
Phase-Aware Remote Profiling

Priya Nagpurkar Chandra Krintz Timothy Sherwood

Computer Science Department
University of California, Santa Barbara
{priya,ckrintz,sherwood}@cs.ucsb.edu

Abstract

Recent advances in networking and embedded device
technology have made the vision of ubiquitous computing a
reality; users can access the Internet’s vast offerings any-
time and anywhere. Moreover, battery-powered devices
such as personal digital assistants and web-enabled mobile
phones have successfully emerged as new access points to
the world’s digital infrastructure. This ubiquity offers anew
opportunity for software developers: users can now partic-
ipate in the software development, optimization, and evolu-
tion process while they use their software.

Such participation requires effective techniques for gath-
ering profile information from remote, resource-constrained
devices. Further, these techniques must be unobtrusive and
transparent to the user; profiles must be gathered using
minimal computation, communication, and power. Toward
this end, we present a flexible hardware-software scheme
for efficient remote profiling. We rely on the extraction of
meta information from executing programs in the form of
phases, and then use this information to guide intelligent
online sampling and to manage the communication of those
samples. Our results indicate that phase-based remote pro-
filing can reduce the communication, computation, and en-
ergy consumption overheads by 50-75% over random and
periodic sampling.

1. Introduction

The explosive growth in Internet bandwidth and avail-
ability has precipitated a significant change in the way that
software is bought, sold, used, and maintained. Users are
no longer a set of disconnected individuals that passively
execute disks from a shrink-wrapped box, but are instead
often far more involved in the software development and
improvement process. Users currently demand bug fixes,
patches, upgrades, forward compatibility, and security up-
dates served to them over the ever-present network.

This ubiquity of access offers a new opportunity for soft-
ware engineers: users can now participate in the software
development and evolution process. Specifically, users can
dynamically transmit error reports upon program failure in
modern operating systems [21]. Moreover, effective remote
monitoring systems have been proposed in the literature and
deployed that allow users to participate in coverage test-
ing [20] and bug isolation [18, 7],while they use their soft-
ware.

We are currently developing a similar system for pro-
gram performance optimization and software evolution.
However, unlike prior work, the platforms that we are tar-
geting are those that have emerged as new access points
to the world’s digital infrastructure: mobile, resource-
constrained, battery-powered devices, e.g. personal digi-
tal assistants (PDA) and web-enabled cellular phones de-
vices and their software continue to grow in complexity and
capability, techniques are needed to ensure efficient exe-
cution, user satisfaction, and minimal power consumption.
Feedback-based optimization and software evolution offers
potential for such systems since such techniques gather in-
formation about a programwhile it is executing, once it has
been deployed in the wild.

Since mobile devices typically have neither the extra
space for compilers and optimizers, nor the resources to ex-
ecute them on-the-fly, we propose an alternative solution:
a distributed optimization system. Our system will gather
information about a running program, transmit this infor-
mation to anoptimization centerfor analysis, possible re-
coding, and re-compilation using feedback-based optimiza-
tion, and then update the code on the end-user system when
the opportunity or need arises.

Key to the success of such an approach, and the topic
of this paper, is a highly efficient remote performance pro-
filing system that istransparent and unobtrusive, i.e., that
consumes only minimal device resources. This latter re-
quirement is a significant challenge since profiles are com-
monly collected by executing instrumented versions of the
software. Moreover, for deployed software, we must also

communicate this information back to optimization center
for analysis. This problem of overhead introduction is ex-
acerbated for mobile devices with limited resources as this
performance degradation can translate into significant bat-
tery drain.

With this work, we present a novel approach to re-
mote program profiling that achieves efficiency and accu-
racy throughthe exploitation of program phases. Using
program phase behavior, we can summarize a software sys-
tem as a minimal but diverse set of program behaviors in
a manner that is distributed, dynamic, efficient, and that
accurately reflects overall program behavior. We propose
a hardware-software method for general-purpose program
profiling. The hardware efficiently monitors program ex-
ecution behavior and makes predictions about what phase
will occur next. The software system samples the program
for only previously unseen phases, significantly reducing
the overhead of program profiling. We evaluate both the
efficiency (in terms of computation, communication, and
battery power) as well as the accuracy of our approach for
a number of different profiles types that have been shown
previously to be important for feedback-based optimization,
e.g., hot methods, hot call pairs, and hot paths.

In summary, this paper makes the following contribu-
tions:

• New architectural features that are useful for profil-
ing and optimizing remote connected devices such as
IPAQs and cell phones. These hardware hooks, guide
flexible software profiling in selecting the most impor-
tant parts of program execution.

• We show that these hardware guides for sampling can
be built by exploiting the concept of program phase be-
havior, and that profile communication can be reduced
by up to a factor of 6 over random sampling (where
both achieve an accuracy of 10%).

• A simple online policy for deciding when to profile
that is almost as effective as one with full trace knowl-
edge

• A demonstration that phases can be used to accurately
guide the profiling of multiple different types of infor-
mation (basic block profiles, hot methods, and call-pair
tracing

• An empirical evaluation of these techniques for all
of the overheads associated with remote profiling for
resource-restricted devices (communication, computa-
tion, and power).

We describe each of these components and their empiri-
cal evaluation in the sections that follow.

2. Remote Profiling

Profiling an application that is under the control of the
developer is commonplace today. In a typical software de-
velopment cycle, programmers test and optimize their ap-
plication using some set of inputs. In this setting, the over-
head introduced by profiling is not of great concern since
the program is being executed solely for the purpose of test-
ing and identification of optimization opportunities. One of
the limitations of this methodology, however, is the choice
of inputs used by the developer may not fully exercise a
program. Moreover, testing and optimizing for all possible
hardware configurations, software configurations, and use-
scenarios is not feasible. These problems are exacerbated
by user requirements, preferences, and devices that change
over time.

To address these issues, we propose to gather profiles
from deployed softwareas it executes on user devices that
are connected via the network. These profiles will help de-
velopers understand how their code is being exercisedin
the wild aiding in the creation of user models, assisting in
the classification of users into groups that exercise the pro-
gram in a similar manner, and to enable feedback-based dis-
tributed optimization and software evolution.

2.1. Sample-Based Remote Profiling

Upon instigating this research, we assumed that the ma-
jor challenge would lie in the analysis of profile data and its
use for optimization. We immediately discovered that even
the initial step of gathering profile data from our target plat-
forms, wireless IPAQ devices, was a significant hurdle. It
is this aspect of our system that we examine in this paper.
Initially, it may appear that we can apply extant techniques
from the areas of sampling and architectural performance
analysis [13, 27, 3, 2, 8] to our problem of remote profiling.
The problems appear similar since both are concerned with
the examination of a small subset of a programs execution
and the use of that information to estimate and evaluate the
performance of the running application. In fact these two
problems, and the solutions that address them, differ in sev-
eral significant ways.

The first important difference is that in an online profil-
ing environment, a decision has to be made at each point
in time, whether or not to profile. Most of the past work
requires multiple passes over the data, at least in the worst
case. For example, in the SimPoint framework [24], the first
pass over the data analyzes the program at a high level by
finding regions of execution that are similar to one another.
The next step, then examinesall of the points and picks a
small subset of the program’s execution for sampling. Sta-
tistical sampling techniques suffer from a similar problem
in that they may require multiple passes over the data until

0 1 2 3 4 5
Instructions Executed (Billions)

0.0
0.1
0.2
0.3
0.4

uJ
/In

st
r

Figure 1. The figure shows the run-time power usage of the full execution of the program mpeg
encode.The program exhibits different phases, marked by periods o f high and low power. A random
or periodic sampling method (the white triangles) will cont inue to take samples over the full execution
of the program. A more intelligent sampling technique based on phase information (shown as black
triangles) can achieve the same error, by taking few key samp les from each phase.

the statistics of the results stabilize. This is not directly ap-
plicable to our problem since once a profile isnot taken for
some amount of time, there is no going back to re-take it.
Furthermore, the decision as to whether a profile should be
taken at timeT , must be made from partial knowledge of the
program execution from time 1 toT − 1, i.e., we mustpre-
dict when to sample. The second difference is that our goal
is to develop a profile gathering technique that is general
purpose enough to be used for a variety of profiling appli-
cations. As such, we cannot rely solely on hardware perfor-
mance counters to provide all of the information we need.
Instead we need a more widely applicable software instru-
mentation. Moreover, we must keep performance overhead
to a minimum to reduce interference and to not degrade the
user’s perception of program or device performance (e.g.
computation, communication, battery life).

The final key difference is the severely limited resources
of end user devices that we must employ. It is acceptable
for an offline technique to generate gigabytes of trace in-
formation and to spend hours analyzing it, but this is not
the case for a cell phone or a PDA. Since we must impose
very little computation and communication overhead on the
users to maintain transparency, we must extract profile data
very efficiently – while ensuring that we collect an accurate
snapshot of the program’s behavior.

2.2. Phase-Based Remote Profiling

The key to enabling efficient, post-deployment, remote
collection of accurate profile information is the exploitation
of program phase information. Phases can be used to cre-
ate an intelligent profiling scheme that carefully chooses
profiling pointsonline. The way a program’s execution
changes over time is not random, but is often structured
into repeating behaviors, i.e., phases. Using the descrip-
tion of phases from our previous work [23], a phase is a set
of dynamic instructions, i.e.,intervals, during program ex-
ecution that have similar behavior, regardless of temporal
adjacency. Prior work [23, 24, 25, 11, 14] has shown that it

is possible to identify, predict, and create meaningful clas-
sifications of phases in program behavior accurately. Phase
behavior has been used in the past to reduce the overhead of
architectural simulation [24] and to guide online optimiza-
tions [11, 14, 25].

In this paper, we employ program phase behavior in a
novel way: to enable efficient collection of accurate pro-
file information from remote users. The advantage we gain
by using phase information is that we need only to gather
information about part of the phase and we can then use
that information to approximate overall profile behavior. By
carefully selecting a representative from each phase, we can
drastically reduce the number of times that we need to sam-
ple and the amount of total communication required for pro-
file transmission to the optimization center. Since an inter-
val will be similar to all other intervals in a phase, it can
serve as a representative of all other intervals in the phase.
As such, only representative intervals of the program phases
in the program need be collected (instrumented, communi-
cated, and analyzed) to capture the behavior of the entire
program. This will make more efficient use of those limited
resources available on mobile devices. Furthermore, these
low-overhead profiles will be highly accurate (very similar
to exhaustive profiles of the same program).

Figure 1 exemplifies our approach using actual energy
data gathered from the execution of the mpeg encoding util-
ity. The execution of mpeg exhibits a small number of dis-
tinct phases during execution that repeat multiple times. A
random or periodic sampling method will continue to take
samples over the full execution of the program regardless
of any repeating behavior. In Figure 1, the white triangles
show where samples would be taken if sampling is done pe-
riodically to achieve an accuracy error of 5% (i.e. the result-
ing basic block count profile is within 5% of the exhaustive
profile) . This has the unfortunate drawback thatmostof the
samples will not provide any new information because they
are so similar to samples seen in the past. A more intelligent
sampling technique based on phase information (shown as
black triangles) can achieve the same error rate with sig-

����
��

���	
��
��
��	
��	�������
��

����	����	��
�����
��

 !"
#$%
&

'()*+,-./012 3�4456�7�4�3�89:;<=>:?<

���7�3�@
A3�B��C
�DE43���(F

G HI

J

Figure 2. Overview of the phase-aware profil-
ing scheme. Phases are tracked in hardware
(A) and the results are fed to a small table
that tracks the state of each phase (B). When
a phase is deemed to be important , the pro-
filer is notified and a sample is taken (C). The
sample is stored, along with its importance
in a small profile buffer in either hardware or
software (D). This information is then trans-
mitted back to a trace aggregation center (E).

nificantly fewer samples. This is done by taking only key
samples from each phase.

2.3. Supporting Phase-Driven Profiling

Figure 2 depicts our implementation ofPhase-Aware
Profiling. Although each of the components can be imple-
mented in either hardware or software, we take a hardware-
centric approach. To predict the phase in which a future
interval will be, we employ the Phase Tracker hardware
that we proposed in prior work [25]. The PhaseTracker
is a small, low area, low overhead hardware resource that
consumes approximately 4 picojoule of energy per dynamic
branch. The Phase Tracker (A) collects dynamic branch be-
havior of a program into intervals and segregates the inter-
vals into phases according to a similarity threshold between
interval execution characteristics. The similarity threshold
governs how many phases are generated and how similar the
intervals are within a phase. A higher threshold value will
generate fewer phases, each consisting of more intervals –
and the similarity across the intervals any single phase will
exhibit more variance. Thus, we can adjust the threshold
according to the number of samples needed; however the
resulting samples will cover the most diverse and important
sets of behaviors. The Phase Tracker uses branch program
counters and the number of instructions executed between
branches, to produce a prediction for the phase of the next
interval, (complete details on the prediction process can be
found in [25]). Prior work has shown the accuracy of Phase-
Tracker phase prediction to be 85-90% [25]. We assume
a prediction accuracy of 100% in this work; as such, our
results indicate an upper bound on the potential of phase-
aware profiling performance.

Since the PhaseTracker is shared by multiple processes

in a large-scale system (much like hardware performance
monitors (HPMs)), we must provide a mechanism to dis-
tinguish per-process phase data. In this work, we assume
that the PhaseTracker tracks a single process and that the
operating system toggles phase tracking (via a register in
the PhaseTracker hardware) upon a context switch. We are
investigating the implementation of such techniques as part
of future work.

The Phase Tracker outputs aphase ID, which is a unique
identifier for the behavior likely to be observed in the cur-
rent interval. We store the phase IDs in a small table to track
each phase and identify when a sample should be taken. We
have found that a table of size 20 ensures that there is a min-
imal number of misses if the table is fully associative with
random replacement. In general, the worst case is one in
which two similar behaviors are sampled more than once
as a resulting table miss. However, the performance effects
from such misses are negligible for tables of this size. The
table tracks a list of phase IDs and stores a “sampled bit”
that indicates if the phase has been sampled so far. Addi-
tionally, we record a count of the number of times this phase
has been seen in the past. Our system makes a sampling de-
cision using a representative selection policy (describedin
Section 3.2.1).

When a decision to sample an interval is made, the pro-
filer (C) is informed to take a sample. The profiling system
is one in which profiling can be turned on and off. Such a
system can be implemented in either hardware or software.
We assume a software based profiling scheme like [3, 16, 7]
that switches between instrumented and non-instrumented
versions of the code depending on whether a particular part
of the execution is to be profiled or not. As part of future
work, we are incorporating a hardware based approach to
avoid code duplication based on the DISE dynamic expan-
sion of microprocessor instructions [9]. Once the profile has
been generated, we store it in a specialized profile buffer
and tag the profile with the phase id (D). In addition to the
profile data, we record a trace of phase IDs from intervals
in previously seenphases. This enables us to reconstruct
accurate time-varying behavior of the program if necessary.

Once the buffer fills, it must be emptied via transmis-
sion. At this point, the profile is transmitted over a wireless
network (part of the IPAQs or over a cellular network) back
to some data center for study (E). We evaluate the efficacy
of transferring data intermittently while the program is ex-
ecuting (e.g. when storage is limited) as well as transfer-
ring the complete phase trace once the program terminates.
Since communication consumes significant battery power
in mobile devices, we must ensure that we minimize the
number of bytes transfered. As such, in addition to using
phase behavior to reduce profile size, we also incorporate
compression of the trace prior to transmission. However,
the application of compression consumes computational re-

sources. We include the effect of this tradeoff (increased
computation for decreased communication due to compres-
sion) as part of the empirical evaluation of our approach. In
general, we found that the benefit from reduced communi-
cation overhead far outweighs the computational overhead
we introduce – in terms of battery power.

3. Empirical Evaluation

In this section we present the empirical evaluation of our
approach. We begin with a discussion of our experimen-
tal methodology. We then present results from a number
of experiments we performed to evaluate the efficacy of
phase-aware remote profiling for resource-constrained de-
vices. We present empirical data for both profile accuracy
and collection overhead and compare our system to two
other commonly used profile collection techniques.

3.1. Experimental Methodology

Since we are targeting mobile devices such as cell
phones and PDAs, we evaluated our system using six bench-
marks from the MediaBench benchmark suite [17], a suite
designed for the empirical evaluation of media applications.
The benchmarks we used include the encoding and decod-
ing programs for mpeg (movie), jpeg (picture), and gsm
(voice). We show the basic statistics for the programs and
inputs we used in this study in table (a) of Figure 3. The sec-
ond column in the table is the number of static branches in
the program, which correlates with the size of the branch
profiles generated. The next five columns show the dy-
namic statistics: number of branches executed (in millions),
number of instructions executed (in millions), the cache
miss rate assuming a 64K, 4-way set associative, instruc-
tion and data cache, the energy consumed by executing the
program (in Joules), and the execution time (in seconds).
Since the inputs that are provided with MediaBench are
very short, and because these applications are typically used
in a streaming fashion, it was necessary to find more sub-
stantial inputs to analyze the realistic long term effects of
profiling. We plan to make these inputs available via our
web page.

We evaluated our remote profiling framework using sim-
ulation; we employed SimpleScalar to emulate a Stron-
gARM processor extended with a branch tracking mecha-
nism. We modified the simulator to emulate the capture
of phase information as described in [25] with an interval
size of 10 million instructions. We used the BitRaker Anvil
framework [5] to collect different profile types (described
in Subsection 3.2.3).

To compute energy consumption and execution time,
we used a model that we generated from an actual hard-
ware system. We computed the energy consumed per-
instruction (including events such as cache misses) and

per-byte-transmitted energy consumed and instructions per
second. The values used are summarized in table (b) in
Figure 3. We generated these values using an HP iPAQ
H3835 running Familiar Linux v0.6.1, a Lucent/Orinoco
Gold wireless card, and hand-coded benchmarks. We pe-
riodically (every 10 seconds) measured battery voltage and
current levels using external monitors. We calibrated our
model and validated it against a variety of benchmarks.

In the table ((b) in the Figure), we report the average
Joules/s consumed by each of these latter single-instruction
programs (IREG: integer register operations, IMEM-R:
load operations that miss in the L1 cache, IMEM-W: store
operations that miss in the L1 cache, and FPREG: float-
ing point operations). We compute instructions per sec-
ond of each benchmark in a similar fashion using the in-
structions per second measurement of each constituent in-
struction type (reported via simulation). To compute the
power consumption for transfer, we computed the number
of Joules per byte transfered using the specifications of our
wireless card. We show these values and the Joules-per-
byte-transfered in the final row of the table.

3.2. Results

To evaluate the impact of remote profiling on both the
power and timing and to examine its accuracy versus its
overhead, we implemented four different profile collection
policies:

• Exhaustive - gather an exact profile for each interval.
We use this policy to evaluate the accuracy of the other
policies.

• Periodic Sampling - gather a profile every Nth interval,
for N in [3,100].

• Random Sampling - gather a profile for interval i with
a probability of 1/N for some N

• Phase-based - gather a profile for every interval that is
dissimilar from all previously gathered intervals, given
some threshold of similarity.

For the periodic and random techniques, we gathered
data for different sampling frequencies. The number of in-
tervals profiled, and therefore the percentage of total ex-
ecution profiled, depends on the sampling period N. We
performed experiments for a range of sampling frequencies
which correspond to a range of overheads and accuracies.
Because a truly random technique is at the whim of chance
as to whether or not it performs well, we characterized two
aspects of random profiling for each of the different percent-
sampled values: 1) we computed the average error across 10
runs (avg random), and 2) we computed the maximum er-
ror seen across 10 runs (max random). To get a range of

 Dynamic Statistics Average Instr / s
Static Branches Instructions Cache Energy Time Instr Type Joules / s (Millions)

Benchmark Branches (Millions) (Millions) Miss Rate (Joules) (seconds) IREG 0.865 204.790
gsmdecode 572 182.05 1610.05 0.000 29.93 16.35 IMEM-R 0.973 19.462
gsmencode 748 79.42 2562.29 0.000 29.38 19.93 IMEM-Rcache 0.000 137.510
jpegdecode 930 111.76 1421.33 0.006 46.50 21.87 IMEM-W 1.340 11.625
jpegencode 1175 433.70 4218.60 0.002 100.65 51.41 FPREG 0.965 0.439
mpegdecode 1104 309.95 3007.85 0.001 65.03 900.63
mpegencode 2216 244.25 4196.19 0.001 52.63 282.40 Wireless Specification Max
Average 1124 226.86 2836.05 0.002 54.02 215.43 Card 5V*0.285A Bandwidth

Transmit 1.425 11Mb/s

(a) (b)

Figure 3. (a) General benchmark statistics (b) Empirical da ta used to compute energy consumption.

accuracies and overheads, we adjusted the parameter N and
examined the effect.

For phase-aware profiling, as described earlier, we began
with an implementation of the phase prediction system that
we developed in prior work [25]. We then picked an inter-
val from each phase to act as the representative from that
phase. We implemented various policies that identify dif-
ferent phase representatives. As we demonstrate in the next
subsection, the policy used to pick this representative can
have a large impact on the results, especially at low sam-
pling rates. Unlike the random and periodic sampling ap-
proaches, there is no sampling frequency variable that we
can vary to get different tradeoff points between accuracy
and overhead. Instead, we achieve a similar effect by dy-
namically tuning thesimilarity threshold. The similarity
threshold determines the cutoff point at which two intervals
are said to be similar and hence are part of the same phase.
As we lower the threshold, the system detects more unique
phases, each with a fewer number of intervals. As this
occurs, more samples will be taken (since there are more
unique phases) which will increase both the percentage of
the program’s execution that is sampled and the accuracy of
the profile.

To measure profile accuracy, we compared each sampled
profile to the exhaustive profile. We computedpercentage
error in basic block countsas our accuracy metric. We
computed this value as the element-wise difference in basic
block counts between a sampled profile and the exhaustive
profile. We then divided this value by the total counts in the
exhaustive profile to produce percentage error.

In the subsections that follow, we first evaluate the accu-
racy of different policies for representative selection. We
then (Subsection 3.2.2) compare the accuracy of the dif-
ferent profiling approaches: random, periodic, and phase-
aware. In subsection 3.2.3, we demonstrate that our ap-
proach is not specific to basic block count profiles by pre-
senting empirical data on the accuracy of hot method, hot
call-pair, and hot path profiles. We then present data (Sub-
section 3.2.4) on the overhead of these profiling approaches.

0

5

10

15

20

25

30

35

40

phase:
centroid

phase:
random

phase:
first

phase:
third

random
sampling

%
 E

rr
or

 in
 B

lo
ck

 C
ou

nt
s

Figure 4. Evaluation of representative selec-
tion policies. The graph shows the average
error in block counts at 1% sampled for dif-
ferent representative selection schemes. The
black bar shows the performance of average
random sampling (non-phase-based).

Finally, we describe in subsection 3.2.5 some extensions on
how we can further reduce the overhead of phase-aware re-
mote profiling by employing multiple users of the same pro-
gram.

3.2.1. Selection of Phase Representatives

Figure 4 shows the percentage error at 1% sampled for
four different representative selection policies for phase-
based profiling. The y axis shows percentage error in basic
block counts. The different polices for representative selec-
tion that we studied were (a)first: select the first inter-
val as the representative, (b)centroid: select the cen-
troid of the intervals in the phase as the representative, (c)
third: select the third interval as the representative. (d)
random: randomly select one representative from all in-
tervals in the phase (we report performance for this policy
as the average performance of 5 selections), For compari-
son, the graph also includes error produced by the random

sampling method described earlier, which chooses random
samples from the entire program (black bar on far right).

As expected, the centroid method,centroid, performs
the best: its error remains low even when we sample very
little of the program. First andrandom perform the
worst. This happens since the first is not representative of
the steady state (the phase is just warming up) and because
selecting randomly can result in selection of a representa-
tive that is dissimilar to all others.Third enables accu-
racy that is between that ofbest andfirst/random.
That is,third is able to select an interval that is more
representative of the steady state of the phase thanfirst
andrandom. Moreover,third is simple and can be im-
plemented without additional overhead. As such, we use
third for the rest of the results in the paper.

3.2.2. Comparison of Sampling Techniques

To evaluate the efficacy of the different sampling tech-
niques that we considered, we calculated error in basic
block counts for different percentages of program execu-
tion sampled – the higher the percentage, the more accu-
rate the profile should be. The best performing profile tech-
nique is the one that produces the least amount of error for
the least percentage of the program that is sampled. Fig-
ure 5 shows the average error in block counts across bench-
marks using the third interval of each phase as the phase
representative. The graph compares the accuracy of each
of the different sampling techniques,avg random, max
random, periodic, andphase-aware. The y-axis is
error and the x-axis is percent of the program that was sam-
pled for a given parameterization of each technique.

The graph shows that on average, phase-aware profiling
results in significantly lower error for a very small percent
sampled. The error for periodic sampling approaches that of
phase-aware sampling for larger percent sampled values.

However, we can achieve very high accuracy using
phases, e.g., less than 5% error, by sampling a very small
amount of the program’s execution (4%). To achieve the
same accuracy, periodic sampling requires that 11% be sam-
pled, average random sampling requires that 20% be sam-
pled, and max random is never able to achieve an error of
less than 5%.

All of the results presented up to this point are across
all benchmarks and do not show how the performance com-
pares across individuals. Figure 6 shows the impact of the
error on each individual benchmark. We consider the per-
formance of each technique when we constrain the error to
be less than 1% and less than 5%. In the bottom graph (5%)
we can see that under these assumptions the basic block
error for most programs is quite low (under 10%). The
only exceptions are jpeg-encode and mpeg-encode, both of
which have errors in the range of 30%. The phase-aware
technique performs far better across the board. The only

0 5 10 15 20 25
% Program Sampled

0

10

20

30

40

%
 E

rr
or

 in
 B

lo
ck

 C
ou

nt
s

avg random
max random
periodic
phaseaware

Figure 5. Average error in block counts for
various sampling percentages.

gsm-dec gsm-enc jpeg-dec jpeg-enc mpeg-dec mpeg-enc0

20

40

60

80
%

 E
rr

or
 in

 B
lo

ck
 C

ou
nt

avg random
max random
periodic
phaseaware

(a)

gsm-dec gsm-enc jpeg-dec jpeg-enc mpeg-dec mpeg-enc0

10

20

30

40

50

%
 E

rr
or

 in
 B

lo
ck

 C
ou

nt

avg random
max random
periodic
phaseaware

(b)
Figure 6. Error rates for the four different tech-
niques across all benchmarks when the pro-
filing overhead is limited to 1% (top graph) or
5% (bottom graph).

benchmark with significant error is mpeg-encode which has
an error of 9%.

If we reduce the amount of profiling that be done by an-
other factor of 5 we get the top graph. In the top graph only
1% of the program can be sampled. At these lean profiling
rates, all of the programs have error rates at of above 20%
for both periodic and random. For some programs, such as
mpeg-encode, almost no useful information can be gathered
(the error rate is above 50%). Phase-aware sampling can
help to minimize this effect across all of the benchmarks.

3.2.3. Efficacy of Phase Profiling Across Different
Profile Types

We next demonstrate that phase-aware sampling is not
restricted to any one profile type by showing that it per-
forms well for three different types of profiles. We evalu-
ated the efficacy of each of the sampling techniques in iden-

0 5 10 15 20 25
% Program Sampled

0

10

20

30

40

%
 E

rr
or

 in
 M

et
ho

d
H

ot
ne

ss

avg_random
max_random
periodic
phase

0 5 10 15 20 25
% Program Sampled

0

10

20

30

40

%
 E

rr
or

 in
 C

al
lp

ai
r

H
ot

ne
ss

avg_random
max_random
periodic
phase

0 5 10 15 20 25
% Program Sampled

0

10

20

30

40

%
 E

rr
or

 in
 P

at
h

H
ot

ne
ss

avg_random
max_random
periodic
phase

(1) Hot Method Identification (2) Hot Call-pair Identification (3) Hot Path Identification

Figure 7. Efficacy of different sampling techniques for diff erent profile types

tifying frequently executing parts of the program. Profiles
that capture frequently executing parts are commonly used
for feedback directed optimization, e.g., hot basic blocks,
hot methods, hot call-pairs, and hot paths, and as such will
be important profile types for our distributed optimization
system. We measured the error produced by each of the
profiling techniques for these profile types. We report data
on all but hot blocks due to space constraints, however the
performance trend is very similar.

A hot method profile represents time spent in methods.
We generated this profile by counting method invocations
and the number of times loop backedges within the method
are executed. A hot call-pair profile captures frequency of
call edges, indicating the number of times a particular call-
site was executed. We generated path profiles using the
Ball-Larus approach [4]. We consider a “hot” event to be
one in the top 15% of the most frequent events.

We accumulated each profile for each of the sampling
techniques into a single profile vector. For basic blocks
for example, we gathered basic block frequencies in a sin-
gle basic block vector for each of the sampling techniques,
sorted it in decreasing order. We then identified the top
15% most frequently executed basic blocks (“hot blocks”)
in each profile and compared them to the top 15% hottest
blocks in the exhaustive profile. We counted the number
of blocks that were different from the exhaustive set, nor-
malized the value by the number of blocks in the top 15%
and multiplied by 100. The top 15% cut-off is with respect
to the exhaustive profile, though the sampled approaches
might not capture all events and therefore have fewer total
events in the profile. We also adjust the cut-off to include
all events at the cut-off point that have the same frequency.

Figure 7 shows the results. The x axis is the percent of
the program that was sampled, and the y axis is the percent-
age error in identifying hot methods, hot call-pairs, and hot
paths, averaged across all benchmarks. The graphs show
that the phase-aware technique performs considerably bet-

ter for all three profile types. For hot methods and hot call-
pairs identification, the phase-aware technique only needs
to sample 1% of the program’s execution for an error of less
than 10%. Other techniques have to sample 7 to 20 times
more to achieve similar accuracy. The difference is not as
pronounced for hot paths, where the phase-aware technique
has to sample 4% of the program’s execution for an error of
5%, and the other techniques have to sample 7%. The error
at higher values of percent sampled is sometimes more than
that at lower values because the relative ordering of events
changes, affecting the hotness classification, though the er-
ror in terms of absolute counts is not high. For the bench-
marks we considered, the average number of hot methods
and hot call-pairs were 22, and the average number of hot
paths was 50. In summary, phase-aware profiling performs
considerably better than the other techniques for all three
types of profile indicating that its performance is indepen-
dent of profile type.

3.2.4. Impact on Power

We next evaluate the impact of phase-based remote pro-
filing on resource performance (Figure 8). In particular,
since we are interested in making remote profiling of hand-
helds feasible, we study the impact on power consumption.
We measured the overall power consumption forall of the
required remote profile collection functions: computation
overhead for instrumentation, communication overhead (us-
ing compression), and computation overhead for applying
compression.

We assume a maximum accuracy error of 5%. To achieve
this level of accuracy, phase-aware sampling requires that
on average 4% of the program be sampled, periodic sam-
pling requires that 11% be sampled, average random sam-
pling requires that 20% be sampled, and max random is
never able to achieve an error of less than 5%. As such,
we focus on the former three techniques.

Sampling Overhead For Accuracy Error of 5%
% Sampled: Periodic: 11% AvgRand: 20% Phase: 4%

 Energy
Joules Percent Reduction

Protocol Periodic AvgRandom vs Periodic vs ARand
At End 7.75 15.02 58.97 78.83
Interleaved 8.24 16.03 58.90 78.86

 Computation Overhead
 Instructions Executed
 (Millions) Percent Reduction

Protocol Periodic AvgRandom vs Periodic vs ARand
At End 265.61 514.20 58.84 78.74
Interleaved 280.48 545.46 57.58 78.190.00 0.00

 Communication Overhead (Compressed)
 Bytes Transfered Percent Reduction

Protocol Periodic AvgRandom vs Periodic vs ARand
At End 2217.83 2217.83 0.00 0.00
Interleaved 27095.50 51683.97 51.36 74.50

Figure 8. Energy consumption of sampling
methods given 5% error

We show how 5% error translates into energy, computa-
tion, and communication overhead in the three sections of
the table in Figure 8. In each section, we show the aver-
age overhead for each metric across benchmarks for peri-
odic and average random sampling in columns 2 and 3. In
column 4 and 5, we show the percent reduction enabled by
phase-based profiling over each of these techniques, respec-
tively.

Each section in the table contains two rows of data for
the two different communication protocols that we studied.
For “At End”, we combine the basic block vectors of each
profiled interval into a single vector; upon program termi-
nation, we compress the vector and transmit it. Using this
protocol, phase-aware profiling reduces energy consump-
tion by 75% over random sampling. Phase-aware profiling
reduces computation overhead by requiring 72% fewer in-
structions for instrumentation over random sampling.

Given this “At End” approach, the communication cost
is the same across profiling techniques since we are com-
municating a single profile vector in either case (though the
counts will be different). However, we investigated another
protocol, one in which we compress and transmit the ba-
sic block vector after each interval. This protocol reduces
the amount of device storage required (which may be highly
constrained for real devices); as such, it is a realistic alterna-
tive that we should consider. Using this “Interleaved” proto-
col, phase-based remote profiling can also reduce commu-
nication overhead since fewer intervals are communicated
to achieve the same 5% accuracy. These results are shown
in the second row of each section. The reductions in over-
head for energy and computation are similar to the “At End”
protocol. However, phase-based profiling requires that less

0 5 10 15 20 25
Power Overhead

0

10

20

30

40

%
 E

rr
or

 in
 B

lo
ck

 C
ou

nt
s

avg_random
max_random
periodic
phase

Figure 9. Power (in joules) versus error.

than1/4 the number of bytes be transmittedto communi-
cate the same informationas the random approach.

The graph in Figure 9 summarizes our results using the
“At End” protocol. The graph shows the percent energy
overhead imposed on the program versus error for each
of the competitive remote profiling techniques. The data
indicates that by reducing the percentage of the program
sampled, we are able to achieve significant power savings
over random and periodic profiling. Moreover, we are able
achieve these savings while collecting profile information
that is very similar to exhaustive profiling.

3.2.5. Extending Phase-Aware Remote Profiling to
Multiple Users

Given a large connected user base, we can further reduce
the overhead of phase-based remote profiling by providing
feedback to users about phase discovery. If a user executes
a program using the same input as that used by another user
for which phase data already has been collected, the second
execution will provide us with no new information, wast-
ing resources needlessly. As part of our phase based remote
profiling system, we performed a preliminary investigation
into the use of phase IDs (those described in Section 2.3) as
a feedback mechanism to other usersso that they may avoid
unnecessary profiling. Such a technique requires that the
Phase Tracker and device architecture be homogeneous so
that a phase ID identified by the Phase Tracker for a partic-
ular program interval on one device is the same as that for
the same interval on another device.

To providedynamic feedbackto users, we communicate
phase IDs periodically, in the reverse direction. The remote
profiling system on the user’s device adds these phase IDs
to the phase ID table in the Phase Tracker (if they are not
already present) and sets their “sampled bit”. As such, when

0

5

10

15

20

25

30

N
um

be
r

of
 P

ha
se

s
Id

e
nt

ifi
e

d
Individual

Runs
Feedback
Profiling

Figure 10. Similarity matrix (left) for the gs-
mencode MediaBench benchmark across 5
different executions using different inputs.
The right graph shows the number of phases
identified if we profile this benchmark with
each input separately (left bar broken down
by input). The right bar graph shows the num-
ber of unique phases. Only unique phases
need to be sampled using our feedback-
directed phase profiling technique.

a previously unseen phase is predicted, it isonlysampled if
it also has not been provided by the feedback mechanism.

By communicating phase IDs of known phases to users
(so that their systems avoid sampling them), we can reduce
the overhead of phase-aware sampling when users execute
the same program with the same inputs. However, it may
also be possible to use this technique when the same phase
occursacross inputs. A more realistic scenario is one in
which software is deployed and users execute it with a wide
range of diverse inputs. Each input will cause the program
to exhibit phased behavior; for some programs, some phases
may be the same across inputs.

To evaluate the potential of feedback-directed remote
phase profiling, we analyzed many different inputs for one
of our benchmarks,gsmdecode. Figure 10 shows the sim-
ilarity matrix for this benchmark. A similarity matrix is a
2-dimensional array all of the intervals in a program; each
entry is the similarity value between two intervals encoded
as a grayscale value with dark values identifying similar in-
tervals (in the same phase), e.g., the points on the diagonal
are black since an interval is exactly the same as itself. The
x-axis and y-axis of figure are increasing interval id’s. We
omit data in the lower triangle for clarity, since it is sym-
metric with the upper triangle. We read the figure by first
selecting an interval on the the diagonal and then travers-
ing the row. By doing so, we can visualize how similar the
row interval is compared to all others that follow it during
execution. By traversing the column above, we can visu-

alize how similar the row interval is compared to all other
intervals that came before it during execution.

Commonly, similarity matrices are used to analyze the
execution of a benchmark running a single input [19, 25].
However, we use it here to visualize execution offive dif-
ferent inputs. We concatenate the intervals from each input
and then compute the similarity between each interval in the
entire set. The dark regions indicate that even across inputs
there are many intervals that are very similar, i.e., there are
phases that span inputs.

The graph on the right in the figure shows the number of
total intervals in all five executions ofgsmdecode. The
total height of the left bar is 28, indicating the number of
different phases identified if we were to execute the pro-
gram with each input individually. The left bar is broken
up into pieces, indicating the number of phases found for
each input. The right bar shows the number of intervals that
we must sample, across all five inputs, to gather all of the
uniquephase behavior: 18 phases.

The data shows that there are 10 phases (36%) that over-
lap across all of the inputs. This indicates that there is
potential for reducing the overhead of phase-driven remote
profiling further using feedback-directed profile collection.
For this benchmark, we can communicate the phase IDs to
the user base as each is discovered by individual users. For
programs that execute a phase that has already been iden-
tified, we can avoid collection and communication of the
profile.

4. Related Work

Our work builds upon and extends a body of related re-
search on program phase behavior [23, 24, 25, 11, 14, 12,
19, 15]. Our work is novel in that it is the first, to our knowl-
edge, to investigate the efficacy of remote performance pro-
filing. Moreover, we use program phase behavior to sig-
nificantly improve the efficiency of remote profiling and as
such, we make it feasible to gather performance character-
istics about software for mobile devices post-deployment.

The other area of research that is related to our work is
that of sample-based profiling techniques. Many other re-
searchers have identified that an entire program need not be
profiled to extract accurate execution behavior information
from it. Instead, many sample-based approaches have been
proposed [13, 27, 3, 2, 8]. Sample-based profiling is used
to gather performance statistics about a program for use on
the same device (as opposed to remotely), in compiler and
runtime optimization.

Extant sample-based profiling techniques that couple
hardware support for performance profiling include those
that employ hardware performance counters [1, 10], and
others that use special-purpose hardware to guide sam-
pling [28, 22]. The work in [22] is somewhat related to the

research herein in that it describes a performance profiling
approach that couples hardware and software in an attempt
to reduce profiling overhead by using programmable hard-
ware to capture and compress profile information before
passing it on to software for analysis and exploitation. The
generated profile is in the form of a single or multiple event
streams. Dedicated hardware performs lossy compression
on this stream, by using hardware-based low-cost sampling
mechanisms, thereby reducing the amount of information
that the software profiler has to process. This approach is
completely orthogonal to ours, in that, it uses specialized
hardware to capture and pre-process profile information as
dictated by the software profiler. We are interested in using
specialized hardware to drive our profiling policies.

There are many sample-based, software-only perfor-
mance profiling techniques, e.g., [13, 27, 3, 2, 8]. These
approaches are intended to be used within extant dynamic
optimization systems. Duesterwald et al [13] present online
path profiling to enable hot path prediction in dynamic opti-
mization systems, and [27] examines several sampled based
techniques to gather profiles within a Java Virtual Machine
to enable feedback-directed dynamic optimization. In [3],
the authors present an online, software only mechanism
for sampling executing code. They use code duplication
(methods both with and without instrumentation) and trans-
fer execution between the two based on method invocation
and taken backward branch (backedges) counts. They show
that for sampling method call-pair frequencies and field ac-
cesses that their technique exhibits very low overhead. In
our work, we show that phase-aware profiling can capture
a wide range of profile types, e.g., basic block frequencies,
hot blocks, hot methods, hot call-pairs, and hot paths, with
high accuracy. As part of future work, we intend to com-
pare our approach to extant sampling techniques. Since
such techniques have no concept of interval, we therefore
must first identify a meaningful way to empirically perform
the comparison.

In addition, sample-, and instrumentation based pro-
gram monitoring is used to collect code coverage infor-
mation [26, 20, 6] and to identify errors in deployed pro-
grams [18]. The focus of our work is on performance profil-
ing; however, we believe that phase-awareness can be used
to gather code coverage information and to aid in bug iso-
lation. We plan to investigate such uses as part of future
work.

5. Conclusions and Future Work

In this paper, we couple hardware and software tech-
niques to enable efficient collection of remote profiles from
resource-restricted devices. The key to our approach is
the exploitation of program phase behavior. We show that
by using special phase tracking hardware to guide sample-

based profiling, we generate highly accurate profiles with
low overhead. Moreover, we demonstrate the generality
of phase-aware profiling by evaluating it for three different
types of profiles: hot methods, hot call-pairs, and hot paths.

We also investigate the identification of phase represen-
tatives – an execution interval that most accurately reflects
the behavior of the phase. Of the online methods we inves-
tigate, we find that the third interval is the best representa-
tive (as opposed to the first interval and random selection).
Our simulation results indicate that phase based profiling
enables a 50-75% reduction in overhead (communication,
computation, and battery power) over periodic and random
sampling.

Phase-based remote profiling requires that users be will-
ing to allow transparent sampling of the execution of their
software. Though there are many security and privacy con-
cerns for such a system, we believe that users will be incen-
tivized to participate since doing so will enable software
vendors to automatically improve performance, fix bugs,
and upgrade software transparently. As part of future work,
we plan to investigate novel techniques that ensure that the
information transmitted is obfuscated.

Also as part of future work, we are investigating the im-
pact of PhaseTracker prediction inaccuracy, the impact of
and solutions for OS and multi-process interference on the
PhaseTracker, the efficacy and efficient implementation of
phase ID feedback, and techniques for turning on and off
profiling efficiently in resource-constrained devices. We
plan to employ each of these mechanisms in the complete
implementation of our phase-aware distributed optimization
system.

References

[1] J. Anderson, W. Weihl, L. Berc, J. Dean, S. Ghemawat,
M. Henziger, S. Leung, R. Sites, M. Vandevoorde, and
C. Waldspurger. Continuous Profiling: Where Have All the
Cycles Gone? ACM Transactions on Computer Systems
(TOCS), 15(4):357–390, 1997.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the jalapeño jvm. InACM SIG-
PLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), Oct. 2000.

[3] M. Arnold and B. Ryder. A Framework for Reducing the
Cost of Instrumented Code. InACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), June 2001.

[4] T. Ball and J. Larus. Efficient path profiling. In29th Inter-
national Symposium on Microarchitecture, Dec. 1996.

[5] BitRaker INC. Anvil. http://www.bitraker.com/
Anvil.htm.

[6] J. Bowring, A. Orso, and M. Harrold. Monitoring Deployed
Software Using Software Tomography. InProceedings of
ACM SIGPLAN-SIGSOFT Worshop on Program Analysis
for Software Tools and Engineering, pages 2–9, 2002.

[7] T. Chilimbi and M. Hauswirth. Low-overhead memory leak
detection using adaptive statistical profiling. InProceedings
of the Symposium on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Oct.
2004.

[8] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO:
Java Under Dynamic Optimizations. InProceedings of the
ACM SIGPLAN 2000 Conference on Programming Lan-
guage Design and Implementation, pages 13–26, June 2000.

[9] M. Corliss, E. C. Lewis, and A. Roth. DISE: a pro-
grammable macro engine for customizing applications. In
30th Annual International Symposium on Computer Archi-
tecture, May 2003.

[10] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and
G. Chrysos. Profileme : Hardware support for instruction-
level profiling on out-of-order processors. InInternational
Symposium on Microarchitecture, pages 292–302, 1997.

[11] A. Dhodapkar and J. Smith. Managing multi-configuration
hardware via dynamic working set analysis. In29th Annual
International Symposium on Computer Architecture, May
2002.

[12] A. Dhodapkar and J. Smith. Comparing program phase de-
tection techniques. In36th Annual International Symposium
on Microarchitecture, Dec. 2003.

[13] E. Duesterwald and V. Bala. Software Profiling for Hot Path
Prediction: Less is More. InProceedings of the Symposium
on Architectural Support for Programming Languages and
Operating Systems, Oct. 2000.

[14] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Character-
izing and predicting program behavior and its variability.In
International Conference on Parallel Architecture and Com-
pilation Techniques, Sept. 2003.

[15] M. Hind, V. Rajan, and P. Sweeney. The Phase Shift
Detection Problem is Non-monotonic. Technical Report
RC23058, IBM, 2003.

[16] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for
low-overhead temporal profiling. InFourth ACM Workshop
on Feedback-Directed and Dynamic Optimization (FDDO-
4), 2001.

[17] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia
and communicatons systems. InInternational Symposium
on Microarchitecture (Micro-30), pages 330–335, 1997.

[18] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug Iso-
lation via Remote Program Sampling. InACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI), 2003.

[19] P. Nagpurkar and C. Krintz. Visualization and Analysisof
Phased Behavior in Java Programs. InACM International
Conference on the Principles and Practice of Programming
in Java, June 2004.

[20] A. Orso, D. Liang, M. Harrold, and R. Lipton. GAMMA
System: Continous Evolution for Software After Deploy-
ment. InProceedings of International Symposium on Soft-
ware Testing and Analysis, pages 65–69, 2002.

[21] M. X. E. Reporting. http://support.microsoft.
com/default.aspx?scid=kb;en-us;310414.

[22] S. Sastry, R. Bodı́k, and J. Smith. Rapid Profiling via Strati-
fied Sampling. InAnnual International Symposium on Com-
puter Architecture, pages 278–289, July 2001.

[23] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. InInternational Conference on Par-
allel Architectures and Compilation Techniques, Sept. 2001.

[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior.In
10th International Conference on Architectural Support for
Programming, Oct. 2002.

[25] T. Sherwood, S. Sair, and B. Calder. Phase tracking and pre-
diction. In 30th Annual International Symposium on Com-
puter Architecture, June 2003.

[26] M. Tikir and J. Hollingsworth. Efficient Instrumentation
for Code Coverage Testing. InInternational Symposium on
Software Testing and Analysis, 2002.

[27] J. Whaley. A Portable Sampling-based Profiler for Java Vir-
tual Machines. InProceedings of ACM JavaGrande Confer-
ence, pages 78–87, 2000.

[28] C. Zilles and G. Sohi. A programmable co-processor for
profiling. In HPCA, pages 241–, 2001.

