fo a
qguery in blastx mode. Note that total latency is the sum of ndividual latencies of samples. Actual
"T otal Latency" for thisload would be much higher. The unit of latency isa clockcycle.

We sanmpled performancecounters to eermine laencies of indiidual loads.Table 3 liss
same statistics collected for loads in thet loop. ECC at O3 issues a petthfor a load inthe
hot loop. Due to the prefigh, another load ithe same tee nowhas a higher total latency and
also has a higher frequeno§ occurrence in # sanples colleotd, which implies a higher iss
ratio for thisload. The dad that is prefetched has no pmovement in theotal latency On
renoving the prefetch, total latendgr this loaddoes not changey much. However, thesecond
loads total latencygoes down ginificantly, close to that in EC O1. This indicates thaitker
cache pollution has ocawed due tothe useles prefetch or hat sane micro-architectual
bottleneck occurs due to the extnemoy operations. This argudsr the factthat the canpiler
cannot alway make intelligent decisions abouthe behawr of loads, and aggressive
optimizations maylead to kowdown.

Static optinizations generate single optinized bnary to targé performance bottlenecks

across different inputs and rime caditions. If the inputs show coli€ting behavioracross

11

inputs, or certain runtime constraints limit the féectiveness of optirizations, static and prité-
guided optinzations may negativelyimpact perfornance.In the fae of such restrictios in
compiler optimizations, w tested perfanance of BAST on a runtine optimization franework,

called ADORE, which is discussed next.

5. Effect of Dynamic Optimizations

Dynamic optimzation is a technique that deplsy optimzations based on runten
charactéstics of programs. Many applicatiorshow dyamric phase behavior. For exate, a
load nay hit in the cache during onghase and msin the other. It is difficult to optimae such
load operations using static profile-guided optirizations. Dyiamic optimization is a viable
solution as ittan detect such pke changes and tweak op#iations on phasehanges. Dgamic
optimization can aso canpliment profile guidedoptimizations, ly modifying the deplged
optimizations to adapt to éhcurrent runtira environment. For examle, if the dynart optimizer
detects an ineased nmber of TLB misses or d& speculation failures due to speculative loads,
it can decide to convert the speculatie loads testandard loadotreduce TLB nsses or the cost
of recoverycode. Since auntime optimizerdepbys optimzation strategiedbased on theucrent
input, it can effectivelyaddress codeegions notoptimized by PGO. Thissection details our
experience sing a receatly proposed dyamic optimization framework called ADORE
[13][14][15]. We discussthe swtem briefly followed by an explanation of its efé¢ on

performance.

5.1. The ADORE Framework

ADORE (ADaptive Object-code REptimization) is a conpletely transparent dyamic
optimization sytemthat optinizes prograns in 4 phases: (éBrofiling (b) Phase Deteatin (c)
Optimization and (d) Deployment Profiling involves collectilg runtime characteristis of a

programto deternmine astablephase(a portion of execution that hasasle chaacteristcs forthe

12

purpose ofprefetching) and to providenformation aboutioads that frequentimiss in the cache.
In the case of prefetching,stalbe phase occurs whehe programexecutes ahost the sene code
with a relatively stable CPI and datachemiss ete. The Itaniumarchitecure [1§ provides
various courdrs for analyzing performance. Thesmunters can be sahed periodicallyto get
the latest pdormance chacteristcs ofthe pogram Profiling is carried out bymonitoring the
Linux perfmon[18] inteface in another thread athedto the original progma. Samples of
performancesvents are collectefdlom this interface and stored a buffer. Ezery 1 secondhis
buffer is analyged to decide if the an progam incurs a phasehange. Aphase deteot is
invoked perbdically thatcalculates the CPI, thdeta-cachemisses per instruction (DPI) drihe
average value of the prograoounter. Corparing these values with values frothe earlier
computations, a phase amge can be detected. Alprwith this meaure, eah sanple provides
information to build a sigle-entrymultiple-exit unitof code calledrace on which ogimizations
are perforned. This inbrmation includes the cumé pragram counter and distoly of the last
four taken banches frmm which an execution patleading to the sapted bottleneck can be
formed. Mary traces an be fomed ina stable phaswith each tace being optimized bthe trace
optimizer. Currently, ADORE does data prefetching thiree types of references (1) direciagrr
(2) indirect aray and (3) pointer chasing. For direct arnr@ferances, astrideis alculatedand
prefetch instuctions are gnerated everal iterdions ahead. The #nium architeture provides an
instruction calledfetch for issuing such prefetches. It is a nondihg and non-faulting load, so
this optimzation is architecture-setsafe. Prefiching for pointe chasing is initiated using an
approach similar to inducn ponters. Once th collected traces are optired, the memory
imageof the binaly must be patched t@xecute thse tracesinstead of the orignal code. This is
achieved bymodifying the bundle athe beginnng of the traceso it can jurp to the optimized
trace. Thismodification is alsorecoded by ADORE so thatit can undo the optiization, if

needed.

13

5.2. Performance of ADORE

Figure 9 shows thegfformance of ADORE on viaus queriesBinariescompiled at —OZare
used as batine canparion because, thelyavethe best overall perfarane. The graphs show
same variance in speed-up on binaries @ied usng different compilers due to the differences
in code genmtion andoptimization strategie®f these copilers. Sone queies benefit bya
significant anount fran ADORE while others suffeslowdown of about 0.3:5%. The queries
that are optimized are tHeng running queries vadse stalls cgles contributea large peraatage
to the total cgles. One of the long runningastn queries 1t.10@)) conpiled by ECC runs as
much as 58% faster. Amimedate adantage of sth a runtimeoptimization systemis that only
one inplementation of various optizations works for binariescompiled with differern

compilers. Due to space restriction we willstiussperformanceof ADORE an ORC canpiled

binaries ony.
60%
45% [
o
=}
- 30% -
<]
a 15%
%) 0
R 0% T s T —mm
-159, |_blastnnt.l blastn blastn blastn blastpaa.l blastxntl thlastn
nt.10(4) nt.10(5) nt.10(7) aa.10(1)
Queries
OGCCO2mORCO2@ECCO2

Figure 9: The speed-up fom applying ADORE to GCC, ORC and ECC conpiled binaries. All
binaries are mmpiled at —O2 optimization. The peedup is with respect to the O2 binay from the
same conpiler without runtime optimiz ations. Not all queries are shown here and those that arnot
shownsuffer a minor slowdown similar to a query from the same mode that has a sbwdown.

To see whyADORE speeds up swe queriesand not the othersye plotted the running CPI
(CPlyiginat) for eah of thee queriesWe alsocalkulaed CPlgaiea by Subtracting the staftycles
from the exeution cycles to give the actual nuoerof cycles the programeedsin the absence of

all bottlenecks. Since CRaied iS calculated on each intevfor which the actualCPI is

14

calculated, @l ngaleq IS as long as th€PI. CPlsmies ShOWs thanmaximum peformance potential
of a particula interval. Thus CPlugaied iN @ W&y represents the inkent ILP of the program for
this architeare. Wealsoplot the CPI after appiyg runtime optimizations (CRborg). Figure 10
shows a plofor a long running gery in blastn mode that vassped up. The CPI startdf very
close to the ideal or unstall&PI. Then executiormoves to a dferent function andhe Pl goes
above 3. Hwever, the CRlgales reneins at around.273. Fromthe stall cgle breakdown, we

can conclude that such a large departure ftwridealzed CPI is due to data caomisses.

-2 1 1 1 1 1 1 1
20 320 620 920 1220 1520 1820 2120

Cycles/Instruction
(o]

Time (seconds)
Original CP| —— CPl(unstalled) ——CPI(ADORE)

Figure 10: Plot of running CPI calculated by sampling performance counters perodically. CPlapore
is shotter than original CPI dueto sped-up from ADORE.

for (index=0; index<hgpent index++) { for (index=0; index<new_hspent; index++) {
hg =hg_arayfindex]; for (segalign_va=*head;
for (index1=0; indexl<index; indexl++) { sajalign var->next '= NULL;) {
hgl=hg arayindexi]; segalign_var = segalign_var->next;
if(... hspl->query.offset ..)
(a) Indirect Lads (b) Pointer Chasing

Table 4: Part (a) ows code that is optimized by prefetching indirect loads andpart (b) shows
pointer chasing code that is prefetched ushg anapproach similar to induction pointers.

Table 4 show code snipgs in whichADORE was succasful wsing data préetching. Table
4(a) is the code that causes a CPI of around 3fasds due tafrequent nisses in the indect
load hspl->query.offsetADORE initiated a prefetchor thisload that decreases CPI to ara
1.23. In the next phase change, CPI increasedtd &he bottlenek again waslata cachenisses
due to indirect loads. Heever, ADORE was not abl® prefett this load aghe branchr the

tracewas unbiased. This happens on low trip couants, prefetching, if initiated, would not have

15

been useful. In the presence of unbiased paths ahdexiting loops, ADORE does notpaly
prefetching to avoid bringing useless data ineodhche. In the next phase, the progeeuutes
a pointer-chasing loop shown in Tallfh) thatcauses veryigh latencycachemissesADORE
assumes thata stride exists between pointels, and uses thdifference betveen successve
addresseg to prefetch fordture iterations. Instrunmting this loop revealethat strides exisfor
same of the accessed data. Inconsistent stciolgpled with vey high lateng caused the CPI to

remain consderablyhigher than CRJgaleq but lower than the origial CPI.

0.7

0.5 +
0.4 +
0.3 +
0.2 +
0.1 +

0 1 1 1 1 1 1 1 1 1
1.4 8.2 15.0 21.8 28.7 35.5 42.3 49.2 56.0 62.8

Cycles/Instruction

Time (seconds)
Original CP| —— CPlI(unstalled) —— CPI(ADORE)

Figure 11: Plot of running CPI for a short running blastn query. The CPI plots for other modesand
gueries thatdo not sped up haveCPI plots closely following thisplot.

Figure 11 shws the plot of CPI for ahort runnig queryin blastn mode. The running CPI
(around 0.%) hardly charges and is close to GRduieq (@raund 028). There are no significant
data-cach bottlenecks in this prograltADORE recaynizes this fact and does not toyoptimize
the code. Anattempt at prefetching for such quesecould haveincreased tle runtime die to
reasons w discussed imsection 4. For queries thare not optnized, ADORE adds aly a
minimum amountof overhead, which is theverheadf sanpling and phase detection.

Thus, ADORE dparmically detects dotimating perfornance bottlenecks and deploys
optimizations to the target code. As seenliegrcurent inplementation of BO cannot take
advantage of such opportunities due to lackcaéhe profile. The optitmations that ADORE
deploys can also be depjed staticalf. However,there isa tradeoff of cost of optimization

versusbenefit ofoptimizaton. This forces a awopiler to deploysuch optinizations only if it is

16

sure that the optiipation would benefit the pgplication across all inputs. Furthesre, the
compiler may not know the micro-architecture omvhich the opimized binarywill execue. This

complicates the decision as the bottlenet&y be nicro-architectue specific.

6. Optimizing Branch Mispredictions

Much researh has been done on pmoving branchprediction usig hardware schemes, but
few software schemes have been developedaftapting todynamric branch behaviorlp)].
Predication can be used tomgilnate branch mspredictions, butt is difficult to use predication
with while loops. The gcle breakdowrof BLAST (Figure 4) shws that, for sme queries, there
are a significant nuber of stalls due to branahispredictionsTo find out the reason for these
mispredictions, we Biulated an idealizedhardware for branch pradiion usirg an
instrumentation tool called PIN [L7Itanium2 stores branch prediction information assded
with each instruction cache line. It uses a 4-hidldnistory to slect a 2-bit saturating counter
from a 16Kentry pattern historytable Theseare te structuresused for direct branchebat
represent ahost all types of dgamic branchinstructions found i BLAST. The simulated
hardwarestoresm-bit saturation court for all nbit local patterns for a particular brandie
used the quennt.l for the blastn mode as thigjuey has asignificant anount of branch
mispredictions. Using performance obers and shulation, we foind hat a significant portin of
branch nispredictions occur due to one branchmast case when the branch isnispredicte, it
is not-takenwhile the cainters are &urated attaken We found that increasing branchstoiy
does not gie any improvenment. Even with a 1®it local histoy, branch prediction di not
improve. Fraon the results of simlations, we conladed that lie pattern oforanch outcomes is
such, that it iglifficult to predict thenot-takenbranches using brandistories.

An optimizer can dobetter branch predictionf the prediction is based on the datattha
deternines branch outcome, rather tham branchistory. Since branch prediction is dong the

front-end nstruction fetchengineandthe data thatlecides brancloutcone is conputed in the

17

back-end, there should Igesufficient distance beeen the data and the defdent branchThe
prediction mechanm of an indirect branch, iftanium2, is based on the assption that tke
branch target is the value that is stored in tlzadin register at thiame of instruction fetch. If w
convert the direct branch into andirect banch and copute the target of the branch (fall-
through or t&ken path inthe original @de) in tle branch register earlgnoughfor the instruction

fetch engine to see the correct branch talganch mispredictions would be eliminated.

Taken: Taken:
add rx = ... add rx=. .,
c cmp px,py=rx,0
) (px)mov bl=Taken
{ .mmb [Convert {py)mov bl=NotTaken::
to T o ' Distance > §
cmp.eq px,py=rx,0 { .mib][L1l acoauncs
(px)br.cond. . Taken;; 500
} br bl;;
NotTaken: }
(Direct Branch Loop) NotTaken- (Indirect Branch Loop)

Figure 12: The convesion of direct branch to an indirect branch in a loop for the Itanium-2
processr using psaido-assenbly code.

Figure 12 shows a loop with a conditional direcrch convertedo an uncondional indirect
branch. Thearget of the mdirect branch is conddnally chargedto thetakenor not-takentarget.
Target address calculation shoblel a &ir distarce away(> 6 L1 instruction accesses in Itanium
2) fromthe branch for th&ront endto e the correctalue of the teyet registerThis is the main
constraint inusing ndirect branches fgeerfect bop prediction. he benefit ofthis schera is that
branch prediction will be accurate foramcheswvith unpredictable patterns. In the caselitastn,
the loopis very tight causing thenovinstruction tobe very closdo the branb. Due to ths we
could not applythis transformation t@LAST. To see if this skbeme could be applied to other
prograns, we analyged he top five mispredicting branches for progrann the SPECIir2000
benchmark suite. We estimated the bemof execution gcles between data and depertden
branch, ly moving he data dependence chain asdaayfrom the branch agossible. Figure 13

shows that dependence chain isyviight, with an average of 2.2 executiorycles betwveen data

18

and branch, except for eon that hasae@ragedistarce of 12 exeation gscles. A distance 06
L1l accesses would need at lsta dstance of6 execution cycles beeen data and kanch

instruction.

Cycles
»

o . X N
NP)

S
{\'Q:\" K
Q'b'

O

SPECIint2000 benchmarks

Figure 13: Average number of exeution cycles between dita and dependent branch for
SPECIint2000 benchnarks.

Branchmisprediction is still a significant bottlenk in real-world applications. The proxity
of data and dependent branch reduces the plitysds influencing bramch preliction hardware,
in time to affect prediction accurachiowever, wien such opportunities aevailable, such as for
Eon, a ¢gnamic optimzer may be able to deploour pr@osedtechnique todecrease branch
misprediction stalls. Astated earlier,a canpiler can deploythis optimzation too, butthe
tradeoff still remains the sameA conpiler must ensure thathe optmization will provide
performancebenefit across inputs dracross differat micro-architectures before agpig the

optimization.

7. Related Work

The concept of traces isnglar to Superbloks proposedby Pohua et Ain [20]. The
Superblock aids the application of opizationsswch as dad ode elmination and sora loop
optimizations bygenerating single-entr multiple-exit code regions. Path pradg are alo used to

perform new optimizations that irprove the loclity of instruction cache bye-ordering basi

19

blocks and splitting prodires. Petti®t al. in[21] discuss profile-guided code positioning and
Cohn in R2] discussesiot-Cold optimzations that make use of path profiles.

Software calee optimization to predict cachenises and issue thely prefetches based on
profile information is used yoAbrahamin [10]. He collected various statistics abdoddsstores
into a cacheprofile. This information is used todrive canpiler-directed preftching. Mowryin
[23] proposed colining cache profiles with patfiormation to forma corelation profilethat
provides infomation about the cache tevior of aload for a speéic path.The main idea ishat
same loadsmay miss in the cache along certairthmand summazing this infomation across all
paths can ledhto inferior cache profile.

To deal wih runtime profile challenges sth @ inaccuratemapping of profile fron an
optimized bhary to sour@ code, lack of availality of source code (espedialfor library and
legacy code) and necessity of recquifation, appling optimzations post-ink was proposd
Post-link time optinzations for inter-proceduratiead code elimination antbop invariant
optimizations were evaluated ir24]. Luk [25] applied profile information post-link to find
strides and initiate prefetitty for loads hat cannobestaticallyanalyed forregular patterns.

Reality based optirization [13 appliesprofiling to realworld applications. Theygollect aml
combine profiles over time to generate a reggnatative profile. Zille§26] speculativelypre-
computes backward slices of delinquent loadat thre identified byprofiling. This method is
effective if a representate profile is availble. The centrallimitation of profiling is the
assunption that runtine characterists of prograra will be insensitive to profiled inputsshich
may not be tle case fomary applications. Dynamic optinization frameworks wereproposedis a
solution for hese problems. Mangystens besidesADORE (section 5.1have been proposed.
Dynano [27] starts runnig statically compiled executables thragh interpretation, ath geneates
code fragments into a fragment cachiers& sehumber of code interpretations. Its traceeden
policy can lad to inproved I-cache perfarance for benchnarks with stable executiopaths.

DynanoRIO [29] is an x86 gnamic optimizer baed on Dyamo that allows custazation of

20

dynarmic tasls through amAPI. When ahot trace isfound, a fragment is formed that is ivaty
executed. Catinuaus ProgranmOptimization (CP0O)28] compiles an instrmented version of the
intermediatebinary to continudly generate an executiqurofile of the pogram An optimizer
runs continuouslyn the bakground, using the catted profile information to drive profile based
optimization (PBO) in parallel with prograraxeation. Mojo [30] is a dyamic optimzation
systemdeveloped % Microsoft targeting x86 ardectures that depys optirizations throuf a

trace.

8. Conclusion and Future Work

Cache misses and branch ispredictons remain significant bottlenecks in present-day
applications. Such performance bottleneciegy move fran one region tohe oher depending on
the inputdata sets. Stat@nd profile-giided optinzations generate onenaity and hence are less
likely to address these bottleneadectively. In this work, weused a realorld application,
BLAST, which highlightsthese issueand suppds a cas for the snplicity and efficacy of
runtime optimizations.

In optimzing BLAST, we found hat traditonal aggressive optimpations donot have a
significant inpact on performanceBLAST exhibits dynanic behavior for different input sets.
Current inplementationsof profile-guided optinizations could ot identify delinquent loals o
initiate the needed prefites, resulting in gor performance. fie limiting factor in current
profile-guideal optinization was the absence of@presentative input andtwr information in the
form of cacle profiles. We also foundhat certain optinzationsmay have secondgreffects that
are hard topredict at corile time. However, the application of runtim optimization using
ADORE was quite sinple. It was able to handle large real-wadd application ancbptimize it
across different copilers with no change inoptimization strategy It could target critical
performancebottlenecks that led to speed-upk up to 58% for sme input sets. Runtime

optimization can canpliment existing comiler optimizations bydeplo/ing ogimizations or fine

21

tuning existng optimizations, to gain biger perfeamance. Branclmisprediction was found to be a
significant bottleneck for spe inputs, and wetried to eliminate stallscaused bysuch
mispredictions. We found that the distance betwdsta and dependentaorch is generally too
small to influence the braoh prediction in timeHowever, the scheewe proposeanay be used
for applications that have a greater diseabéweendata and dependent brarstich as Eon.

In future, we plan to studynore real world applications, like databases, flomodeling and
circuit simulation applicatbns, toundestand andevaluate the eéictiveness oflifferent runtime
optimization techniques. The questia@ have in mind isWhat optimization strategiese most
effective and are relatively simple &pply fromthe perspective breal world applications, the
end user andhe developef® This work shows that runtienoptimization could be succegkin
reducing stalls for large applicationshile exiging static optimizations are lited by several
factors. With the anays of more applicationswe hope to identify the strengthad weaknesse

of static and gnarmic optimizations, so #t bothtechniques can be further advanced.

References

[1] Altschul, S.E, Gish, W.,Miller, W., Myers, E.W. & Lipnan. D.J., Basic d¢cal alignnent
search toolJ. Mol. Biol 215, p403-410,199

[2] Altschul, S.F, Madden, TL., Schéffer, A.A.,Zhang, J., ZhangZ., Miller, W. & Lipman,
D.J. Gapped BLAST and PSI-BLAST: a negeneration of proteindatabase earch
prograns. Nucleic Acids Rs. 25, p3893402,197.

[3] Gish, W. & States, D.Jldentification of potein coding regions bylatabase siilarity
searchNature Genet3, pH6-272, 1993

[4] Karl Pettis, Robert C. Hansen.ofite guided code patsoning. In PLDI, p.16-Z, June 190.

[5] A. Ramirez, L. Barroso,K. Gharazhorloo, R. Cohn, J. Larriba-PeyP. G. Lowney M.
Valero. Code layoubptimizationsfor transaction processing workloadis ISCA'01, p.155
164, 20Q.

[6] P. P. Chang, W. W. Hwu. Trace selectiom é@mpiling largeC application programto
microcode Proceedings of the 21st annuaborkshop on Microprogramming and
microarchitecture p.21-2, 1988.

[7] W.W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, RE. Hank, T.Kiyohara, G. E. Haghl. G Holm, D. M. Lavery. The superblock:
an effective technique for VLIW and superscalarcompilation. The Journal d
Supercomputingv.7 nl1-2,p.229-243, May 1993

[8] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann. Effectivepier
support for pedicated execution usingpe typerblack. In MICRO'92, p.45-54, Decmber
01-04,192.

22

[9] Brad Calder, Peter [ller, Alan Eustace. Value profilingln MICRO’97, p.259-359,
December 01-03,997.

[10] S. G. AbrahamR. A. Swgumar, D. Windheiser, B. R. Rau, Rajiv Gupta. Predictapitf
load/store instruction latencies. MiCRO’93, p.139-152, Decerber 01-03,199%.

[11] Todd M. Augtin, Gurirdar S. Sohi Dynamic dependencynaysis of ordinary prograns. In
ISCA'92 p342-351, My 19-21,192.

[12] Scott McFarling. Realiypased optinzation, InCGO’03 p59 — @, 2003.

[13] J. Lu, H. Chen, P.-C. ¥w, W.-C. Hsu. Design and Iprementation ofa Lightwepht
Dynanic Optinmization System In The Journabf Instruction-LeveParallelism vol.6,2004.

[14] H. Chen, efAl. Continuous AdaptivéObject-Code Re-optiigation Franework. Ninth Asia-
Pacific Computer SystestArchitectureConferencepp. 21— 25, 2004.

[15] J. Lu, H. Chen, R. Fu, WC: Hsu, B. OthmerP.-C.Yew. The Performance &untime Data
Cache Pradtching in a Dynamic Optimization System In MICRO’03, Decenter 2003

[16] Intel® Itanium® Manualshttp://www.irtel.comdesgn/itaniumimanuals.htm

[17] PIN - A tool for software instrumentian of Intel® Itaniun® Linux programs,
http://www.intel.conmsoftware/products/opensource/tools1/inst/

[18] PerfMon, htp://www.hpl.hp.confresearch/linugerfron/

[19] CIiff Young, Michael D. Smith. St& correlated branch predictioACM Transactions on
Programming Languages arg}stems (TOPLAS).21 n5, p10281075, Septeber 1999.

[20] P. P. Chang$. A. Mahlke, and W. WHwu. Usng profile information to assist classic de
optimizations.Software-Practice and Experiencl(12), #301-1321, Decerber 1991.

[21] K. Pettis, R. C. Hansen. Pilefguided ode positionig. INPLDI'90, p.16-27, June 199.

[22] Robert CohnP. G. Lowney Hot coldoptimization of large Windows/NT applications. In
MICRQO’'9%, p.80-89 Decenter 02-04,1996

[23] Todd C. Mowry Chi-Keung Luk. Predting dda cachamisses in nomuneric applications
throuch correlation profilng. In MICRO’97, p.314-320, Decenber 01-03,1997.

[24] A. Srivastava, D. W. Wall. A practical st¢m for internrodule code optization at link-
time. Journal of Prograrming Larguages1(1), p.1-18, March 193.

[25] C.-K. Luk, R Muth, H. Rtil, R. Weiss, P. G. LowneyR. Cohn. Profile-guided post-link
stride prefetching.n Proceedings of the 16th intertianal confeence on Supercomputing
p. 167-178, 2002.

[26] C. B. Zilles, G. S. Sohi. Understandingetivackward slice®f performance degrading
instructions, h ISCA’0Q p.172-181, June 2000.

[27] Vasanth Ba, Evelyn Duesterwald,SanjeevBarerjia. Dynamo: a transparent dsiic
optimization system In PLDI'00, p.1412, June 18-2, 200Q

[28] T. Kistler, M. Franz. Contims Pogram Optimization: Design and Eluation IEEE
Transaction orComputes, vol. 50, no. 6, June Q01

[29] D. Bruening T. Garnett, S. Amrasinghe. An rfrastructure for Adaptive Dyamic
Optimization In CGO’03 2003

[30] W.K. Chen,S. Lerner, R. Chaiken, drD. Gillies. Mojo: A dynamc optimzation system
In FDDO-04, pages 81-9@ 0.

23

