
Fast Track:
A Software System for Speculative Program Optimization

Kirk Kelsey, Tongxin Bai, Chen Ding
Department of Computer Science

University of Rochester
Rochester NY, USA

{kelsey,bai,cding}@cs.rochester.edu

Chengliang Zhang
Microsoft Corporation
Redmond WA, USA

chengzh@microsoft.com

Abstract—Fast track is a software speculation system that
enables unsafe optimization of sequential code. It speculatively
runs optimized code to improve performance and then checks
the correctness of the speculative code by running the original
program on multiple processors.

We present the interface design and system implementation
for Fast Track. It lets a programmer or a profiling tool
mark fast-track code regions and uses a run-time system
to manage the parallel execution of the speculative process
and its checking processes and ensures the correct display of
program outputs. The core of the run-time system is a novel
concurrent algorithm that balances exploitable parallelism and
available processors when the fast track is too slow or too
fast. The programming interface closely affects the run-time
support. Our system permits both explicit and implicit end
markers for speculatively optimized code regions as well as
extensions that allow the use of multiple tracks and user defined
correctness checking. We discuss the possible uses of speculative
optimization and demonstrate the effectiveness of our prototype
system by examples of unsafe semantic optimization and a
general system for fast memory-safety checking, which is able
to reduce the checking time by factors between 2 and 7 for
large sequential code on a 8-CPU system.

I. INTRODUCTION

The shift in processor technology toward multi-core,
multi-processors opens new opportunities for speculative
optimization, where the unsafely optimized code marches
ahead speculatively, while the original code follows behind
to check for errors and recover from mistakes. In the
past, speculative program optimization have been extensively
studied both in software and hardware as an automatic
technique. The level of improvement, although substantial, is
limited by the ability of static and run-time analysis. In fact,
existing techniques target mostly single loops and consider
only dependence and value based transformations.

In this paper we describe a programmable system we
call fast track, where a programmer can install unsafely
optimized code while leaving the tasks of error checking
and recovery to the underlying implementation. The system
uses software speculation, which needs coarse-grain tasks
to amortize the speculation overhead but does not require
special hardware support.

while (...) {
...
if (FastTrack ()){
/* unsafely */
/* optimized */
fast_fortuitous();
}
else {
/* safe code */
safe_sequential();
}
EndDualTrack();
...

}
Figure 1. Unsafe loop opti-
mization using fast track. Itera-
tions of fast_fortuitous will
execute sequentially. Iterations of
safe_sequential will execute
in parallel with one another, check-
ing the correctness of the fast itera-
tions.

...
if (FastTrack ())

/* optimized */
fast_step_1();

else
/* safe code */
step_1();

...
if (FastTrack ())

/* optimized */
fast_step_2();

else
/* safe code */
step_2();

Figure 2. Unsafe function
optimization using fast track.
Routines fast_step_2 and
step_2 can start as soon
as fast_step_1 completes.
They are likely to run in paral-
lel with step_1.

The programming interface allows a programmer to opti-
mize code at the semantic level, select competing algorithms
at run time, and insert on-line analysis modules such as
locality profiling or memory-leak detection. Figures 1 and 2
show example use of fast track to enable unsafely optimized
loop and function execution. If the fast tracks are correct,
they will constitute the critical path of the execution; the
original loop iterations and function executions, which we
refer as normal tracks, will be carried out in parallel, “on
the side”. Thus, fast track allows multiprocessors to improve
the speed of even sequential tasks.

One may question the benefit of this setup: suppose the
fast code gives correct results, wouldn’t we still need to wait
for the normal execution to finish to know it is correct?
The reason for the speed improvement is the overlapping of
the normal tracks. Without fast track, the next normal track
cannot start until the previous one fully finishes. With fast
track, the next one starts once the fast code for the previous
normal track finishes. In other words, although the checking
is as slow as the original code, it is now done in parallel. If



the fast code has an error or occasionally runs slower than
the normal code, the program would execute the normal code
sequentially and will not be delayed by a strayed fast track.

Speculative optimization has been widely studied. Most
software techniques focus on loop or region based paral-
lelization [1]–[5] not improving inherently sequential code.
Hardware-based speculation support has been used to enable
unsafe optimization of sequential code [6]–[9]. Fast track
supports speculative program optimization in software, and
because of its software nature, it provides a programming
interface for invoking and managing the speculation system.
The software implementation poses interesting concurrency
problems, and the features of the programming interface
strongly influences the system support.

Fast track relies on speculation, which, if it fails, wastes
system resources including electric power. It may even delay
useful computations by causing unnecessary contention. On
the other hand, it enables inherently sequential computation
to utilize multiple processors. The programming interface
enables a new type of programming—programming by sug-
gestions. A user can suggest faster implementations based
on partial knowledge about a program and its usage.

Our implementation is based on processes rather than
threads. It uses conventional hardware and is independent
of the memory consistency model, making fast-track pro-
grams easily portable. The run-time system manages the
parallelism transparently and programmers need no parallel
programming or debugging. Fast-track code is added at
the source level, allowing the combined code to be fully
optimized by conventional compilers. The interface may also
be used by compilers and profiling tools, which can leverage
the existing techniques to fully automate the process.

II. PROGRAMMING INTERFACE

A fast-track region contains a beginning branch if
(FastTrack()), the two tracks, and an ending statement
EndDualTrack(). An execution of the code region is
called a dual-track instance. The two tracks are the fast
track and the normal track. A program execution consists
of a sequence of dual-track instances and any computations
that occur before, between, or after these instances.

Any region of code whose beginning dominates the end
can be made a dual-track region, and nesting is allowed.
When a inner dual-track region is encountered, the outer fast
track will take the inner fast track, while the outer normal
track will take the inner normal track. We prohibit statements
with side effects that would be visible across the processor
boundary, such as system calls and file input and output
inside a dual-track region. We limit the memory that a fast
instance may allocate, so an incorrect fast instance will not
stall the system through excessive consumption.

Figure 1 in the previous section shows an example of a
fast track that has been added to the body of a loop. The
dual-track region can include just a portion of the loop body,

multiple dual-track regions can be placed back-to-back in
the same iteration, and a region can be used in straight-line
code. Figure 2 shows the use of fast track on two procedural
calls. The . . . means other statements in between. The dual-
track regions do not have to be on a straight sequence. One
of them can be in a branch and the other can be in another
loop.

III. SYSTEM DESIGN

A. Compiler Support

The fast-track system guarantees that it produces the same
result as the sequential execution. By using Unix processes,
fast track eliminates any interference between parallel exe-
cutions through the replication of the address space. During
execution, it records which data are changed by each of the
normal and fast instances. When both instances finish, it
checks whether the changes they made are identical.

Program data can be divided into three parts: global, stack,
and heap data. The stack data protection is guaranteed by the
compiler, which identifies the set of local variables that may
be modified through inter-procedural MOD analysis [10]
and then inserts checking code accordingly. Imprecision in
compiler analysis may lead to extra variables being checked,
but the conservative analysis does not affect correctness.

The global and heap data are protected by the operating
system’s paging support. At the beginning of a dual-track
instance, the system turns off write permission to global and
heap data for both tracks. It then installs custom page-fault
handlers that record which page has been modified in an
access map and re-enables write permission.

B. Run-time Support

1) Program Correctness: To guarantee that our specula-
tive execution is correct, we compare the memory state of
the fast and normal tracks at the end of the dual track region.
If the fast track reached the same state as the normal track,
then the initial state of the next normal track must be correct.
Typically, the next normal track was started well before its
predecessor finished and know only in hindsight that it is
correct.

Memory state comparison is performed by each normal
track once it has finished the dual track region. During
execution, memory pages are protected so that any write
access will trigger a segmentation fault. Both the fast and
normal tracks use catch these faults, and record the access
in a bit map. Before spawning a normal track, the fast track
allocates a shared memory space for two access map so the
normal track can compare them upon reaching the end of
the dual track region. Once the normal track determines that
the write set of the two tracks is identical, is can compare
the writes themselves.

In order to compare the memory modifications of the two
track, the fast track must provide the normal track with
a copy of any changes it has made. At the end of each



dual track region, the fast track evaluates its access map
to determine what pages have been modified. Each page
flagged in the access map is pushed over a shared pipe, and
consumed by the normal track, which then compares the
data to its own memory page.

If the two pages are the same then the two tracks have
made identical changes to the same memory locations. From
that point forward, the execution of the two track will be
identical; the normal track is unnecessary and aborts. If there
are conflicts in either the write set or the actual data, the
normal track aborts the fast track and takes its place.

Because the fast track may spawn multiple normal tracks,
which may then run concurrently, each normal track must
know when all of its logical predecessors have completed.
Before a normal track terminates, it waits on a flag to be
set by its predecessor, and then signals its successor when
complete. If there is an error in speculation, the normal track
uses the same mechanism to lazily terminate normal tracks
that are already running.

To ensure that the output of a program running with
Fast-Track support is correct, we ensure output is produced
only by the known-correct slow-track. Until a normal track
has confirmed that it was started correctly (that previous
speculation was correct), it buffers all terminal output and
file writes. Once the normal track is the oldest, we can be
certain that its execution is correct and any output it produces
will be the same as the sequential program. The fast track
never produces any output to the terminal nor does it write
to any regular file.

At the end of any single dual track region we have no
way to know whether another dual track region will follow,
or whether we will soon reach the end of the program. As
a result we must capture every program exit point in the
fast track, and wait there for all normal tracks to finish. The
signaling mechanism used to order the completion of normal
tracks is also used by the fast track in these cases. The final
normal track indicates its completeness in the usual way,
without knowing whether another normal track follows it.

The fast track knows that the normal tracks are ordered,
and can finalize the program’s execution once they have all
completed their correctness checks. This system allows for
the program to exit from within a dual track region; as long
as both the fast and normal track reach that exit point they
will agree on the result and terminate cleanly. Note that the
normal track does not need to reach the end of program
execution in order for the fast track to be assured of correct
execution.

2) Processor Utilization: For a system with p available
processors, the Fast Track system reserves one processor
for the fast track (unless it is too fast) and the remaining
processors for running normal tracks in parallel.

Activity Control: The system uses p−1 tokens to limit
the number of active normal tracks. The first p− 1 normal
tracks start without waiting for a token but will finish by

passing a token. Each later normal track waits for a token
before executing and releases the token after finishing.

Multiple slow-track processes may be waiting for a token
at the same moment. We want to activate them in order.
When fast track creates a normal track, it pushes the
identifier of its floodgate into a ready queue, which is also
implemented by a pipe. The newly created normal track then
waits before its floodgate (by reading from the pipe).

Each time a normal track finishes, it fetches the next
floodgate from the ready queue and opens it (by writing
to the pipe) to unleash the next waiting process. Since fast
track creates normal tracks sequentially, their flood gates
follow the same sequence in the ready queue. Therefore,
the activation of normal tracks is strictly chronological
regardless of the order in which earlier normal tracks finish.
Since the system does not require normal tracks to finish in
order, it permits normal tracks to have different sizes and to
execute on heterogeneous hardware. The steady state of the
system is shown by the top diagram in Figure 3. The speed
of fast track is the same as the combined speed of p − 1
normal tracks. When their speeds do not match, the ready
queue may become empty or may keep growing, as we will
discuss shortly.

In theory we need one floodgate for each normal track.
However, when a normal track is activated, its floodgate can
be reused by a later normal track. In fact, we need as many
flood gates as the maximal number of normal tracks in the
ready queue. The size of ready queue is bounded by 2p
(which we will show when explaining fast-track throttling),
we need only 2p flood gates. Since any normal track may
activate any later normal track, the flood gates need to be
visible to all tracks. For p processors, we allocate 2p flood
gates at the beginning of the program execution.

Fast-track Throttling: The fast track, if unconstrained,
may scurry ahead arbitrarily far, which is undesirable for
two reasons. First, the resource demand for the ready queue
and the waiting normal tracks can be in the worst case
proportional to the length of the execution. Second, if fast
track has an error, the longer it runs after the error, the more
processor time would be wasted on useless speculation. The
goal of fast-track throttling is to keep the fast track just
far enough ahead to keep processor utilization high, without
wasting processor resources.

The protocol of throttling is to stop fast track and give
the processor to a normal track, as shown by the middle
diagram in Figure 3. When the next normal track finishes,
it re-activates fast track. The word “next” is critical for two
reasons. First, only one normal track should activate fast
track when it waits, effectively returning the processor after
“borrowing” it. Second, the time of activation must be exact
and cannot be one track early or late.

Consider a system with p processors running fast track
and p−1 normal tracks until the fast track becomes too fast
and suspends execution giving the processor to a waiting



enqueue new 
normal track

p-1 active 
normal-track 
processes

the fast-
track 

process

ready queue
(1 to p-1 waiting 
normal track)

dequeue the 
ready queue

next normal track 
becomes active

balanced
steady state

less than p-1 
active normal-

track processes

the fast-
track 

process

ready queue
(empty)

waiting to 
dequeue

enqueue new 
normal track

next normal track 
becomes active

fast track
too slow

p active 
normal-track 
processes

fast track 
stopped

ready queue
(p waiting normal 
tracks)

next normal track 
becomes active

next ending normal track re-activates the fast track

fast track activates the next 
normal track and then stops

fast-track
throttling

Figure 3. The three states of fast track: balanced steady state, fast-track throttling when it is too fast, and slow-track waiting when fast track is too slow.
The system returns to the balanced steady state after fast-track throttling.

normal track. Suppose that three normal tracks finish in the
order nt1, nt2, and nt3, and fast track suspends after nt1
and before nt2. The proper protocol is for nt2 to activate
fast track so that before and after nt2 we have p and only p
processes running concurrently. Activation before and after
nt2 would lead to less than or more than p processes.

Since the suspension of the fast track needs to be timed ex-
actly with respect to the completion of the normal tracks, we
use a critical section for synchronization. The critical section
maintains a counter and a flag: waitlist_length and
ft_waiting. The former is the number of normal-track
processes waiting in the ready queue. When the number
exceeds p, fast track is considered too fast. It would yield its
processor by activating the next waiting process in the ready
queue, setting the ft_waiting flag, and then suspending
execution. When a normal track finishes, it enters the critical
section and determines which process to activate based on
the flag: if ft_waiting is on, it activates the fast track
and resets the flag; otherwise, it activates the next normal
track and updates the value of waitlist_length.

A problem arises when there are no slow tracks waiting
to start, which can happen when the fast track is too slow.
If a normal track waits inside the critical section to start
its successor, then the fast track cannot enter to add a new
track to the queue. The bottom graph in Figure 3 shows this
case, where one or more normal track processes are waiting
for fast track to fill the queue. Concurrency control becomes
tricky since a normal track may wait for work in the critical
section yet block fast track from generating more work, thus
creating a deadlock.

The solution is to add a back door to the critical section.
When fast track finishes, it checks the size of the ready
queue and enters the critical section only if the queue is
too long. The check is not synchronized with the normal
tracks for simplicity. If we assume that a program can be
suspended for an arbitrarily long interval by the operating
system after checking the length and before entering the
critical section, a deadlock may happen. The simple solution
should be adequate since a process should not be suspended
long if we run p processes on p processors. Even if deadlock



occurs, a normal track can reset the system and resume the
execution. Finally, the deadlock can be removed by adding a
semaphore to protect waitlist_length. Then the back-
door check by fast track is synchronized with normal tracks.
Specifically, the fast track acquires the semaphore, checks
the length and enters the critical section before releasing the
semaphore.

With activity control and fast-track throttling, the available
processors are utilized as much as possible. Incomplete
utilization happens only due to a lack of parallelism (when
the fast track is too slow). When there is enough parallelism,
the fast track is constrained to minimize the potentially
useless speculative computation.

Resource Contention: We rely on the operating system
implementation of copy-on-write, which lets processes share
memory pages to which they do not write. In the worst
case where every dual-track instance modifies every data
page, the system needs d times the memory needed by
the sequential run, where d is the fast-track depth. We
may control the memory overhead in two ways. First, we
abandon a fast instance if it modifies more pages than a
empirical constant threshold h. This bounds the memory
increase to be no more than dhM , where M is the VM page
size. Second, we adjust the threshold based on the available
memory in the system. Memory usage is difficult to estimate
since it depends on the operating system and other running
processes. Earlier work has shown that on-line monitoring
can effectively adapt memory usage by monitoring the page-
fault indicators from Linux [11], [12]. Our test cases have
never indicated that memory expansion will be a problem,
so we do not consider memory resource further in this paper.

Running two instances of the same program would double
demand for off-chip memory bandwidth, which is a limiting
factor for modern processors, especially chip multiproces-
sors. In the worst case if a program is completely memory
bandwidth bound, no fast track can reduce the overall mem-
ory demand or improve program performance. However, our
experience with small and large applications on recent multi-
core machines, which we will detail later, is nothing but
encouraging. In fast track, the processes originate from the
same address space and share read-only data. Their similar
access patterns help to prefetch useful data and keep it in
cache. For the two large test applications we used, multiple
processes in fast track ran almost the same speed as that
of a single process. In contrast, running multiple separate
instances of a program always degrades the per-process
speed.

IV. ANALYSIS

We use the following notation to represent the basic
parameters of our system:

• The original program execution E =
u0r1u1r2 . . . rnun is a sequence of dual track regions

(ri) instances separated by intervening computations
(ui).

• The function T () gives the running time for a part of
the execution.

• p is the number of available processors (where p > 1).
• A fast instance takes a fraction x (0 ≤ x ≤ 1) of the

time the normal instance takes and has a success rate
of α (0 ≤ α ≤ 1).

• The dual-track execution has a time overhead qc (qc ≥
0) per instance and is slowed down by a factor of qe

(qe ≥ 0) because of the monitoring for modified pages.

A. An Analytical Model

The original execution time is T (E) = T (u0) +∑n
i=1 T (riui). By reordering the terms we have T (E) =∑n
i=1 T (ri) +

∑n
i=0 T (ui). We name the two parts Er =

r1r2 . . . rn and Eu = u0u1 . . . un. The time T (Eu) is not
changed by fast-track execution because any ui takes the
same amount of time regardless of whether it is executed
with a normal or a fast instance. We now focus on T (Er),
in particular the average time taken per ri, tr = T (Er)

n , and
how the time changes as a result of fast track.

Since we would like to derive a closed formula to examine
the effect of basic parameters, we consider a regular case
where the program is a loop with n equal length iterations. A
part of the loop body is a fast-track region. Let T (ri) = tc be
the (constant) original time for each instance of the region.
The analysis can be extended to the general case where the
length of each ri is arbitrary and tc is the average. The exact
result would depend on assumptions about the distribution
of T (ri). In the following, we assume T (ri) = tc for all i.

With fast track, an instance may be executed by a normal
instance in time ts = (1 + qe)tc + qc or a fast instance in
time tpf , where qc and qe are overheads. In the best case,
all fast instances are correct (α = 1) and the machine
has unlimited resources p = ∞. Each time the fast track
finishes an instance, a normal track is started. Thus, the
active normal tracks form a pipeline, if we consider only
dual-track instances (the component T (Er) in T (E)). The
first fast instance is verified after ts. The rest n−1 instances
finish at a rate of t∞f = (1 + qe)xtc + qc, where x is the
speedup by fast track and qc and qe are overheads. If we
use the superscript to indicate the number of processors, the
average time and the overall speedup are

t̄∞f =
(ts + (n− 1)t∞f )

n

speedup∞ =
original time

fast track time
=

ntc + T (Eu)
nt̄∞f + T (Eu)

In the steady state tc

t∞
f

dual-track instances are run in parallel.
For simplicity the equation does not show the fixed lower
bound of fast track performance. Since a fast instance is



aborted if it turns out to be slower than the normal instance,
the worst-case is t∞f = ts = (1+qe)tc+qc, and consequently
speedup = ntc+T (Eu)

n((1+qe)tc+qc)+T (Eu) . While this is slower than
the original speed (speedup ≤ 1), the worst-case time is
bounded only by the overhead of the system and not by the
quality of fast-track implementation (factor x).

As a normal instance for ri finishes, it may find the fast
instance incorrect, cancel the on-going parallel execution,
and restart the system from ri+1. This is equivalent to a
pipeline flush. Each failure adds a cost of ts − t∞f , so the
average time with a success rate α is (1−α)(ts− t∞f )+ tpf .

We now consider the limited number of processors. For
the sake of illustration we assume no fast-track throttling first
and will add it later. With p processors, the system can have
at most d = min(p − 1, ts

t∞
f

) dual-track instances running
concurrently, where d is the depth of fast track execution. It
is an average so it may take a value other than an integer.
When α = 1, p− 1 dual-track instances take ts +(p− 2)t∞f
(p ≥ 2) time. Therefore the average time (assuming p − 1
divides n) is

t̄pf =
ts + (d− 1)t∞f

d

When α < 1, the cost of restarting has the same effect as in
the infinite-processor case. The average time and the overall
speedup are

t̄pf = (1− α)(ts − t∞f ) +
ts + (d− 1)t∞f

d

speedupp =
ntc + T (Eu)
nt̄pf + T (Eu)

Finally we consider fast-track throttling. As p − 1 dual-
track instances execute and when the last fast instance
finishes, the system start the next normal instance instead
of waiting for the first normal instance to finish (and start
the next normal and fast instances together). Effectively it
finishes d + (ts − dt∞f ) instances, hence the change to the
denominator. Augmenting the previous formula we have

t̄pf = (1− α)(ts − t∞f ) +
ts + (d− 1)t∞f
d + ts − dt∞f

After simplification, fast-track throttling may seem to in-
crease the per instance time rather than decreasing it. But it
does decrease the time because d ≤ ts

t∞
f

. The overall speedup
(bounded from below and n ≥ 2) is as follows, where all
the basic factors are modeled.

speedupp = max(
ntc + T (Eu)

nts + qc + T (Eu)
,
ntc + T (Eu)
nt̄pf + T (Eu)

)

B. Simulation Results

We translate the above formula into actual speedup num-
bers and examine the effect of major parameters: the speed
of the fast track, the success rate, the overhead, and the
portion of the program executed in dual-track regions. The
four graphs in Figure 4 show their effect for different
numbers of processors ranging from 2 to 10 in a step of
1. The fast-track system has no effect on a single-processor
system.

All four graphs include the following setup where the fast
instance takes 10%the time of the normal instance (x=0.1),
the success rate (α) is 100%, the overhead (qc and qe) adds
10% execution time, and the program spends 90% of the
time in dual-track regions. The performance of this case
is shown by the second highest curve in all but the top-
right graph, in which it is shown by the highest curve. Fast-
track improves the performance from a factor of 1.60 with
2 processors to a factor of 3.47 with 10 processors. The
maximal possible speedup for this case is 3.47.

When we change the speed of the fast instance to vary
from 0% to 100% the time of the normal instance, the
speedup changes from 1.80 to 1.00 with 2 processors and
from 4.78 to 1.09 with 10 processors, as shown by the top-
left graph. When we reduce the success rate from 100%
to 0%, the speedup changes from 1.60 to 0.92 (8% slower
because of the overhead) with 2 processors and from 3.47
to 0.92 with 16 processors, as shown by the top-right graph.
Naturally the performance hits the worst case when the
success rate is 0%. When we reduce the overhead from
100% to 0% of the running time, the speedup increases from
1.27 to 1.67 with 2 processors and from 2.26 to 3.69 with
16 processors, as shown by the bottom-left graph. Note that
with 100% overhead the fast instance still finishes in 20%
the time of the normal instance, although the checking needs
to wait twice as long. Finally, when the coverage of the fast-
track execution increases from 10% to 100%, the speedup
increases from 1.00 to 1.81 with 2 processors and from 1.08
to 4.78, as shown by the bottom-right graph.

If the analytical results are correct, it is not overly difficult
to obtain a 30% improvement with 2 processors, although
the maximal gain is limited by the time spent outside dual-
track regions, the speed of the fast instance, and the overhead
of fast-track. The poor scalability is not a surprise given the
program is inherently sequential to begin with.

We make two final observations from the simulation re-
sults. First, fast-track throttling is clearly beneficial. Without
it there can be no improvement with 2 processors. It often
improves the theoretical maximum speedup, although the
increase is slight when the number of processors is large.
Second, the model simplifies the effect of fast-track system
in terms of four parameters, which we have not validated
with experiments on a real system. On the other hand, if the
four parameters are the main factors, they can be efficiently



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

108642

s
p
e
e
d
u
p
s

number of processors

fast-track speed: 0%, 10%, ..., 100%

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

108642

s
p
e
e
d
u
p
s

number of processors

success rate: 100%, 90%, ..., 0%

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

108642

s
p
e
e
d
u
p
s

number of processors

fast-track overhead: 0%, 10%, ..., 100%

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

108642

s
p
e
e
d
u
p
s

number of processors

exe. in fast track: 100%, 90%, ..., 0%

Figure 4. Analytical results of the fast-track system where the speed of the fast track, the success rate, the overhead, and the portion of the program
executed in dual-track regions vary. The order of the parameters in the title in each graph corresponds to the top-down order of the curves in the graph.

monitored at run time, and the analytical model may be used
as part of the on-line control to adjust the depth of fast-track
execution with the available resources.

V. USES OF FAST TRACK

A. Unsafe Program Optimization

In general, the fast code can be any optimization inserted
by either a compiler or a programmer; for example mem-
oization, unsafe compiler optimizations or manual program
tuning. The performance of the system is guaranteed against
slow or incorrect fast track implementations. The program-
mer can also specify two alternative implementations and let
the system dynamically select the faster one. We discuss four
types of optimizations that are good fits for fast track: they
may lead to great performance gains but their correctness
and profitability are difficult to ensure.

Memoization For any procedure, we may remember the
past inputs and outputs. Instead of re-executing it, we
can retrieve the old result when seeing the same input.
Studies dated back to at least 1968 [13] show dramatic
performance benefits, for example to speed up table
look-up in transcoding programs [14]. Memoization
be conservative about side-effects and is unsuitable
for generic use in C/C++ program. With fast track,
memoization does not have to be correct in all cases

and therefore can be more aggressively used to optimize
the common case.

Semantic optimization Often different implementations
exist at different levels, from basic data structures such
as hash tables to the choice of algorithms and their pa-
rameters. A given implementation is often more general
than necessary for a program. The current programming
languages do not provide a general interface for a user
to experiment with an unsafely simplified algorithm
or to dynamically select the best among alternative
solutions.

Manual program tuning A programmer can often identify
performance problems in large software and make
changes to improve the performance on test inputs.
However, the most radical solutions are often the most
difficult to verify in terms of correctness or ensuring
good performance on other inputs. As a result, many
creative solutions go unused because an automatic
compiler cannot possibly achieve them.

Program monitoring and safety checking A program
can be instrumented to collect run-time statistics such
as frequently executed instructions or accessed data,
or to report memory leaks or out-of-bound memory
access. The normal, uninstrumented code can serve as
the fast track, and the instrumented code can run in
parallel to reduce the monitoring overhead.



B. Parallel Memory-Safety Checking of Sequential Code

To test fast track on real-world applications, we use it to
parallelize a memory-safety checking tool called Mudflap.
Mudflap is bundled with GCC and widely used. It adds
checks for array range (over or under flow) and validity
of pointer dereferences. Common library routines that per-
form string manipulation or direct memory access are also
guarded. Checks are inserted at compile time and require that
a runtime library be linked into the program. The Mudflap
compilation has two passes: memory recording, which tracks
all memory allocation by inserting __mf_register and
__mf_unregister calls, and access checking, which
monitors all memory access by inserting __mf_check calls
and inlined operations. The recording cost is proportional
to the frequency of data allocation and recollection, and the
checking cost is proportional to the frequency of data access.

To fast track the Mudflap checking system we introduced
a new compiler pass that clones all functions in the program.
The second Mudflap pass is instructed to ignore the clones
while instrumenting the program. The result is an executable
with the original code fully checked while the clone just
records data allocation and free. The instrumentation of the
clones is necessary to maintain the same allocation and meta
data of memory as those of the original code. We create a
Fast Track version of programs by using the fully checked
version of the program to verify the memory safety of the
unchecked fast track.

VI. EXPERIMENTAL RESULTS

A. Implementation and Experimental Setup

We have implemented the compiler support in Gcc 4.0.1.
The main transformation is converting global variables to
use dynamic allocation, so the run-time support can track
them and set appropriate access protection. The compiler
allocates a pointer for each global (and file and function
static) variable, inserts an initialization function in each file
that allocates heap memory for variables (and assigns initial
values) defined in the file, and redirects all accesses through
the global pointer. The indirection causes only marginal
slowdown because most global-variable accesses have been
removed or converted to (virtual) register access by earlier
optimization passes.

B. Parallel Memory Safety Checking

We have generated a Fast Track version of Mudflap for
the C-language benchmarks hmmer, mcf, and sjeng from the
SPEC 2006 suite, and bzip2 from the SPEC 2000 suite. They
represent computations in pattern matching, mathematical
optimization, chess playing, and data compression. The
number of program lines ranges from a few thousand to
over ten thousand. We expect to see similar effect in other
programs.

All four programs show significant improvement, up to a
factor of 2.7 for Bzip2, 7.1 for Hmmer, and 2.2 for Mcf and

Sjeng. The factors affecting the parallel performance are the
coverage of fast track and the relative speed of fast track
as discussed in our analytical model. For lack of space we
omit detailed discussion of these benchmarks. One factor
not tested here is the overhead of correctness checking and
error recovery.

The running times with and without Mudflap overhead, as
given in the captions in Figure 5, show that memory-safety
checking delays the execution by factors of 5.4, 15.0, 8.6,
and 67.4. By utilizing multiple processors, fast track reduces
the relay to factors of 2.0, 2.1, 3.7, and 28.8, which are more
tolerable for long-running programs.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0 5 10 25 50 75 100
S

pe
ed

up
 o

ve
r 

qu
ic

k-
so

rt

Percentage of Iterations that Modify

quick
fast-track

bubble

Figure 6. Sorting time with quick sort, bubble sort or the Fast-Track of
both

C. Results of Sort and Search Tests

To use Fast-Track to support unsafe optimization we
implemented two tests and measured performance on a
machine with two Intel dual-core Xeon 3 GHz processors.
The first is a simple sorting program. We repeatedly sort an
array of 10,000 elements that is randomized in some fraction
of cases. We sort the array with either a short-circuited
bubble sort, quick sort, or by running both in a Fast-Track
environment. The results of these tests are shown in Table 6.
The quick sort performs consistently and largely independent
of the input array. We see that the bubble sort quickly detects
when array is sorted, but in other cases performs poorly.

The Fast-Track approach is able to out-perform either
of the individual sorting algorithms. These results illustrate
the utility of Fast-Track in cases where both solutions are
correct, but it is unknown which is actually faster. In cases
where the array is always sorted or always unsorted, the
overhead of using Fast-Track will cause it to lose out. While
we do not mean to suggest that Fast-Track is a better solution
than explicitly parallel sort, we hope this example motivates
the utility of automatically selected the faster of multiple
sequential approaches.

The second program is a simple search, which we use to
test the effect of various parameters. The basic algorithm
is given in Figure 7. The program repeatedly updates some



1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

bzip2

number of processors

sp
ee

du
p

o

o

o

o

o o o o

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(a) The checking time of Bzip2 is reduced from 24.5 seconds to 9.0
seconds. The base running time, without memory safety checking, is
4.5 seconds.

1 2 3 4 5 6 7 8

0
2

4
6

8

hmmer

number of processors

sp
ee

du
p

o

o

o

o
o

o
o

o

0
2

4
6

8

(b) The checking time of Hmmer is reduced from 235 seconds to 33.2
seconds. The base running time is 15.6 seconds.

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

mcf

number of processors

sp
ee

du
p

o

o
o

o
o

o o o

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(c) Fast track reduces the checking time of Mcf from 56 seconds to
24.8 seconds. The base running time is 6.7 seconds.

1 2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

sjeng

number of processors

sp
ee

du
p

o

o
o o

o o o o

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(d) Fast track reduces the checking time of Sjeng from 33.7 seconds
to 14.4 seconds. The base running time is 0.5 seconds.

Figure 5. The effect of fast-track Mudflap on one SPEC 2000 and three SPEC 2006 benchmarks.

elements of a vector and finds the largest result from certain
computations. By changing the size of the vectors, the size
of samples, and the frequency of updates, we can effect
different success rates by the normal and the fast instances.
Figure 8(a) shows the speedups over the base sequential
execution, which takes 3.33 seconds on a 4-CPU machine.
We time each run three times. The variation between times
of different runs is always smaller than 1 millisecond.

The sampling-based fast instance runs in 2.3%the time of
the normal instance. When all fast instances succeed, they
improve the performance by a factor of 1.73 on 2 processors,
2.78 on 3 processors, and 3.87 on four processors. When we
reduce the frequency of updates, the success rate drops. At
70%, the improvement is a factor of 2.09 on 3 processors and
changes only slightly when the fourth processor is added.
This is because that the chance for four consecutive fast



initialize N numbers in a vector
for T iterations do

normal track
apply computation to each number
identify the largest sample
store it in the output vector

fast track
sample S random vector elements
apply computation to each sample
identify the largest sample
store it in the output vector

end dual-track

modify N1 random elements
repeat the loop

end loop
output the result vector

Figure 7. Pseudo code of the synthetic search program

success number processors
rate 1 2 3 4
100% 1 1.73 2.78 3.87
70% 1 1.47 2.09 2.15
30% 1 1.29 1.29 1.29
0% 1 0.94 0.94 0.94

(a) Effect of fast-track success rates on the
synthetic benchmark

sample number processors
size 1 2 3 4
100 1 1.48 2.09 2.15
200 1 1.71 2.64 2.97
300 1 1.70 2.71 3.78
400 1 1.68 2.69 3.74

(b) The speedup due to fast-track tuning of the
synthetic benchmark

Figure 8. Fast track on the synthetic benchmark

instances to succeed is only 4%. When we reduce the success
rate to 30%, the chance for three consecutive successful fast
tracks drops to 2.7% and no improvement is observed for
more than 2 processors. The speedup from 2 processors is
1.29. In the worst case when all fast instances fail, we see
that the overhead of forking and monitoring the normal track
adds 6% to the running time.

The results in Figure 8(b) show interesting trade-offs
when we tune the fast track by changing the size of samples.
On the one hand, a larger sample size means more work and
slower speed for the fast track. On the other hand, a larger
sample size leads to a higher success rate, which allows
more consecutive fast tracks succeed and consequently more
processors utilized. The success rate is 70%when the sample
size is 100, which is the same configuration as the row
marked “70%” in Figure 8(a).

The best speedup for 2 processors happens when the
sample size is 200 but more processors do not help as much
(2.97 speedup) as when the sample size is 300, where 4

processors lead to a speedup of 3.78. The second experiment
shows the significant effect of tuning when using unsafely
optimized code. Our experience is that the automatic support
and the analytical model have made tuning much less labor
intensive.

VII. RELATED WORK

Recently three software systems use multi-processors for
parallelized program profiling and correctness checking. All
use heavyweight processes, and all are based on Pin, a
dynamic binary rewriting tool [15]. Shallow profiling creates
replica processes and instruments them to collect and mea-
sure a sample segment of execution [16]. SuperPin uses a
signature-checking scheme and strives to divide the complete
instrumented execution into time slices and executing them
in parallel [17]. Although fully automatic, SuperPin is “not
foolproof” [17] since in theory the slices may overlap or
leave holes in their coverage. Speck uses Pin with custom
OS support to divide an execution into epochs, replay
each epoch (including system calls), and check for security
problems [18]. An earlier system used a separate shallow
process for memory-safety checking [19]. These systems
automatically analyze the full execution, but they are not
designed for speculative optimization as fast track is with
the programming interface for selecting program regions, the
ability for a checking process to roll back the computation
from the last correct point, and the throttling mechanism
for minimizing useless speculation. Shallow profiling and
SuperPin are designed for parallel profiling and have no need
for speculation. Speck speculates but aborts the execution
upon a security error.

Fast track is not designed for fully automatic program
analysis, although it can be programmed so with some
manual effort as we have shown with Mudflap. It guarantees
the complete and unique coverage in parallel checking. The
programming interface allows selective checking, which is
useful when checking programs that contain unrecoverable
operations on conventional OS. Fast track is program level,
so it requires source code and cannot instrument externally
or dynamically linked libraries. On the other hand, it ben-
efits from full compiler optimization across original and
instrumented code. This is especially useful for curbing the
high cost of memory-safety checking. For example it takes a
minute for GCC to optimize the instrumented code of sjeng,
and the optimized code runs over 20% faster in typical cases.

Fast track is closely related to several ideas explored in
hardware research. One is thread-level speculative paral-
lelization, which divides sequential computation into parallel
tasks while preserving their dependences. The dependences
may be preserved by stalling a parallel thread as in the
Superthreaded architecture [20] or by extracting dependent
computations through code distilling [6], compiler schedul-
ing for reducing critical forwarding path [7], and compiler
generation of pre-computation slices [8]. These techniques



aim to only reorganize the original implementation rather
than to support any type of alternative implementation. Fast
track is not fully automatic, but it is programmable and can
be used by both automatic tools and manual solutions. The
run-time system checks correctness differently. The previous
hardware techniques check dependences or live-in values,
while fast track checks result values or some user-defined
criterion.

Another related idea used in hardware systems is to extract
a fast version of sequential code to run ahead while the orig-
inal computation follows. It is used to reduce memory load
latency (run-ahead code generated either in hardware [21]
or software [22]) and recently to reduce hardware design
complexity [23]. Unlike fast track, run-ahead threads ac-
celerate rather than parallelize the execution of sequential
code. A third, more recent idea is speculative optimization
at fine granularity, which does not yet make use of multiple
processors [9]. All of these techniques require modification
to existing hardware. Similar special hardware support has
been used to parallelize program analysis such as basic block
profiling, memory checking [24], data watch-points [25], and
recently Mudflap memory-safety checking [26].

Our system uses software speculative optimization at
the source level and can run on commodity hardware.
The design and implementation for coordinating parallel
processes is completely different. Being programmable and
implemented in software, our system is most suitable for
selecting and optimizing coarse-grain tasks that are too
large for loop-level fine-grained threads considered in the
hardware-based studies. Coarse-grain tasks are more likely
to have unpredictable sizes. We have addressed these issues
in a concurrent run-time control system implemented on
existing hardware.

For large programs using complex data, per-access mon-
itoring causes slowdowns often in integer multiples, as
reported for data breakpoints and on-the-fly data race de-
tection, even after removing as many checks as possible by
advanced compiler analysis [27]–[29]. Run-time sampling
based on data [30] or code [31], [32] are efficient but does
not monitoring all program accesses. For correctness, fast
track uses page-based data monitoring, which has been used
for supporting distributed shared memory [33], [34] and
other purposes including race detection [28].

VIII. SUMMARY

We have described fast track, a new system that supports
unsafely optimized code and can also be used to off-loaded
safety checking and other program analysis. The key features
of the systems include a programmable interface, compiler
support, and a concurrent run-time system that includes
correctness checking, output buffering, activity control, and
fast-track throttling. We have implemented a complete sys-
tem including compiler and run-time support and used the
system to parallelize memory safety checking for sequential

code, reducing the overhead by up to a factor of seven for
four large size applications running on a multi-core PC.We
have developed an analytical model that shows the effect
from major parameters including the speed of the fast track,
the success rate, the overhead, and the portion of the program
executed in fast-track regions. We have used our system and
model in speculatively optimizing a sorting and a search
program. Both analytical and empirical results suggest that
fast track is effective at exploiting today’s multi-processors
for improving program speed and safety.

Acknowledgement: This research is supported in part
by the National Science Foundation (Contract No. CNS-
0834566, CNS-0720796, CNS-0509270), an IBM CAS Fel-
lowship, two grants from Microsoft Research, and an equip-
ment donation from IBM.The last author Zhang participated
in the study when he was a graduate student at Rochester.
The work was presented earlier as a PACT 2007 poster and
at the CDP workshop at CASCON 2008. The authors wish
to thank comments from Michael Scott and Michael Huang
and the feedback from the anonymous reviewers in particular
the suggestion to improve the presentation of the analytical
model.

REFERENCES

[1] L. Rauchwerger and D. Padua, “The LRPD test: Specu-
lative run-time parallelization of loops with privatization
and reduction parallelization,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, La Jolla, CA, June 1995.

[2] M. Gupta and R. Nim, “Techniques for run-time paralleliza-
tion of loops,” in Proceedings of SC’98, 1998.

[3] M. H. Cintra and D. R. Llanos, “Design space exploration of
a software speculative parallelization scheme,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 16, no. 6,
pp. 562–576, 2005.

[4] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and
C. Zhang, “Software behavior-oriented parallelization,” in
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, San Diego, USA,
2007.

[5] C. Tian, M. Feng, V. Nagarajan, and R. Gupta, “Copy or
discard execution model for speculative parallelization on
multicores,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture, 2008.

[6] C. B. Zilles and G. S. Sohi, “Master/slave speculative par-
allelization.” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture, 2002, pp. 85–96.

[7] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry,
“Compiler optimization of scalar value communication be-
tween speculative threads,” in Proceedings of the Interna-
tional Conference on Architectual Support for Programming
Languages and Operating Systems, 2002, pp. 171–183.



[8] C. Quinones, C. Madriles, J. Sánchez, P. Marcuello,
A. González, and D. M. Tullsen, “Mitosis compiler: an infras-
tructure for speculative threading based on pre-computation
slices,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. New
York, NY, USA: ACM, 2005, pp. 269–279.

[9] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and
C. B. Zilles, “Hardware atomicity for reliable software spec-
ulation,” in Proceedings of the International Symposium on
Computer Architecture, 2007, pp. 174–185.

[10] R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers, October 2001.

[11] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and
M. Ogihara, “Program-level adaptive memory management,”
in Proceedings of the International Symposium on Memory
Management, Ottawa, Canada, June 2006.

[12] C. Grzegorczyk, S. Soman, C. Krintz, and R. Wolski, “Isla
vista heap sizing: Using feedback to avoid paging,” in Pro-
ceedings of the International Symposium on Code Generation
and Optimization, 2007, pp. 325–340.

[13] D. Michie, “Memo functions and machine learning,” Nature,
vol. 218, pp. 19–22, 1968.

[14] Y. Ding and Z. Li, “A compiler scheme for reusing intermedi-
ate computation results.” in Proceedings of the International
Symposium on Code Generation and Optimization, 2004.

[15] C.-K. Luk et al., “Pin: Building customized program anal-
ysis tools with dynamic instrumentation,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, Chicago, Illinois, June 2005.

[16] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri,
“Shadow profiling: Hiding instrumentation costs with paral-
lelism,” in Proceedings of the International Symposium on
Code Generation and Optimization, 2007, pp. 198–208.

[17] S. Wallace and K. Hazelwood, “Superpin: Parallelizing dy-
namic instrumentation for real-time performance,” in Pro-
ceedings of the International Symposium on Code Generation
and Optimization, 2007, pp. 209–220.

[18] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn,
“Parallelizing security checks on commodity hardware,” in
Proceedings of the International Conference on Architectual
Support for Programming Languages and Operating Systems,
2008, pp. 308–318.

[19] H. Patil and C. Fischer, “Efcient run-time monitoring using
shadow processing,” 1995, presented at AADEBUG’95.

[20] J.-Y. Tsai, Z. Jiang, and P.-C. Yew, “Compiler techniques
for the superthreaded architectures,” International Journal of
Parallel Programming, vol. 27, no. 1, pp. 1–19, 1999.

[21] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream
processors: Improving both performance and fault tolerance.”
in Proceedings of the International Conference on Archi-
tectual Support for Programming Languages and Operating
Systems, 2000, pp. 257–268.

[22] S.-W. Liao, P. H. Wang, H. Wang, J. P. Shen, G. Hoflehner,
and D. M. Lavery, “Post-pass binary adaptation for software-
based speculative precomputation,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, 2002, pp. 117–128.

[23] A. Garg and M. Huang, “A performance-correctness
explicitly-decoupled architecture,” in Proceedings of the
ACM/IEEE International Symposium on Microarchitecture,
2008.

[24] J. T. Oplinger and M. S. Lam, “Enhancing software reliability
with speculative threads,” in Proceedings of the International
Conference on Architectual Support for Programming Lan-
guages and Operating Systems, 2002, pp. 184–196.

[25] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas, “iwatcher:
Efficient architectural support for software debugging,” in
Proceedings of the International Symposium on Computer
Architecture, 2004, pp. 224–237.

[26] S. Lee and J. Tuck, “Parallelizing Mudflap using thread-level
speculation on a CMP,” 2008, presented at the Workshop on
the Parallel Execution of Sequential Programs on Multi-core
Architecture, co-located with ISCA.

[27] J. Mellor-Crummey, “Compile-time support for efficient data
race detection in shared memory parallel programs,” Rice
University, Tech. Rep. CRPC-TR92232, September 1992.

[28] D. Perkovic and P. J. Keleher, “A protocol-centric approach to
on-the-fly race detection,” IEEE Transactions on Parallel and
Distributed Systems, vol. 11, no. 10, pp. 1058–1072, 2000.

[29] R. Wahbe, S. Lucco, and S. L. Graham, “Practical data
breakpoints: design and implementation,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 1993.

[30] C. Ding and K. Kennedy, “Improving cache performance in
dynamic applications through data and computation reorga-
nization at run time,” in Proceedings of the SIGPLAN ’99
Conference on Programming Language Design and Imple-
mentation, Atlanta, GA, May 1999.

[31] M. Arnold and B. G. Ryder, “A framework for reducing
the cost of instrumented code,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Snowbird, Utah, June 2001.

[32] T. M. Chilimbi and M. Hirzel, “Dynamic hot data stream
prefetching for general-purpose programs,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, Berlin, Germany, June 2002.

[33] K. Li, “Shared virtual memory on loosely coupled multipro-
cessors,” Ph.D. dissertation, Dept. of Computer Science, Yale
University, New Haven, CT, Sep. 1986.

[34] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel,
“TreadMarks: Distributed shared memory on standard work-
stations and operating systems,” in Proceedings of the 1994
Winter USENIX Conference, Jan. 1994.


