
Relaxed Peephole Optimization: A Novel Compiler
Optimization for Quantum Circuits
Ji Liu

North Carolina State University
Raleigh, USA

jliu45@ncsu.edu

Luciano Bello
IBM Research

Yorktown Heights, USA
luciano.bello@ibm.com

Huiyang Zhou
North Carolina State University

Raleigh, USA
hzhou@ncsu.edu

Abstract—As in classical computing, compilers play an impor-
tant role in quantum computing. Quantum processors typically
support a limited set of primitive operations or quantum gates
and have certain hardware-related limitations. A quantum com-
piler is responsible for adapting a quantum program to these
constraint environments and decomposing quantum gates into a
sequence of the primitive ones. During the compilation process, it
is also critical for the compiler to optimize the quantum circuits
in order to reduce the noise in the computation results. Since the
noise is introduced by operations and decoherence, reducing the
gate count is the key for improving performance.

In this paper, we propose a novel quantum compiler optimiza-
tion, named relaxed peephole optimization (RPO) for quantum
computers. RPO leverages the single-qubit state information that
can be determined statically by the compiler. We define that
a qubit is in a basis state when, at a given point in time, its
state is either in the X-, Y-, or Z-basis (|+〉 / |−〉, |L〉 / |R〉 and
|0〉 / |1〉). When basis qubits are used as inputs to quantum gates,
there exist opportunities for strength reduction, which replaces
quantum operations with equivalent but less expensive ones.
Compared to the existing peephole optimization for quantum
programs, the difference is that our proposed optimization does
not require an identical unitary matrix, thereby named ‘relaxed’
peephole optimization. We also extend our approach to optimize
the quantum gates when some input qubits are in known pure
states. Both optimizations, namely the Quantum Basis-state Opti-
mization (QBO) and the Quantum Pure-state Optimization (QPO),
are implemented in the IBM’s Qiskit transpiler. Our experimental
results show that our proposed optimization pass is fast and
effective. The circuits optimized with our compiler optimizations
obtain up to 18.0% (11.7% on average) fewer CNOT gates and
up to 8.2% (7.1% on average) lower transpilation time than that
of the most aggressive optimization level in the Qiskit compiler.
When running on real quantum computers, the success rates of
3-qubit quantum phase estimation algorithm improve by 2.30X
due to the reduced gate counts.

Index Terms—quantum computing, peephole optimization

I. INTRODUCTION

Quantum computing shows great potential in chemistry
simulation [26], combinatorial optimization [18], cryptogra-
phy [27], machine learning [8], etc. Recently, Google, IBM,
and Intel have announced their quantum computers with 72,
53, and 49 qubits, respectively [20], [21], [25]. These noisy
quantum computers are capable of running some quantum
algorithms and would be helpful for exploiting the physics of
many entangled particles [36]. However, state-of-the-art quan-
tum computers do not have enough qubits to accommodate

error correction codes, and the noise in the quantum computers
hinders the development of quantum computing.

As quantum computers typically support a limited set of
basic operations/gates, quantum compilers/transpilers are re-
sponsible for decomposing complex quantum gates into the
basic ones that the quantum computer supports. Quantum
compilers also optimize quantum circuits to reduce the overall
gate count or circuit depth. Since the accuracy of the final
result can be affected by the system noise, such optimization
is extremely important for quantum computers. The exist-
ing quantum compilers [3], [38] exploit many optimization
techniques. An important one is peephole optimization or
operator strength reduction [38]. The peephole optimization
is analogous to its homonym in classical computing. The
compiler traverses through the quantum circuit to find specific
patterns of sub-circuits and substitute them with equivalent
ones that have less primitive operations or shorter depth. These
substitutions keep the semantics of the quantum program as
their unitary matrix representations are identical.

In this paper, we propose a new compiler optimization
termed relaxed peephole optimization (RPO). It builds upon
the fact that some of the qubit states for many quantum
gates can be known or derived at compile-time. This presents
opportunities for replacing quantum operations with equivalent
but less expensive ones. But the difference from the existing
peephole optimization is that the unitary matrix of the circuit
may change although the circuit functionality remains the
same. For example, for a CNOT gate, if the control qubit
is in the |1〉 state, it is functionally equivalent to a NOT gate
on the target qubit. After determining the state of the control
qubit, our compiler optimization will replace the CNOT gate
with a NOT gate. However, the unitary matrices of CNOT
and NOT gates are different and the peephole optimization
would not be able to take advantage of such opportunities. In
other words, our optimization can be viewed as a relaxed type
of peephole optimization, which finds functionally equivalent
circuits under certain circumstances. In our paper, we derive
RPO for a wide range of quantum gates when some of their
inputs are in known basis/pure states.

In order to figure out the quantum states for RPO, we
propose a quantum state analysis approach. With this analysis,
we develop two optimization passes, namely the Quantum
Basis-state Optimization (QBO) pass and the Quantum Pure-

ar
X

iv
:2

01
2.

07
71

1v
1

 [
qu

an
t-

ph
]

 1
4

D
ec

 2
02

0

state Optimization (QPO) pass. In our paper, we define |0〉,
|1〉, |+〉, |−〉, |L〉, and |R〉 as basis states. The QBO pass
identifies these basis states for every qubit during execution
and optimizes quantum gates accordingly. The QPO pass de-
termines single-qubit pure states and performs corresponding
quantum circuit optimization. We also introduce annotations
such that the programmer can guide the compiler optimization.
We experimented with several quantum benchmarks on IBM Q
quantum simulators and quantum computers. The experiments
show that the circuits optimized using our approach have up
to 18.0% (11.7% on average) fewer CNOT gates with up to
8.2% (7.1% on average) less transpilation time than that of
the most aggressive optimization level in the Qiskit compiler.
Since other quantum compilers, e.g., t |ket〉 [38] use a similar
gate model to IBM Qiskit, we expect that our proposed idea
is applicable to them as well.

The major contributions of this work are listed as follows:
• We propose a new compiler optimization, relaxed peep-

hole optimization (RPO).
• We derive a comprehensive list of circuit optimizations

for a wide range of quantum gates when some of their
inputs are in known basis or pure states.

• We present a quantum state analysis approach which
identifies basis and pure states for each qubit in a quantum
circuit. We also introduce annotations to enable users to
provide information to facilitate state analysis.

• We implement both QBO and QPO as compiler optimiza-
tion passes in the IBM Qiskit transpiler.

• We show that our proposed RPO achieves better results
than the most aggressive optimization level in Qiskit.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background of quantum computing and
quantum compilers. Sections III and IV describe our findings
on optimizing CNOT and SWAP gates with zero states and
known pure states, respectively. Section V generalizes the
optimization for a broad range of quantum gates. Section VI
discusses our compiler scheme to determine the quantum states
of each qubit in a quantum circuit. Section VII presents our
compiler implementation using IBM Qiskit. Our experimental
results are discussed in Section VIII. Finally, Section IX
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Quantum Computing

Qubit (quantum bit) is the basic unit of quantum infor-
mation. Besides the classical states |0〉 and |1〉, a qubit can
stay in any superposition state. A superposition state can be
represented as |ψ〉 = a |0〉+ b |1〉 where a and b are complex
numbers and |a|2+ |b|2 = 1. When measuring a superposition
state |ψ〉 in the computational basis, the probability of getting
|0〉 and |1〉 states are |a|2 and |b|2, respectively. The state
of a quantum system is represented by a vector in a Hilbert
space [33]: a complex vector space with an inner product.
The state of multiple qubits can be expressed as the tensor
product of each qubit state if they are not entangled: |ψ12〉 =

|ψ1〉 ⊗ |ψ2〉 = |ψ1ψ2〉. Entanglement is an unique property
of quantum computing. When two qubits are entangled, their
measurement results are correlated and the two-qubit state can
not be expressed as the tensor product of individual qubits.
For example, the two-qubit Bell state 1√

2
(|00〉 + |11〉) is an

entangled state. When the measurement outcome of the first
qubit is |0〉, the measurement outcome of the second qubit
must be |0〉.

A pure quantum state can be represented by a single
state vector |ψ〉 in the Hilbert space. A mixed quantum
state can not be represented in this way and corresponds to
a probability mixture of pure states. A density matrix [9]
ρ =

∑
i Pi |ψi〉 〈ψi| is used to describe the mixed states, where

Pi is the probability of the pure state |ψi〉. Generally speaking,
a qubit system is in a pure state when the qubits in the system
are not entangled with qubits out side the system. When the
qubits are entangled with others, they are in the mixed state.
For example, the two-qubit bell state is a two-qubit pure state
since these two qubits are not entangled with others. The
state can be represented by state vector 1√

2
(|00〉 + |11〉). If

we consider each qubit individually, however, since the two
qubits are entangled, either qubit is in the mixed state with
the density matrix as ρ = 1

2 (|0〉 〈0|+ |1〉 〈1|). An n-qubit pure
state |ψ〉 can be generated by applying an n-qubit unitary gate
U to n qubits, which are all in the |0〉 state: |ψ〉 = U |0〉⊗n.
The proof is in Appendix A. A key conclusion from the proof
is that when a qubit is not entangled with the others, it is
in a single-qubit pure state and this state can be generated
by applying a single-qubit gate to a qubit in the |0〉 state.
For simplification purposes, we will refer to single-qubit pure
states as pure state in the rest of this paper.

A quantum program is essentially a sequence of instruc-
tions/gates operating on qubits. There are single-qubit gates
such as Identity gate I or id , Hadamard gate H , Phase
changing gate S and T , Pauli Gates X , Y , and Z, and two-
qubit gates such as controlled-NOT (CNOT) gate. The two
qubits in the CNOT gate are termed as control and target
qubit as illustrated in Figure 1. Instructions, unlike gates, are
not necessarily reversible might include classical aspects in
the quantum program. Example of such instructions include
RESET , MEASURE , and conditional control. On this work
only considers RESET for simplicity. The state-of-the-art
quantum computers only support a set of basic gates/instruc-
tions. and the quantum compiler needs to decompose the
quantum program into the supported primitives. For example,
the IBM quantum computers support basis gates including
four types of single-qubit gates u1, u2, u3, id, and a two-qubit
CNOT gate cx [43].

Control qubit:|ψ〉

Target qubit: |δ〉

Fig. 1: A CNOT gate with its control and target qubit.

B. Qiskit Framework

Qiskit [3] is an open-source quantum computing software
development framework. One element, named Qiskit Aqua,
allows programmers to write codes for quantum algorithms.
Another element called Qiskit Terra provides a transpiler,
which is responsible for quantum gate decomposition, logical-
to-physical qubit mapping, and circuit optimization. The tran-
spiler consists of modular transpiler passes for circuit transfor-
mations. The transpiler pass manager schedules the transpiler
passes and allows them to communicate. The users can control
the pass manager to perform selective optimizations to the
circuit. The transpiler has four pre-defined pass managers
corresponding to the optimization level from 0 to 3. The higher
optimization level, the higher the transpiler effort to optimize
the circuit at the cost of transpilation time.

The different optimization levels can be described as fol-
lows [3]: Level 0 maps the circuit to the quantum device,
with no explicit optimization included. Level 1 maps the
circuit and also performs light-weight optimizations such as
collapsing adjacent gates. Level 2 and 3 include noise-aware
optimizations. Level 2 chooses noise-adaptive layout for the
mapping and performs gate-cancellation procedure based on
gate commutation relationships. Level 3 extends the passes
from level 2 to include re-synthesis of two qubit blocks
in the circuit as well as more iterations in the stochastic
routing process. The re-synthesis process is performed by
the Collect2qBlocks and the ConsolidateBlocks
passes in Qiskit. The Collect2qBlocks pass traverses
the circuit and collects sequences of gates acting on two
qubits. The ConsolidateBlocks pass calculates the uni-
tary matrices of two-qubit blocks and re-synthesizes them
to more optimized circuits. This transpiler pass is similar
to the operator strength reduction or peephole optimization
in classical computing. The difference between our proposed
optimization and the ConsolidateBlocks pass is that we
do not preserve the unitary matrix although we replace the
circuits with the ones that have the same functionality.

C. Related Work

Prior works have been proposed to optimize quantum cir-
cuits at the gate level. Venturelli et al. [45] proposed an
automated, architecture-aware software framework aided by
constraint programming. Nam et al. [32] developed automated
optimization methods using phase polynomials. There are also
noise-adaptive compilers [30], [31], [42] which take advantage
of the noise characteristics of the target backend to aid the
optimization.

Circuit equivalence has been discussed in terms of quantum
algorithms [46], quantum compiler optimization [35] and
quantum compilation verification [4]. Two circuits are consid-
ered as equivalent when their unitary matrix representations
are identical [5]. Garcia-Escartin et al. [14] proposed a list of
equivalent rules for identifying equivalent circuits. In compiler
optimization, the process of substituting sub-circuits with their
equivalent ones is termed as peephole optimization.

|φ〉 |ψ〉

|ψ〉 |φ〉
=
|φ〉 |ψ〉

|ψ〉 |φ〉
=
|φ〉 |ψ〉

|ψ〉 |φ〉

Fig. 2: 3-CNOT decomposition for SWAP gate

Peephole optimization [28] identifies small sets of instruc-
tions and substitutes them with equivalent sets that have better
performance. Prasad et al. [35] proposed a quantum circuit
optimization algorithm that relies on peephole optimization.
Sivarajah et al. [38] introduced a compiler named t |ket〉
for noisy quantum computers. The peephole optimization in
t |ket〉 compiler traverses through the circuit to find long se-
quences of single-/two-qubit gates and replaces them with the
circuits generated by Euler and KAK decomposition [24]. The
similar optimization exists in other quantum compilers. For
example, the transpiler in Qiskit Terra [3] contains optimiza-
tion pass Collect2qBlocks and ConsolidateBlocks,
which collaboratively identify and substitute two-qubit blocks
with equivalent circuits. The Cirq [1] framework also provides
similar optimization for adjacent single- and two-qubit gates.

Hoare logic [19] has been used to optimize quantum
circuits. The optimizer removes trivial operations based on
postconditions of the subroutines and the triviality conditions.
The postconditions can be derived from the hoare triples of
quantum subroutines. While our approach shares a few com-
mon optimization cases with the prior work, our optimization
is more generic as we include optimizations for the quantum
gates that are not trivial, e.g., the one shown in Eq. 6. Besides
generality, the quantum state analysis discussed in Section VI
provides fine-grained analysis for quantum states and enables
more quantum gate optimizations. Moreover, since the hoare
logic pass requires a classical Z3 solver [11] to express the
conditions, it significantly increases the transpilation time. In
Section VIII, we show that our optimization pass is faster and
more effective than the hoare logic pass.

III. ZERO STATE

We use a basic optimization, which only leverages a |0〉
state, as a stepping stone for more generic optimizations (see
Section V). We also introduce some handful notations and
concepts.

Consider the following situation: if a CNOT gate with the
control qubit being in the |0〉 state, the CNOT gate has no
effect and can be removed or replaced with a wire:

|φ〉 |φ〉

|ψ〉 |ψ〉
=
|φ〉 |φ〉

|ψ〉 |ψ〉
if |ψ〉 = |0〉 (1)

The unitary matrices of the CNOT gate and the idle
wire are obviously different, and they are not considered
as equivalent in the existing compilers. However, they are
functionally equivalent when the control qubit is in |0〉 state.

Although this special CNOT example may seem trivial, we
can leverage it for optimizing SWAP gates. SWAP gates are
often introduced during the logical-to-physical qubit mapping

to allow quantum operations on qubits that not physically ad-
jacent. Being symmetric gates, SWAP gates has two possible
decompositions as showed in Figure 2.

Many times SWAP gates are introduced in the beginning
part of a circuit, when there is a good chance that one of the
qubits to be swapped is still in the initial ground state |0〉. In
such cases, we can take advantage of a reduced SWAP gate
design, which only swaps any state |ψ〉 with the state |0〉:

|φ〉 |ψ〉

|ψ〉 |φ〉
=
|φ〉 |ψ〉

|ψ〉 |φ〉
|ψ〉 = |0〉 (2)

Let us introduce a notation for this special 2-CNOT -SWAP
gate. It is referred to as SWAPZ (swap-zero) in the remaining
of the paper:

⊗ , (3)

In summary, a SWAP gate that involves a |0〉 state can
be replaced for a less expensive SWAPZ . This equivalence
follows from Equations 2 and 3. The first CNOT gate from
the SWAP decomposition can be removed as its control qubit
is in |0〉 state. The resulting SWAPZ gate consists of two
CNOT gates, one less compared to the generic SWAP gate:

|φ〉 |ψ〉

|ψ〉 |φ〉
= ⊗|φ〉 |ψ〉

|ψ〉 |φ〉
if |ψ〉 = |0〉 (4)

IV. SWAP ON PURE STATES

It is possible to extend the explained zero-state optimization
of a SWAP gate to any known single-qubit pure state.

A qubit is in a pure state up to a certain point if all the
operations on that qubit up to that point do not entangle with
other qubits. A pure state can be represented by a single state
vector |π〉 in the Hilbert space. Based on the derivation in
Appendix A, the single-qubit pure state |π〉 can be obtained
by applying a single unitary gate U to the |0〉 state, |π〉 =
U |0〉. Due to unitarity, we can apply the inverse gate U−1 to
transform the qubit in the pure state |π〉 back to the state |0〉.

When a SWAP gate operates on two qubits |ψ〉 and |π〉 and
one of them, e.g., |π〉, is in a known pure state generated with
U |0〉, the SWAP gate can be replaced with a SWAPZ gate.
As shown in Equation 5, the inverse gate U−1 transforms the
pure state |π〉 to state |0〉 (and back to |π〉 after the SWAP).
Then, the SWAP gate is to swap state |0〉 with state |ψ〉,
thereby can be optimized.

Altogether, when a SWAP gate operates on an arbitrary
state |ψ〉 and a known pure state |π〉, we can optimize the
SWAP gate into a SWAPZ gate along with two single-qubit
gates. This reduces the number of CNOT gates by one and
introduces two extra single-qubit gates. In the noisy quantum
systems, the gate error of a CNOT gate is usually much

higher than the accumulated error of two single-qubit gates.
For example, on ibmq_16_melbourne, the single-qubit
gate error rates range from 10−4 to 10−3 while the two-qubit
CNOT gate’s error rate is 10−2 [43]. Moreover, the single-
qubit gate U and U−1 may be canceled or merged during
the subsequent compiler optimization passes where multiple
single-qubit gates are fused into one single-qubit gate. In those
cases, we essentially reduce the number of CNOT gates by
one and do not introduce any additional gates.

Consider the special case where both |ψ〉 and |π〉 are in
known pure states. We can always find a single-qubit unitary
gate V to transform |ψ〉 state to |π〉 state, |π〉 = V |ψ〉.
Similarly, the inverse gate V −1 transforms the |ψ〉 state to |π〉
state, as shown in Equation 6. Therefore, we can substitute the
SWAP gate with two single-qubit gates V and V −1 in this
special case.

|ψ〉 |π〉

|π〉 |ψ〉
=

|ψ〉 V |π〉

|π〉 V −1 |ψ〉
if |π〉 = V |ψ〉 (6)

V. BASIS-STATE AND PURE-STATE OPTIMIZATION

Sections III and IV showcase that for CNOT and SWAP
gates, if some input qubit states can be determined, the
gates can be simplified. In this section, we generalize this
optimization to more basis and pure states in the context of
different types of quantum gates. We term such optimizations
as quantum basis-state optimization (QBO) and quantum pure-
state optimization (QPO), respectively.

A. Optimizing Single-Qubit Gates

For single-qubit gates, if the input is in a particular basis
state, they can be simplified. In particular, if the input state is
an eigenstate of the gate and the eigenvalue is 1, i.e., |φ〉 =
U |φ〉 the gate U can be removed, as shown in Equation 7. For
example, an X gate with the input |+〉 has not effect and can
be removed since |+〉 = X |+〉.

|φ〉 U |φ〉 = |φ〉 |φ〉 , if |φ〉 = U |φ〉 (7)

Realistically speaking, the opportunity for such single-qubit
gate optimization is limited in useful quantum programs.
However, it lays the foundation for QBO for multi-qubit gates.

B. Optimizing CNOT

Since the CNOT gate is the essential component to entangle
qubits, we first focus on the basis states that have special
effect on CNOT gates. For CNOT gates, the observation
from Equation 1 can be generalized to other basis besides |0〉.
These basis states include |0〉, |1〉, |+〉, and |−〉. The CNOT
gates can be optimized when their control qubits are in |0〉 or
|1〉 state or when their target qubits are in |+〉 or |−〉 state.
We list all the possible combinations and the corresponding
optimized circuits in Table I, where > represents a state, which
is not the X- or Z- basis (|+〉, |−〉, |0〉, |1〉).

|ψ〉 |π〉

|π〉 |ψ〉
=

|0〉

|0〉

|ψ〉 U |π〉

|π〉 U−1 |ψ〉

=

|0〉

|0〉 ⊗
|ψ〉 U |π〉

|π〉 U−1 |ψ〉

if |π〉 = U |0〉 (5)

TABLE I: Equivalences for basis-states in |φ〉
|ψ〉

|ψ〉
|φ〉

> |0〉 |1〉 |+〉 |−〉

>
X

|+〉

|−〉 Z Z Z

|0〉
X

|1〉
X

When the target qubit is in the |+〉 state, i.e., |0〉+|1〉√
2

, the
X gate has no effect as |+〉 is its eigenstate with eigenvalue
of 1, i.e., |+〉 = X |+〉. Therefore, the CNOT gate can be
replaced with wires no matter what state the control qubit is
in. On the other hand, if the target qubit is in the state |−〉,
i.e., |0〉−|1〉√

2
, the CNOT gate may be replaced with a wire on

the target qubit and a Z gate on the control bit. The derivation
is in Appendix B.

Furthermore, the Z gate can be eliminated when the control
qubit is known to be in |0〉 state. Since |0〉 state is the
eigenstate of Pauli matrix Z with eigenvalue equals to 1,
applying the Z gate will not change the state: Z |0〉 = |0〉.

Similarly, we derive the optimized SWAP gate for X- and
Z-bases input combinations, which are shown in Appendix F.
This optimization can be seen as a particular case of QPO,
since a basis-state is also a pure-state. However, implementing
QBO separately is more efficient, since it requires fewer
changes in the circuit. We also derive similar simplifications
to Table I for the controlled-Z gates with inputs in the Z-basis
states (|0〉, |1〉).

C. Optimizing Multi-Qubit Gates

Besides CNOT gates and SWAP gates, QBO and QPO
can be generalized to optimize a broader range of quantum
gates.

First, QBO for CNOT gates can be generalized to optimize
the multi-controlled NOT gates. The optimization of multi-
controlled NOT gates with some known inputs can be derived
as follows. 1) If any of the control qubits is in the |0〉 state, we
can remove the multi-controlled NOT gate. 2) If any of the
control qubits is in the |1〉 state, we can remove the control
qubit and substitute the gate using a multi-controlled NOT

gate with one less control qubit. 3) If the target qubit is in
|+〉 state, we can remove the multi-controlled NOT gate. 4)
If the target qubit is in |−〉 state, we can substitute the gate
with a multi-controlled Z gate with the target on any of the
previous control qubits. In our study, we find that Toffoli gates
are widely used in quantum algorithms. A Toffoli gate is a
NOT gate with two controlled qubits. Equation 8 presents
the optimizations for the Toffoli gate. The open controlled
NOT gates can also be optimized using a similar approach as
discussed is in Appendix C.

Second, the optimization of multi-controlled NOT gates
can be further generalized to multi-controlled unitary gates.
When the control qubits are in |0〉 or |1〉, the optimization
rules are the same. Assume the unitary gate U has eigenstates
|ψ+〉 and |ψ−〉 with eigenvalues of 1 and -1, respectively. We
have |ψ+〉 = U |ψ+〉 and |ψ−〉 = −U |ψ−〉. When the target
qubit is in |ψ+〉 and |ψ−〉 the optimization rules are the same
as the rules for multi-controlled NOT gates with respect to
|+〉 and |−〉 states.

|π〉 |π′〉

|φ〉 |φ′〉

|ψ〉 |ψ′〉

=

if |π〉 = |0〉
or |ψ〉 = |+〉

if |π〉 = |1〉

if |ψ〉 = |−〉Z

(8)

Third, QBO/QPO for SWAP gates can also be extended
to the Fredkin gate (aka CSWAP gate) and multi-controlled
SWAP gates. A Fredkin gate is a controlled SWAP gate with
a single control qubit. A Fredkin gate can be decomposed into
two CNOT gates and a Toffoli gate. The decomposition is
included in Figure 14 in Appendix D. In the same way, multi-
controlled SWAP gates can be decomposed into two CNOT
gates and a multi-controlled NOT gate. If the control qubit
|ψ〉 is in the |0〉 state, we can remove the Fredkin gate. If
it is in the |1〉 state, we can substitute the Fredkin gate with
a SWAP gate. If any of the target states |ψ〉 or |π〉 is in
a known basis state, we can optimize the first CNOT gate
accordingly. If both of the target states |ψ〉 and |π〉 are in
known pure states, following the optimization in Equation 6,
we can substitute the Fredkin gate with two controlled U
gates, as shown in Equation 9, where gates U and U−1 have
the relationship |π〉 = U |ψ〉 and |ψ〉 = U−1 |π〉. Since a
Toffoli gate can be implemented with six CNOT gates and
eight single-qubit gates [37], the Fredkin gate would need

eight CNOT gates and eight single-qubit gates following the
decomposition in Figure 14. In comparison, a controlled-U
gate can be implemented with at most two CNOT gates and
four single-qubit gates [39]. Therefore, our optimized Fredkin
gate in Equation 9 would require at most four CNOT gates
and eight single-qubit gates. As a result, our proposed QPO
reduces at least four CNOT gates for a Fredkin gate with
known pure-state inputs.

|φ〉

|ψ〉

|π〉

=

|φ〉

|ψ〉 U

|π〉 U−1

if |π〉 = U |ψ〉 (9)

D. Optimizing Qubit blocks

Our proposed QPO can be further generalized to optimize
two-qubit blocks. A sequence of uninterrupted two-qubit gates
is considered as a two-qubit block [3]. The Qiskit transpiler
optimizes these blocks by calculating the unitary matrices of
these blocks and resynthesizing them using the KAK decom-
position [23], [24]. Generally speaking, a two-qubit block can
decomposed to a circuit consisting of at most three CNOT s
and eight single-qubit gates [47] as shown in Figure 3. If
the two input qubit states |ψ〉 and |π〉 are in known pure
states, the compiler can calculate the output state |φ〉 statically.
Existing research [29] has proved that any two-qubit state can
be prepared by a CNOT gate and four single-qubit gates.
It means that we can substitute the two-qubit block with the
state preparation circuit shown in Figure 4. As a result, we
reduce the number of CNOT gates by two and the number
of single-qubit gates by four.

|ψ〉 U1 U2 U3 U4

|φ〉
|π〉 U5 U6 U7 U8

Fig. 3: Universal decomposition of two-qubit block U

|ψ〉 V1 V2

|φ〉
|π〉 V3 V4

Fig. 4: Universal circuit for preparing quantum state |φ〉

The optimization of the two-qubit block can be generalized
to n-qubit blocks. If we know the input state and the output
state of an n-qubit block, we can use the state preparation
circuit to substitute the original circuit. It has been proved
that preparing a quantum state can require less CNOT gates
than preserving the unitary matrix [34].

VI. QUANTUM STATE ANALYSIS

A. Basis-State Analysis

For the purpose of applying QBO, we implemented a state
automata, partially shown in Figure 5, to track the basis state of

|0〉

start

|1〉

|−〉|+〉

>

|L〉 |R〉

X ,Y

Z ,Y

HH U

Z Z

X X

YY

RESET
ANNOT(π,

0)

H ,X ,Z

SS † SS †

Fig. 5: Partial automata for single-qubit basis-state analysis

each qubit. The automata consist in six distinguished single-
qubit states: |0〉, |1〉, |+〉, |−〉, |L〉, and |R〉. Every single-
qubit half- and quarter-turn gate transitions the states in the
automata (not all of them reflected in Figure 5). Any other
gate or operation (except special cases for SWAP , SWAPZ ,
and RESET), denoted as U , would change the state of the
qubit to the unknown non-basis state >. That is represented
in the automata graph only with the |0〉 example but the same
applies to all the other states.

As quantum processors are initialized in its lowest-energy
state known as ground state, all the qubits start in state |0〉.
The half- and quarter-turn gates transform basis states into
basis states. For example, the Hadamard gate H (a half-turn
gate) moves the Z-basis into the X-basis and vice versa. The
loop transitions in each node indicate a gate with no effect on
that state, i.e. it is the eigenstate with an eigenvalue of 1, as
explained in Section V-A.

The instruction RESET turns any state into the zero state.
In Figure 5, that is illustrated as the only transition able
to downgrade from > to |0〉. The annotation instruction
ANNOT , to be discussed in subsection VI-C, can transit
between different states. Essentially, it can be used to change
the state from > to a basis state, as exampled with the edge
between > and |1〉.

The basis-state analysis also considers the effect of SWAP
and SWAPZ . When they are encountered, the states of the
involved qubits are swapped, including >.

B. Pure-State Analysis

(θ, φ)

start

>
U

u3(θ, φ, λ)

ANNOT(θ, φ)/
RESET

Fig. 6: Automata for pure-state analysis

As QBO, QPO requires a pure-state analysis to track the
single-qubit pure states. A single qubit is in pure state when it
is not entangled with the other qubits. Any single-qubit pure
state can be represented by a state vector with two parameters
θ and φ, |ψ(θ, φ)〉 = cos(θ2) |0〉+ e

iφsin(θ2) |1〉. Knowing the
pure state |ψ(θ, φ)〉, we can use a single-qubit gate u3(θ, φ, 0)

to generate this state from |0〉 state, |ψ(θ, φ)〉 = u3(θ, φ, 0) |0〉.
Therefore, we choose these two parameters to record the
single-qubit pure state information. In our analysis, each qubit
associates a tuple (θ, φ). When the qubit is not in pure state,
the parameters are set to >.

The tuple (θ, φ) is updated to track the pure state infor-
mation for each qubit. Since any single-qubit gate can be
expressed by the u3(θ, φ, λ) gate, when we apply a u3(θ, φ, λ)
gate to a qubit in the pure state (θ0, φ0), the output state would
be a pure state (θ1, φ1). Calculating the parameters (θ1, φ1)
of the output state is analogous to merging two u3 gates,
since |ψ(θ1, φ1)〉 = u3(θ, φ, λ) |ψ(θ0, φ0)〉 = u3(θ, φ, λ)
u3(θ0, φ0, 0) |0〉 = u3(θ′, φ′, λ′) |0〉 = u3(θ1, φ1, 0) |0〉. Since
the λ′ parameter does not change the |0〉 state and can be
ignored, we have θ1 = θ′ and φ1 = φ′. In our implementation,
we leverage the gate merging function in Qiskit to calculate
the output state parameters θ1 and φ1.

When a multi-qubit gate is applied to the qubits in pure
state, the output might be in mixed state. Therefore, the
resulting states are marked as > for each implicated qubit.
The RESET instruction will reset the qubit back to ground
state (0, 0). The ANNOT (θ, φ) annotation, to be discussed
in subsection VI-C, will transform the qubit to pure state
(θ, φ). The transitions among these states are illustrated by
the automata in Figure 6. Similar to the basis-state analysis,
our pure state analysis considers SWAP and SWAPZ gates.
When they are encountered, the pure states of the involved
qubits are swapped, including >.

Section IV discusses the optimization for a SWAP gate with
two known pure states. The optimization needs the unitary
gates that transform one pure state to the other. With the two-
parameter (θ, φ) representation, it is easy to generate such
unitary gates. The gate u3(θ2 − θ1, φ2 − φ1) transforms the
pure state |ψ(θ1, φ1)〉 to |ψ(θ2, φ2)〉, |ψ(θ2, φ2)〉 = u3(θ2 −
θ1, φ2 − φ1) |ψ(θ1, φ1)〉.

C. State Annotation

Determining whether a generic quantum state is entangled
is an NP-hard problem [17]. In general, it is hard to infer
information about the states from a quantum circuit using
a classical machine efficiently. However, based on the un-
derstanding of the quantum program, the programmer can
provide information to facilitate state analysis. For example, in
quantum networks for elementary arithmetic operations [44],
the network uses reverse computation to unentangle and reuse
qubits. The programmers know these qubits are unentangled
after reverse computation and they can annotate that these
qubits are in particular pure states. Another example is, “clean”
ancilla qubits are commonly used in quantum computing. The
“clean” ancilla qubits are in |0〉 state and can be reused after
the gate. As shown in Figure 7, after the multi-controlled
Toffoli gate, the ancilla qubit remains to be in state |0〉. To
leverage such user-level information, we introduce annota-
tions, which inform the compiler that the qubits are in certain
quantum states. For example, in the pure state analysis, we use
the annotation ANNOT (θ, φ) to indicate a quantum state is

ORACLE DIFFUSION OPERATOR

ANNOT
(0, 0)

ANNOT
(0, 0)

|0〉 H H H X X H

|0〉 H H H X X H

|0〉 H H H X X H

|0〉 H H H X X H

|0〉

target target

ancilla ancilla

Fig. 7: 4-qubit Grover’s algorithm using multi-controlled Z
gates with “clean” ancilla qubits and annotations

in pure state |ψ(θ, φ)〉. The programmer can insert annotations
based on the understanding of the quantum program. The
annotations can also be inserted by the compiler automatically.
For example, when the programmer uses the gate design with
“clean” ancilla qubits, the compiler may automatically insert
annotations ANNOT (0, 0) for such ancilla qubits.

By introducing the annotations, we can avoid the complex
quantum state analysis and improve the scalability of our
proposed optimization pass.

VII. METHODOLOGY

A. Compiler Implementation

We implemented our QBO and QPO passes on the open-
source quantum computing framework Qiskit 0.18 [3] and our
implementation is publicly available 1. Qiskit organizes the
transpilation passes in pass managers and it currently includes
four pass managers for each level of optimization. The level
3 provides the maximal optimization at the expense of longer
transpilation time. As part of our implementation, we extended
the pass manager for level 3 to include our optimizations.

Figure 8 outlines the sequence of passes in level 3 and the
additions (underlined) that we introduced. The input circuit
is run through the QBO pass first. The effect of this early
optimization cascades in the rest of the pass manager, since
any reduction in the gate count will improve the speed and
effectiveness of subsequent passes. Additionally, QBO checks
basis states of the SWAPZ gates in the input circuit, if
there are any. If the condition in Equation 4 does not hold
for a specific SWAPZ gate, the gate is decomposed into
2 CNOT gates, following the definition from Equation 3.
This guarantees that the SWAPZ gates from this point on
are semantically equivalent to SWAP gates. After the SWAP
gates are inserted during the routing process (line 4) a new pass
of QBO (line 5) optimizes those inserted SWAP gates. In line
6 and 7, we reuse existing Qiskit functionalities, Unroller
and Optimize1qGate to prepare for the QPO pass (line
8). The Unroller pass decomposes all the circuit gates
into the list of gates defined by the parameter. The variable
basis_gates is a list of the primitive gates supported by
the quantum device. In line 8, the list is extended with the
gates SWAP and SWAPZ , since QPO understands them. The
Optimize1qGates pass merges the single-qubit gates into

1https://github.com/1ucian0/rpo [6]

https://github.com/1ucian0/rpo

1 QBO()
2 Unroller(basis_gates)
3 <layout selection>
4 <routing process>
5 QBO()
6 Unroller(basis_gates + swap + swapz)
7 Optimize1qGates()
8 QPO()
9 while not <fixed point>{

10 <optimizations>}

Fig. 8: Optimization level 3 in Qiskit 0.18 (RPO additions
underlined)

a single unitary gate. After QPO, the circuit is optimized in a
loop until a fixed point is reached. This loop is expensive and
we decided to place QBO and QPO out of it. The loop iterates
at least twice in order to find the fixed point. The optimizations
in the loop (line 10) do not modify the state invariant on the
qubits. Therefore, there is no gain running QBO/QPO more
than once.

B. Benchmarks and System configuration

To evaluate our proposed compiler optimization, we run our
experiments upon the following algorithms:

Bernstein-Vazirani algorithm: A blackbox function f(x)
is guaranteed to be the dot product between x and a bit string
s: f(x) = x · s. Given an oracle that implements f(x), the
algorithm finds the hidden bit string s with a single evaluation.

Quantum Phase Estimation (QPE) algorithm: QPE esti-
mates the phase of an eigenvector of a unitary matrix. Given a
quantum state |ψ〉 which is the eigenvector of a unitary matrix
U , U |ψ〉 = e2πiθ |ψ〉, QPE estimates the phase θ.

VQE algorithm: Variational Quantum Eigensolver (VQE)
is a hybrid quantum/classical algorithm which finds the eigen-
values of a matrix H . In the VQE algorithm, the circuit for
preparing the quantum state is called anstaz. We use the VQE
program and the hardware-efficient ansatz RY from Qiskit
Aqua [3]. In our experiment, we use the VQE algorithm to
solve the Max-Cut problem [15].

Quantum Volume: Quantum volume [10] is a metric for
characterizing quantum system performance. It is calculated by
taking various quantum computer features into account, such
as gate error, and connectivity. The quantum volume circuit is
randomly generated with a fixed but generic form.

Grover’s search algorithm: Given a set X of N elements
and a boolean function f : X → 0, 1, Grover’s algorithm finds
an element xi in X such that f(xi) = 1.

Since the RESET is currently not supported by the
IBMQ quantum hardware, none of the circuits used in our
experiments include the RESET instruction. We run our
experiments with connectivity maps and noise properties
from three different quantum computers, a 15-qubit quantum
computer ibmq_16_melbourne, a 20-qubit quantum com-
puter ibmq_almaden, and a 53-qubit quantum computer
ibmq_rochester. The connectivity maps of these three
quantum computers are shown in Figure 9. We compare our
optimization pass with the hoare logic pass [2] implemented
in the Qiskit transpiler. For a fair comparison, we append the

hoare logic pass to the level 3 pass manager. We also run our
experiments on these real quantum computers to evaluate the
fidelity rate improvement from our compiler optimization.

Each circuit was transpiled several times to mitigate the
effect of corner cases given the non-deterministic nature
of Qiskit transpiler. For example, the StochasticSwap
routing pass included in Qiskit returns significantly different
results depending on the random seed and the input circuit.
The reported CNOT gate count and the transpilation time
are the medians of twenty-five (25) transpilation results. The
reported median CNOT gate count is very close to the average
CNOT gate count. We use the geometric mean to calculate
the average ratio of CNOT gate reduction.

(a) ibmq_16_melbourne

(b) ibmq_almaden (c) ibmq_rochester

Fig. 9: Connectivity map of three different IBM quantum
computers

VIII. PERFORMANCE

In this section, we first show a case study on the Bernstein-
Vazirani algorithm, for which our optimization pass will
optimize the boolean oracle with CNOT gates into phase
oracle with single-qubit gates. Then, we provide case studies
on four widely used algorithms namely the quantum phase
estimation (QPE) algorithm, variational quantum eigensolver
(VQE) algorithm, quantum volume benchmark, and Grover’s
algorithm. Subsequently, we show the annotations improve the
scalability of our optimization. Next, we study the impact of
the backend connectivity on the optimization. In the end, we
run the experiments on real quantum computers to show the
success rate improvement with our optimization.

A. Bernstein-Vazirani Algorithm

Circuits implementing the Bernstein-Vazirani Algorithm are
used extensively for benchmarking in recent quantum comput-
ing researches [40]–[42]. QBO has a particular effect on this
algorithm implementations that is noteworthy.

The oracle that implements the function f(x) can be rep-
resented in two different ways. The boolean oracle method
converts an irreversible computation to a reversible one [7].
The other method is to use phase oracles [22], encoding f(x)
into phase amplitudes. The phase oracle for the Bernstein-
Vazirani algorithm can be done with only Z gates [12].
Figure 10 shows two different implementations of 4-qubit
Bernstein-Vazirani algorithm with hidden bit string s = 1011.

The first design requires an extra ancilla qubit and CNOT
gates. The second design only includes single-qubit gates and

QPE VQE Quantum Volume Grover
Metric CNOT gate count transpile time(s) CNOT gate count transpile time(s) CNOT gate count transpile time(s) CNOT gate count transpile time(s)

Optimization level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO
4-qubits 24 21 18 0.29 0.41 0.28 56 51 47 0.43 0.77 0.42 38 28 26 0.39 0.74 0.39 168 159 157 1.80 2.14 1.51
6-qubits 66 62 54 0.81 1.00 0.73 147 141 136 1.53 1.62 1.38 75 75 72 1.73 1.93 1.51 359 345 322 4.61 5.72 4.78
8-qubits 124 117 106 1.34 1.74 1.24 301 289 285 1.95 2.71 1.99 165 158 147 2.92 3.85 3.27 1551 1491 1463 16.6 30.2 13.8
10-qubits 205 197 172 1.88 2.30 1.59 485 470 459 2.77 4.78 2.61 327 313 282 6.39 7.15 5.04 6358 6309 6275 52.4 303.7 45.9
12-qubits 268 261 225 2.77 4.39 3.11 720 699 683 4.74 6.76 4.37 429 424 399 7.56 11.84 7.36 25386 25254 25008 232.5 10271.8 231.8
14-qubits 500 500 451 4.95 10.98 7.04 1142 1136 1136 5.74 11.72 5.69 1505 1491 1479 19.62 25.94 16.27 101020 N.A. 100762 1769.4 N.A. 1828.2

TABLE II: Median of CNOT gates and transpilation time of three quantum algorithms with different size (on
ibmq_16_melbourne)

(a) Boolean oracle (b) Phase oracle
Fig. 10: Two different circuits for Bernstein-Vazirani algorithm

it is more feasible for noisy quantum systems. Notice that the
ancilla qubit is in the |−〉 state. Following the discussion in
Section V-B, our QBO pass substitutes the CNOT gates with
Z gates and the optimized circuit is the same as the design
with phase oracle. In other words, QBO converts the design
in Figure 10a into Figure 10b.

We found that our optimization can optimize the costly
boolean oracle to a design which has the same cost as the
phase oracle. Besides the Bernstein-Vazirani algorithm, the
boolean oracles for the Grover’s algorithm [13] and general
cases [33] can also be optimized by our pass. In comparison,
such boolean oracles can’t be optimized by the Qiskit compiler
or the hoare logic pass.

B. Quantum Algorithms

In this section, we consider four practical quantum algo-
rithms: quantum phase estimation, VQE, quantum volume, and
Grover’s search algorithm. We compare RPO against the Qiskit
compiler with optimization level 3 and the optimization level
3 with hoare logic pass, using the backend properties from
ibmq_16_melbourne, which has 15 qubits. The median
of CNOT gate count and transpilation time are shown in
Table II. For all of the circuits, the resulting CNOT gate
count of our pass manager is less than or equal to that of
level 3. For most of the circuits, the compilation time of our
pass manager is shorter than that of level 3, even though we
included extra optimization passes. This is due to the early
QBO, which cascades its effect to the rest of the passes in
the pass manager. Since any reduction in the gate count will
improve the subsequent passes, the overall compile time can be
reduced. Our RPO pass results in more efficient circuit design
and less compile time compared to the hoare logic pass. By
checking the optimized circuit, we found that all the gates
that are optimized by the hoare logic pass can be captured
by our RPO pass. The median of single-qubit gate count and
circuit depth are shown in Table V in Appendix E. As we can
see from Table V, both the single-qubit gate count and circuit
depth are improved as a result of our optimization.

For the QPE algorithm, when the logical circuit is decom-
posed to the basic gates, some of the CNOT gate can be
optimized by our compiler pass. Therefore, our optimized
circuits have lower CNOT gate count for all different numbers
of qubits. Notice that our optimization has a significant impact
for the shallow circuits. For the 4-qubit QPE algorithm, our
optimization reduced the CNOT gate count by 25%. On
average, our optimization leads to 18.0% decrease in the
CNOT gate count and 5.5% decrease in the transpilation time
for the QPE algorithm.

For the VQE algorithm, we use the hardware-efficient ansatz
RY as the circuit design. The hardware-efficient ansatz is
concise which limits the possible optimizations. However,
when mapped to the physical qubits, the compiler introduces
extra SWAP gates. Therefore, it is still possible to optimize
the circuit. As the number of qubit increases, the number of
CNOT gate optimized by our pass also increases. However,
when the qubit count is close to the total number of qubits
in the device (for this case 15), all the qubit will quickly
fall into the non-basis/pure state >, and our optimization
only optimized a small amount of CNOT gates. In the best
case, our optimization reduced the CNOT gate count by 16%
for the 4-qubit VQE algorithm. Our optimization leads to an
average of 5.8% decrease in the CNOT gate count and 7.7%
decrease in the transpilation time for VQE algorithm.

For the quantum volume benchmark, since it is a ran-
domly generated benchmark, the qubits are entangled and it
is difficult to analyze the quantum states. Nevertheless, our
optimization remains effective.

Since the long compile time may cause compilation failure,
we only compile one iteration of the Grover’s algorithm. In
the 14-qubit case, the hoare logic pass failed due to long
compilation time. On average, our optimization reduces the
SWAP gate count by 2.4% and the transpilation time by 7.3%.

Across these four benchmarks, our optimization reduces the
CNOT gate count by 11.7%/4.5% and the transpilation time
by 7.1%/40.0% on average compared to Qiskit level 3 and
Hoare logic, respectively.

C. Quantum Algorithm with Annotations

In this section, we use the Grover’s algorithm to demonstrate
that annotations can significantly improve the scalability of our
optimization. It is a common practice to use quantum gates
with ancilla qubits. Introducing ancilla qubits can significantly
reduce the circuit size. For example, when using the multi
controlled Toffoli gate without ancilla qubits, the 8-qubit
grover’s algorithm circuit consists of approximately ∼ 1500
CNOT gates. We can use another design which requires six

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0.00

0.08

0.16

0.24
Pr

ob
ab

ilit
ies 0.18

0.26
Qiskit (level 3)
Qiskit with RPO (level 3)

(a) ibmq_16_melbourne

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

ies

0.30

0.36
Qiskit (level 3)
Qiskit with RPO (level 3)

(b) ibmq_almaden

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0.00

0.08

0.16

0.24

0.32

Pr
ob

ab
ilit

ies 0.21

0.32
Qiskit (level 3)
Qiskit with RPO (level 3)

(c) ibmq_rochester

Fig. 11: Output distribution of QPE algorithm on three different quantum computers

“clean” ancilla qubits. The ancilla qubit design only consists
of approximately ∼ 400 CNOT gates. Similar to Figure 7,
we can add annotations for the “clean” ancilla qubit.

The n-qubit Grover’s algorithm requires O(
√
2n) iterations

to maximize the probability amplitude of the correct output.
Each iteration consists of an oracle and a diffusion operator.
We use the multi-controlled Toffoli gate with ancilla qubits
and test the 8-qubit Grover’s algorithm with different number
of iterations. The experiment results of different optimization
passes are shown in Table III. Without annotations, after first
few iterations, all the qubits will fall into the non-basis/pure
state >. Therefore, CNOT gate count reduced by RPO is
∼ 30 regardless of the number of iterations. By introducing
annotations, the qubits can transfer from > back to basis/pure
state. For the 2-iteration case, our optimization reduced the
CNOT gate count by 10.8%. When the number of iteration is
greater than eight, our optimization reduced a constant fraction
∼ 7.4% of the CNOT gate count.

Metric CNOT gate count depth transpile time(s)
Optimization level3 RPO RPO w/ Annot level3 RPO RPO w/ Annot level3 RPO RPO w/ Annot

2-iteration 653 625 583 626 619 600 7.37 7.15 6.84
4-iteration 1315 1280 1187 1249 1238 1200 15.11 14.88 13.89
6-iteration 1882 1847 1709 1826 1815 1748 21.41 21.78 19.59
8-iteration 2559 2527 2362 2443 2435 2350 25.74 29.20 27.45

10-iteration 3111 3079 2886 3005 2994 2897 37.49 35.65 32.61
12-iteration 3695 3660 3419 3606 3595 3478 45.51 45.02 43.09
14-iteration 4288 4251 3979 4192 4179 4051 48.67 48.12 48.02

TABLE III: Median of CNOT gates, depth, and transpilation
time of Grover’s algorithm with different number of iterations

D. Different Backend Connectivity

QPE ibmq_almaden QPE ibmq_rochester
Metric CNOT gate count transpile time(s) CNOT gate count transpile time(s)

Optimization level3 RPO level3 RPO level3 RPO level3 RPO
4-qubits 26 23 0.24 0.23 25 18 0.36 0.34
6-qubits 72 56 0.57 0.53 66 51 0.77 0.72
8-qubits 157 134 0.98 0.97 236 220 2.45 2.42
10-qubits 357 312 1.62 1.54 198 147 1.96 1.87
12-qubits 413 369 2.27 2.16 444 370 3.55 3.44
14-qubits 586 537 3.36 3.25 722 644 6.17 5.77

TABLE IV: Median of CNOT gates and transpilation time of
QPE algorithm on different quantum computers

SWAP gates are introduced when the compiler performs the
logical-to-physical mapping. When the backend has limited
connectivity, the logical-to-physical mapping will introduce
more SWAP gates. Therefore, our optimization pass has a
higher chance to optimize the quantum circuit.

We compile the QPE program with connectivity maps
from three different quantum computers. These connectivity

maps are shown in Figure 9. Among these quantum com-
puters, ibmq_16_melbourne has the best connectivity and
ibmq_rochester has the worst. The experiment result of
QPE on ibmq_16_melbourne is shown in Table II in the
previous section. The results of QPE on ibmq_almaden and
ibmq_rochester are shown in Table IV.2. From these re-
sults, we can see that our optimization is effective on all these
quantum computers. Another interesting observation is that,
the worse connectivity the quantum computer has, the higher
total CNOT gate count, and the more CNOT gates will be
optimized by our optimization. The percentage of CNOT
gates reduced by our optimization are 18.0%, 15.2%, and
20.6% for ibmq_16_melbourne, ibmq_almaden and
ibmq_rochester respectively. The percentage of transpiled
time reduced by our optimization are 5.5%, 5.3%, and 4.6%.

E. Experiment on Real Quantum Computers

We ran the 3-qubit QPE algorithm on real quantum com-
puters to highlight the effectiveness of reducing CNOT gates.
The output distribution is shown in Figure 11. The correct
output should be 111. Since the circuit depth for 3-qubit
QPE is shallow, the different quantum computer connectivity
doesn’t lead to too much difference in the total CNOT count.
The gate error and measurement error of different devices
have higher impact on the final output distribution. Although
the circuit running on ibmq_16_melbourne has the least
CNOT count, the fidelity of that circuit is not the best. With-
out our optimization, we cannot even infer the correct result
on both ibmq_16_melbourne and ibmq_almaden. Our
optimization reduces the CNOT gate count by 33%, 29%, and
28% and leads to success rate improvements of 2.94X , 2.69X ,
and 1.53X on ibmq_16_melbourne, ibmq_almaden,
and ibmq_rochester, respectively. The average success
rate improvement (geometric mean) is 2.30X for 3-qubit QPE
algorithm.

IX. CONCLUSIONS

In this paper, we propose a fast and effective compiler opti-
mization named relaxed peephole optimization. Based on this
optimization we designed two compiler optimization passes,
QBO and QPO, and implemented them in the IBM’s Qiskit

2The abnormal result of 8-qubit QPE algorithm on ibmq_rochester is
due to Qiskit transpiler’s layout selection function changed the shape of the
coupling map subgraph

transpiler. We show that our optimization pass is faster than
the most aggressive optimization level in the Qiskit, and the
circuits optimized by our optimization pass also have fewer
CNOT gates. Our experiments on the real quantum computers
highlight that the reduction in CNOT gate count leads to a
significant improvement in the circuit success rate.

REFERENCES

[1] Cirq: A python framework for creating, editing, and invoking
noisy intermediate scale quantum (nisq) circuits. [Online]. Available:
https://github.com/quantumlib/Cirq

[2] Qiskit hoare opt pass. [Online]. Available:
https://github.com/Qiskit/qiskit-terra/blob/master/qiskit/transpiler/
passes/optimization/hoare opt.py

[3] H. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander,
G. Alexandrowics, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya,
P. Barkoutsos, G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S.
Bishop, S. Bosch, S. Bravyi, D. Bucher, F. Cabrera, P. Calpin,
L. Capelluto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen,
R. Chen, J. M. Chow, C. Claus, C. Clauss, A. J. Cross, A. W.
Cross, S. Cross, J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales,
S. Dague, T. E. Dandachi, M. Dartiailh, DavideFrr, A. R. Davila,
D. Ding, J. Doi, E. Drechsler, Drew, E. Dumitrescu, K. Dumon,
I. Duran, K. EL-Safty, E. Eastman, P. Eendebak, D. Egger, M. Everitt,
P. M. Fernández, A. H. Ferrera, A. Frisch, A. Fuhrer, M. GEORGE,
J. Gacon, Gadi, B. G. Gago, J. M. Gambetta, A. Gammanpila,
L. Garcia, S. Garion, J. Gomez-Mosquera, S. de la Puente González,
I. Gould, D. Greenberg, D. Grinko, W. Guan, J. A. Gunnels, I. Haide,
I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok, S. Hillmich,
H. Horii, C. Howington, S. Hu, W. Hu, H. Imai, T. Imamichi,
K. Ishizaki, R. Iten, T. Itoko, A. Javadi-Abhari, Jessica, K. Johns,
T. Kachmann, N. Kanazawa, Kang-Bae, A. Karazeev, P. Kassebaum,
S. King, Knabberjoe, A. Kovyrshin, V. Krishnan, K. Krsulich, G. Kus,
R. LaRose, R. Lambert, J. Latone, S. Lawrence, D. Liu, P. Liu,
Y. Maeng, A. Malyshev, J. Marecek, M. Marques, D. Mathews,
A. Matsuo, D. T. McClure, C. McGarry, D. McKay, D. McPherson,
S. Meesala, M. Mevissen, A. Mezzacapo, R. Midha, Z. Minev,
A. Mitchell, N. Moll, M. D. Mooring, R. Morales, N. Moran,
P. Murali, J. Müggenburg, D. Nadlinger, G. Nannicini, P. Nation,
Y. Naveh, P. Neuweiler, P. Niroula, H. Norlen, L. J. O’Riordan,
O. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello,
A. Phan, M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli,
J. Pérez, Quintiii, R. Raymond, R. M.-C. Redondo, M. Reuter, J. Rice,
D. M. Rodrı́guez, M. Rossmannek, M. Ryu, T. SAPV, SamFerracin,
M. Sandberg, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L.
Scholten, E. Schoute, J. Schwarm, I. F. Sertage, K. Setia, N. Shammah,
Y. Shi, A. Silva, A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov,
S. Sivarajah, M. B. Sletfjerding, J. A. Smolin, M. Soeken, I. O. Sokolov,
SooluThomas, D. Steenken, M. Stypulkoski, J. Suen, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod,
E. de la Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner, Y. Vaknin,
C. R. Valcarce, F. Varchon, A. C. Vazquez, D. Vogt-Lee, C. Vuillot,
J. Weaver, R. Wieczorek, J. A. Wildstrom, R. Wille, E. Winston, J. J.
Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood, J. Wootton,
D. Yeralin, R. Young, J. Yu, C. Zachow, L. Zdanski, C. Zoufal, Zoufalc,
azulehner, bcamorrison, brandhsn, chlorophyll zz, dan1pal, dime10,
drholmie, elfrocampeador, faisaldebouni, fanizzamarco, gruu, kanejess,
klinvill, kurarrr, lerongil, ma5x, merav aharoni, ordmoj, sethmerkel,
strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang,
yang.luh, yelojakit, and yotamvakninibm, “Qiskit 0.18.3,” Apr. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3765847

[4] M. Amy, “Towards large-scale functional verification of universal quan-
tum circuits,” arXiv preprint arXiv:1805.06908, 2018.

[5] M. Amy, “Formal methods in quantum circuit design,” 2019.
[6] L. Bello and J. Liu, “Rpo 1.0,” Nov. 2020. [Online]. Available:

https://doi.org/10.5281/zenodo.4281275
[7] C. H. Bennett, “Logical reversibility of computation,” IBM journal of

Research and Development, vol. 17, no. 6, pp. 525–532, 1973.
[8] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and

S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[9] K. Blum, Density matrix theory and applications. Springer Science &
Business Media, 2012, vol. 64.

[10] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M.
Gambetta, “Validating quantum computers using randomized model
circuits,” Physical Review A, vol. 100, no. 3, p. 032328, 2019.

[11] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[12] J. Du, M. Shi, X. Zhou, Y. Fan, B. Ye, R. Han, and J. Wu, “Imple-
mentation of a quantum algorithm to solve the bernstein-vazirani parity
problem without entanglement on an ensemble quantum computer,”
Physical Review A, vol. 64, no. 4, p. 042306, 2001.

[13] C. Figgatt, D. Maslov, K. Landsman, N. M. Linke, S. Debnath, and
C. Monroe, “Complete 3-qubit grover search on a programmable quan-
tum computer,” Nature communications, vol. 8, no. 1, pp. 1–9, 2017.

[14] J. C. Garcia-Escartin and P. Chamorro-Posada, “Equivalent quantum
circuits,” arXiv preprint arXiv:1110.2998, 2011.

[15] M. R. Garey and D. S. Johnson, Computers and intractability. freeman
San Francisco, 1979, vol. 174.

[16] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2012, vol. 3.

[17] L. Gurvits, “Classical deterministic complexity of edmonds’ problem
and quantum entanglement,” in Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, 2003, pp. 10–19.

[18] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary algorithm
for a class of combinatorial optimization,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 6, pp. 580–593, 2002.

[19] T. Häner, T. Hoefler, and M. Troyer, “Using hoare logic for quantum
circuit optimization,” arXiv preprint arXiv:1810.00375, 2018.

[20] J. Hsu, “Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy,”
Sep 2019. [Online]. Available: https://spectrum.ieee.org/tech-talk/
computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy

[21] J. Kelly, “Preview of bristlecone, google’s new quantumprocessor,”
Sep 2019. [Online]. Available: https://ai.googleblog.com/2018/03/
a-preview-of-bristlecone-googles-new.html

[22] D. Kenigsberg, T. Mor, and G. Ratsaby, “Quantum advantage without
entanglement.” Quantum Information & Computation, vol. 6, no. 7, pp.
606–615, 2006.

[23] N. Khaneja, R. Brockett, and S. J. Glaser, “Time optimal control in spin
systems,” Physical Review A, vol. 63, no. 3, p. 032308, 2001.

[24] B. Kraus and J. Cirac, “Optimal creation of entanglement using a two-
qubit gate,” Physical Review A, vol. 63, no. 6, p. 062309, 2001.

[25] F. Lardinois, “Ibm will soon launch a 53-qubit quantum computer,”
Sep 2019. [Online]. Available: https://techcrunch.com/2019/09/18/
ibm-will-soon-launch-a-53-qubit-quantum-computer/

[26] Y. Li, J. Hu, X.-M. Zhang, Z. Song, and M.-H. Yung, “Variational
quantum simulation for quantum chemistry,” Advanced Theory and
Simulations, vol. 2, no. 4, p. 1800182, 2019.

[27] V. Mavroeidis, K. Vishi, M. D. Zych, and A. Jøsang, “The im-
pact of quantum computing on present cryptography,” arXiv preprint
arXiv:1804.00200, 2018.

[28] W. M. McKeeman, “Peephole optimization,” Communications of the
ACM, vol. 8, no. 7, pp. 443–444, 1965.

[29] M. Mottonen and J. Vartiainen, “Decompositions of general quantum
gates. ch. 7 in trends in quantum computing research,” 2006.

[30] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1015–1029.

[31] P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
arXiv preprint arXiv:2001.02826, 2020.

[32] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated
optimization of large quantum circuits with continuous parameters,” npj
Quantum Information, vol. 4, no. 1, pp. 1–12, 2018.

[33] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[34] M. Plesch and Č. Brukner, “Quantum-state preparation with universal
gate decompositions,” Physical Review A, vol. 83, no. 3, p. 032302,
2011.

[35] A. K. Prasad, V. V. Shende, I. L. Markov, J. P. Hayes, and K. N. Patel,
“Data structures and algorithms for simplifying reversible circuits,” ACM

https://github.com/quantumlib/Cirq
https://github.com/Qiskit/qiskit-terra/blob/master/qiskit/ transpiler/passes/ optimization/hoare_opt.py
https://github.com/Qiskit/qiskit-terra/blob/master/qiskit/ transpiler/passes/ optimization/hoare_opt.py
https://doi.org/10.5281/zenodo.3765847
https://doi.org/10.5281/zenodo.4281275
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://techcrunch.com/2019/09/18/ibm-will-soon-launch-a-53-qubit-quantum-computer/
https://techcrunch.com/2019/09/18/ibm-will-soon-launch-a-53-qubit-quantum-computer/

Journal on Emerging Technologies in Computing Systems (JETC), vol. 2,
no. 4, pp. 277–293, 2006.

[36] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[37] V. V. Shende and I. L. Markov, “On the cnot-cost of toffoli gates,” arXiv
preprint arXiv:0803.2316, 2008.

[38] S. Sivarajah, S. Dilkes, A. Cowtan, W. S. A. Edgington, and R. Dun-
can, “t|ket〉: A retargetable compiler for nisq devices,” arXiv preprint
arXiv:2003.10611, 2020.

[39] G. Song and A. Klappenecker, “Optimal realizations of controlled
unitary gates,” arXiv preprint quant-ph/0207157, 2002.

[40] S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving
reliability of quantum computers by orchestrating dissimilar mistakes,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 253–265.

[41] S. S. Tannu and M. K. Qureshi, “Mitigating measurement errors in quan-
tum computers by exploiting state-dependent bias,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 279–290.

[42] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a
case for variability-aware policies for nisq-era quantum computers,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019, pp. 987–999.

[43] I. team, “Ibm q 16 melbourne backend specification v2.0.6,” 2019,
retrieved from https://quantum-computing.ibm.com.

[44] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary
arithmetic operations,” Physical Review A, vol. 54, no. 1, p. 147, 1996.

[45] D. Venturelli, M. Do, B. O’Gorman, J. Frank, E. Rieffel, K. E. Booth,
T. Nguyen, P. Narayan, and S. Nanda, “Quantum circuit compilation:
An emerging application for automated reasoning,” 2019.

[46] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking equivalence
of quantum circuits and states,” in 2007 IEEE/ACM International
Conference on Computer-Aided Design. IEEE, 2007, pp. 69–74.

[47] G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit
transformations with three controlled-not gates,” Physical Review A,
vol. 69, no. 1, p. 010301, 2004.

APPENDIX A
UNITARY U AND PURE STATE |ψ〉

We prove that an n-qubit pure state |ψ0〉 can derived
by applying an n-qubit unitary gate U to the n-qubit zero
state |0〉⊗n: |ψ0〉 = U |0〉⊗n. Based on the state |ψ0〉, we
can leverage the Gram-Schmidt process [16] to find a set
of vectors |ψ0〉 , |ψ1〉 , ..., |ψ2n−1〉 that forms an orthonormal
basis. Then, the unitary gate U can be calculated as U =
|ψ0〉 〈0|⊗n + |ψ1〉 〈0|⊗n−1 〈1|+ ...+ |ψ2n−1〉 〈1|⊗n.

First, we need to prove |ψ0〉 = U |0〉⊗n. Since the compu-
tational basis is an orthonormal basis, we have 〈0|0〉 = 1 and
〈1|0〉 = 0. Therefore,

U |0〉⊗n = |ψ0〉 〈0|0〉⊗n + |ψ1〉 〈0|0〉⊗n−1 〈1|0〉+ ...

...+ |ψ2n−1〉 〈1|0〉⊗n = |ψ0〉

Second, we need to prove the matrix U is a unitary matrix
such that we can find a corresponding quantum gate. Since
the set of vectors {|ψi〉} form an orthonormal basis, we have∑
i |ψi〉 〈ψi| = I , here I is the identity matrix. Based on

this property, We can prove that UU† = |ψ0〉 〈0|0〉⊗n 〈ψ0| +
|ψ1〉 〈0|0〉⊗n−1 〈1|1〉 〈ψ1| + ... + |ψ2n−1〉 〈1|1〉⊗n 〈ψ2n−1| =∑
i |ψi〉 〈ψi| = I . Similarly, we can prove U†U = I .

Therefore, the matrix U is a unitary matrix.

|ψ〉 − |ψ〉

|−〉 |−〉
=

|1〉

|ψ〉 Z − |ψ〉

|−〉 H H |−〉

= |ψ〉 Z − |ψ〉

|−〉 |−〉

Fig. 12: CNOT gate optimization

APPENDIX B
CNOT GATE OPTIMIZATION WITH TARGET QUBIT IN |−〉

STATE

As shown in Figure 12, the CNOT gate is equivalent to
a controlled-Z gate with two Hadamard gates on the target
qubit. When the target qubit of the CNOT gate is in |−〉,
after the Hadamard gate, the target qubit is in |1〉 state. The
controlled-Z gate can be optimized into a Z gate, and the two
Hadamard gates will be cancelled out. Therefore, the CNOT
gate can be substituted with a Z gate on the control qubit.

APPENDIX C
CLOSED AND OPEN CONTROL

An open control gate is equivalent to a closed control
gate with two NOT gates on the control qubit, as shown in
Figure 13. In our paper, we discussed the optimization for the
closed control gates. For the open control gates, we can use
this equivalence to convert them to the closed control gates
and then apply our optimization.

=
X X

Fig. 13: Open and closed control gate equivalence

APPENDIX D
DECOMPOSITION OF FREDKIN GATE

The decomposition of Fredkin gate is shown in Figure 14

APPENDIX E
ADDITIONAL EXPERIMENT RESULTS

The detailed experiment results for QPE, VQE, quantum
volume, and Grover’s algorithms are included in Table V.

|φ〉

|ψ〉

|π〉

=

|φ〉

|ψ〉

|π〉

Fig. 14: Decomposition of Fredkin gate

QPE VQE Quantum Volume Grover
Metric single-qubit gate count depth single-qubit gate count depth single-qubit gate count depth single-qubit gate count depth

Optimization level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO level3 hoare RPO
4-qubits 65 65 59 45 43 38 136 133 129 97 93 89 107 107 103 44 43 43 375 375 368 329 324 318
6-qubits 171 169 154 93 92 87 338 340 327 186 185 181 275 275 270 108 108 103 834 834 798 720 712 658
8-qubits 351 344 327 149 145 134 686 663 647 310 307 300 500 498 479 500 497 493 3666 3666 3502 2963 2955 2874

10-qubits 621 621 591 210 208 196 1061 1056 1053 413 410 406 802 802 758 211 209 193 14674 14666 14455 12219 12181 12012
12-qubits 879 877 832 259 258 243 1591 1582 1570 534 532 526 1199 1199 1163 261 258 244 58424 58242 57874 48315 48219 47899
14-qubits 1211 1211 1161 389 389 368 2268 2340 2263 751 751 751 2903 2910 2889 946 951 931 232290 N.A. 241716 192526 N.A. 192487

TABLE V: Median of single-qubit gates and circuit depth of three quantum algorithms with different size (on
ibmq_16_melbourne)

APPENDIX F
SWAP GATE ON BASIS-STATE

Table VI shows QBO implementation on the SWAP gate.
Take as an example the case where the SWAP gate has the
top input in the |0〉 state and the bottom input in the |−〉
state. Since |0〉 = X |1〉 and |1〉 = h |−〉, the |0〉 state can
be obtained by applying H and X gate to the |−〉 state,
|0〉 = X |1〉 = XH |−〉. Similarly, the |−〉 can be obtained by
applying X and H gate to the |0〉 state.

TABLE VI: Equivalences for basis-states in |φ〉

|ψ〉

|ψ〉
|φ〉

> |0〉 |1〉 |+〉 |−〉

>

⊗ ⊗
X

⊗ ⊗
Z

|0〉 ⊗
X

X

H

H

H X

X H

|1〉 ⊗
X X

X

H X

X H

H

H

|+〉

⊗ H

H

X H

H X

Z

Z

|−〉

⊗
Z X H

H X

H

H

Z

Z

APPENDIX G
ARTIFACT DESCRIPTION APPENDIX

A. Abstract

Our artifact provides the experiments for all our evaluated
benchmarks, along with the experiments to validate the quan-
tum circuit costs.

We also provide the source code for our compiler optimiza-
tion passes and all of our benchmarks.

B. Artifact check-list (meta-information)
• Algorithm: Peephole optimization algorithm
• Data set: Benchmarks included in our paper
• Hardware: We recommend running the experiments on a 15-

qubit IBM Q machine to verify the results
• Execution: Run the corresponding python scripts and jupyter

notebooks
• Metrics: CNOT gates: The number of CNOT gates in the

quantum program.
transpile time: The time for quantum circuit transpilation.
single-qubit gate count: The number of single-qubit gates in the
quantum circuit.
depth: The depth of the quantum circuit.
Success rate: The ratio of the count of correct output state over
the total count of the trials.

• Output: The CNOT gates, transpilation time, single-qubit gate
count, and depth will be dumped in a csv file in the results
folder. The output distribution of the experiments will be printed
in the corresponding jupyter notebooks.

• Experiments: We use functions from Qiskit to calculate the
number of gates and transpilation time of our circuit. We
calculate the success rate based on the output distribution from
the IBMQ backends.

• How much disk space required (approximately)?: 2GB
• How much time is needed to prepare workflow (approxi-

mately)?: A couple of minutes.
• How much time is needed to complete experiments (approx-

imately)?: 18 hours in total.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache-2.0 License
• Archived (provide DOI)?: 10.5281/zenodo.4281275

C. Description

1) How delivered: Our source code, benchmarks, and
jupyter notebooks for experiments are available on Github:
https://github.com/1ucian0/rpo.git

2) Hardware dependencies: In our paper, we run our exper-
iments on 15-qubit quantum computer ibmq 16 melbourne, a 20-
qubit quantum computer ibmq almaden, and a 53-qubit quantum
computer ibmq rochester. Since some of the quantum computers are
not publicly available, in order to reproduce the results, we use the
fakebackends from Qiskit to use the actual device configurations,
such as coupling maps.

https://zenodo.org/record/4281275#.X7fI72hKg2w
https://github.com/1ucian0/rpo.git

3) Software dependencies: Python version≥ 3.5, < 3.9, Qiskit
0.18.0, Jupyter notebook, matplotlib 3.3, z3-solver, tabulate.

Qiskit requires Ubuntu 16.04 or later, MacOS 10.12.6 or later, or
Windows 7 or later.

4) Data sets: Quantum computing benchmarks mentioned in our
paper.

D. Installation
We recommend installing the software in an Anaconda environ-

ment with Python version 3.7. After downloading Anaconda, create
an environment:

$ conda create -n my_env python=3.7

Then, activate the environment:
• For Linux or MacOS: $ source activate my_env
• For Windows: $ activate my_env

You can clone our source code and benchmarks from GitHub:

$ git clone https://github.com/1ucian0/rpo.git

After cloning the GitHub repository, to install the required soft-
ware:

$ pip install -r requirements.txt

For questions regarding Qiskit installation, please refer to:
https://qiskit.org/documentation/install.html
After installation, run the unittests to verify the installation:

$ python -m unittest discover -v tests

E. Experiment workflow
The experiment results on transpilations (Table II, III, IV, V)

can be verified by running the run_benchmark.py file with
corresponding arguments. For example, the following command is
for running the Quantum Phase Estimation (QPE) benchmark on
ibmq 16 melbourne backend:

$ python run_benchmark.py benchmark/
qpe_FakeMelbourne.yaml

The results will be dumped in
results/qpe_FakeMelbourne.csv in this case. In
general, python run_benchmark.py benchmark/some-
thing.yaml dumps its result in results/something.csv.

The CSV files contain all the raw data of multiple runs. Execute the
table.py file to generate the table containing medians of multiple
runs:

$ python table.py results/qpe_FakeMelbourne.csv

To verify the experiments on the real quantum computers
(Figure.11), run the corresponding Jupyter notebooks:
QPE_almaden/melbourne/rochester. The results will
be printed in the Jupyter notebook output.

F. Evaluation and expected result
The results are dumped after running the corresponding Python

script and Jupyter notebook. The Jupyter notebooks contain prior
experimental results reported in our paper. The expected results are
listed in our paper (Table II,III,IV,V, Figure.11).

G. Experiment customization
The YAML files and Jupyter notebooks are all customizable to run

different benchmarks with different configurations. The parameters of
the YAML files are described in README.md file.

H. Notes
Some of the experiments (QPE almaden.ipynb,

QPE rochester.ipynb) require hardware access to certain IBMQ
quantum computers. The user can use publically available machines
to verify the result.

The transpilation time for Grover’s algorithm is particularly long,
to validate the results, we changed the number of experiments to five
times.

I. Methodology
Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/

artifact-review-badging

https://qiskit.org/documentation/install.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	I Introduction
	II Background and Related work
	II-A Quantum Computing
	II-B Qiskit Framework
	II-C Related Work

	III Zero State
	IV SWAP on Pure States
	V Basis-State and Pure-State Optimization
	V-A Optimizing Single-Qubit Gates
	V-B Optimizing CNOT
	V-C Optimizing Multi-Qubit Gates
	V-D Optimizing Qubit blocks

	VI Quantum state Analysis
	VI-A Basis-State Analysis
	VI-B Pure-State Analysis
	VI-C State Annotation

	VII Methodology
	VII-A Compiler Implementation
	VII-B Benchmarks and System configuration

	VIII Performance
	VIII-A Bernstein-Vazirani Algorithm
	VIII-B Quantum Algorithms
	VIII-C Quantum Algorithm with Annotations
	VIII-D Different Backend Connectivity
	VIII-E Experiment on Real Quantum Computers

	IX Conclusions
	References
	Appendix A: Unitary U and pure state |
	Appendix B: CNOT gate optimization with target qubit in |- state
	Appendix C: Closed and open control
	Appendix D: Decomposition of Fredkin gate
	Appendix E: Additional Experiment Results
	Appendix F: Swap gate on basis-state
	Appendix G: Artifact Description Appendix
	G-A Abstract
	G-B Artifact check-list (meta-information)
	G-C Description
	G-C1 How delivered
	G-C2 Hardware dependencies
	G-C3 Software dependencies
	G-C4 Data sets

	G-D Installation
	G-E Experiment workflow
	G-F Evaluation and expected result
	G-G Experiment customization
	G-H Notes
	G-I Methodology

