
Object Versioning for Flow-Sensitive Pointer
Analysis

Mohamad Barbar∗†, Yulei Sui∗, Shiping Chen†
∗University of Technology Sydney, Australia

†CSIRO’s Data61, Australia

Abstract—Flow-sensitive points-to analysis provides better pre-
cision than its flow-insensitive counterpart. Traditionally per-
formed on the control-flow graph, it incurs heavy analysis
overhead. For performance, staged flow-sensitive analysis (SFS)
is conducted on a pre-computed def-use (value-flow) graph where
points-to sets of variables are propagated across def-use chains
sparsely rather than across control-flow in the control-flow
graph. SFS makes the propagation of different objects’ points-
to sets sparse (multiple-object sparsity), however, it suffers from
redundant propagation between instructions of the same object’s
points-to sets (single-object sparsity). The points-to set of an
object is often duplicated, resulting in redundant propagation
and storage, especially in real-world heap-intensive programs.

We notice that a simple graph prelabelling extension can
identify much of this redundancy in a pre-analysis. With this
pre-analysis, multiple nodes (instructions) in the value-flow graph
can share an individual memory object’s points-to set rather
than each node maintaining its own points-to set for that single
object. We present object versioning for flow-sensitive points-to
analysis, a finer single-object sparsity technique which maintains
the same precision while allowing us to avoid much of the
redundancy present in propagating and storing points-to sets.
Our experiments conducted on 15 open-source programs, when
compared with SFS, show that our approach runs up to 26.22×
faster (5.31× on average), and reduces memory usage by up to
5.46× (2.11× on average).

Index Terms—points-to analysis, flow-sensitivity, sparse value-
flow graph

I. INTRODUCTION

Points-to analysis is a fundamental static analysis used to
support many other program analyses, such as compiler opti-
misation [6], [15], vulnerability detection [17], [28], program
verification [8], and program slicing [27]. It is a dataflow anal-
ysis, with a set union meet operator, which aims to statically
determine the possible objects which pointers may point to at
runtime. By virtue of being a static analysis, a sound points-to
analysis can only give an over-approximation of the possible
runtime points-to relations. This over-approximation can be
made more precise through various precision dimensions,
usually at the expense of performance. One such dimension is
flow-sensitivity, where control-flow is taken into account.

Unlike flow-insensitive points-to analysis which treats in-
structions as unordered, flow-sensitive points-to analysis needs
to perform the analysis on a data structure which encodes
program control-flow. For this, the program’s control-flow
graph can be used. Since the points-to sets of pointers may
change from instruction to instruction with respect to program
execution order, we need to maintain a different points-to set

for every variable at each instruction. However, in partial SSA
form [14], upon which many modern points-to analyses for
C/C++ are based on [3], [11], [21], [23], so called top-level
variables only have a single definition so a global points-to set
for such variables can be used. Unfortunately, address-taken
variables, which are those modified indirectly through load and
store instructions, still need separate points-to sets maintained
at each program point.

Staged flow-sensitive analysis (SFS) [11] does away with
the notion of maintaining a points-to set for every variable
at every program point. Rather, by using a sound and im-
precise (hence cheaper) points-to analysis, it constructs an
over-approximate def-use graph (or sparse value-flow graph
(SVFG)), on which the flow-sensitive analysis is conducted.
Rather than propagating all points-to sets to all program points
on the control-flow graph, only a subset of object points-to
sets need to be maintained and propagated on the SVFG as
determined by the over-approximate def-use relations.

SFS aims to make the propagation of different objects’
points-to sets sparse (multiple-object sparsity), however it
suffers from excessive propagation of the same object’s points-
to sets between instructions (single-object sparsity). We notice
that multiple instructions often use the same points-to set
of an object, but SFS always assumes that such instructions
are each computing and maintaining a separate points-to set,
thus wasting time and space propagating and storing points-
to sets redundantly. Simply put, the points-to set of an object
o at an instruction can be reused from another instruction if
that points-to set has not been changed (similar to copy-on-
write [2]). We need to determine at which instructions the
points-to sets of an object o are the same. So, our goal is to
achieve finer single-object sparsity and complement existing
multiple-object sparsity by soundly “versioning” object o at
each instruction which may use o such that instructions which
share o’s version can safely share that object’s points-to set.

We introduce meld labelling, a prelabelling extension for
directed graphs, to version objects. Meld labelling extends a
prelabelling by propagating labels such that each node’s label
is a “melding” of the labels of its incoming neighbour nodes.
This melding process continues until a fixed-point is reached.
At each store instruction which may write to an object o, we
assign a distinct label (i.e., a distinct version) for o. Then, we
perform meld labelling on top of this prelabelling (though we
ensure prelabelled nodes never change). The result is that all
nodes which have the same label (version) for o rely on the

TABLE I
ANALYSIS DOMAINS AND THE LLVM-LIKE INSTRUCTION SET.

Analysis domains LLVM-like instruction set

` ∈ L instruction labels ALLOC p = allocô
x, y, z ∈ S stack variables PHI p = φ(q, r)

g ∈ G global variables MEMPHI o = φ(a, b)

p, q, r ∈ P = S ∪ G top-level variables CAST p = (t) q

ô ∈ O base abstract objects FIELD p = &q→fk
ô.fk ∈ F abstract field objects LOAD p = ∗q
o, a, b ∈ A = O ∪ F address-taken objects STORE ∗p = q

v ∈ V = P ∪ A variables CALL p = q(r1, . . . , rn)

SN ⊂ A singleton objects FUNENTRY fun(r1, . . . , rn)

κ, ε ∈ K labels/versions FUNEXIT retfunp

1: p = &a

2: a = &b

3: q = malloc (. . .)

4 : ∗q = c

5: ∗p = ∗q

(a) C code.

`1 : p = &a

`2 : x1 = &b

`3 : ∗p = x1

a1 = χ(a0)

`4 : q = alloco

`5 : x2 = &c

`6 : ∗q = x2

o1 = χ(o0)

µ(o1)
`7 : x3 = ∗q
`8 : ∗p = x3

a2 = χ(a1)

pt(p) = {a}
pt(q) = {o}

Auxiliary
points-to

results

a1

o1

(b) IR with χ/µ annotations and the
SVFG’s indirect edges.

Fig. 1. C code and its IR and SVFG.

same set of modifications (through stores) to o’s points-to set.
If two instructions rely on the same set of modifications to o,
o’s points-to set must be the same at those two instructions
and can be shared. With the objects now versioned, we can
perform flow-sensitive points-to analysis with finer single-
object sparsity, which is more efficient than SFS and while
maintaining precision.

To summarise, this paper describes:
• A new object versioned approach to flow-sensitive points-

to analysis with finer single-object sparsity, improving
efficiency while maintaining the same precision as SFS.

• Meld labelling, a fast and simple prelabelling extension
for directed graphs, which we use to determine equivalent
points-to sets for the same object at different instructions.

• An evaluation using 15 open-source programs. Compared
with SFS, our experiments show that our approach runs
up to 26.22× faster (5.31× on average), and reduces
memory usage by up to 5.46× (2.11× on average).

II. PROGRAM REPRESENTATION

This section introduces the analysis domain, an LLVM-like
instruction set, and the SVFG used in our points-to analysis.

A. Domain and Intermediate Representation

Following previous points-to analyses for C and C++ [3],
[10], [11], [13], [16], we perform our analysis on an LLVM-
like [14] instruction set without loss of generality. Table I
describes the target of our analysis. The set of all variables
V is made up of two sets, A = O ∪ F , which represents
all possible abstract objects and their fields, i.e. address-taken
variables, and P = S ∪ G, which represents all stack and
global pointers, i.e. top-level pointers. Top-level pointers are
explicit unlike address-taken variables which are implicit and
accessed indirectly at STORE and LOAD instructions through
top-level pointers. All instructions are labeled with a label `
from L. SN is the set of all abstract objects which represent
exactly one real object. We call such objects singletons [16].
K contains the set of all labels or versions which we perform
meld labelling upon and ε is the identity in K. Meld labelling
is discussed in Section IV.

Following conversion to partial SSA form [24], target pro-
grams are made up of 10 types of instructions. Of these, 8
make up functions bodies: ALLOC (p = alloco, allocates an
object on the stack, globally, or on the heap), PHI (p = φ(q, r),
selects the value of a top-level pointer at a join point in the
control-flow), MEMPHI (o = φ(a, b), selects the value of
an address-taken object at a join point in the control-flow),
CAST (p = (t) q, casts a pointer to another type), FIELD
(p = &q → fk, retrieves a pointer pointing to a field of
an aggregate object), LOAD (p = ∗q, reads the value of an
object), STORE (∗p = q, writes the value of an object), and
CALL (p = q(r1, . . . , rn), calls a function with the specified
arguments). The remaining 2 instructions connect calls and
returns to their target. Each function has a single FUNENTRY
instruction (fun(r1, . . . , rn)) which contains the parameters
of a function and a FUNEXIT instruction (retfunp). LLVM’s
UnifyFunctionExitNodes ensures all functions have
a single FUNEXIT instruction. Figure 1 shows an example
of intraprocedural C code and its corresponding IR. Some
temporary variables (x∗) are required for the translation to
split C statements into simpler instructions. The arrows and
gray annotations are discussed in the next section.

B. Value-Flow Graph

An auxiliary analysis is required to construct the SVFG
upon which the flow-sensitive analysis will be performed. For
this purpose, SFS [11] uses a flow-insensitive inclusion-based
points-to analysis (also known as Andersen’s style points-to
analysis [1]). Andersen’s analysis is well studied, relatively
performant, and precise enough to produce an acceptable
SVFG. The nodes of the SVFG are trivial to determine since
they are simply the program’s instructions. The edges are split
into two types: direct edges which do not require the auxiliary
analysis to infer and indirect edges which require the pre-
computed points-to results. Direct edges represent the value-
flow of top-level pointers (P) and can also be determined
trivially because top-level pointers in partial SSA form can
only be accessed directly by name, not indirectly through
another pointer. Indirect edges represent the value-flow of
address-taken objects (A) and rely on the auxiliary analysis

. . .

`1 : ∗p = q

κ1 = Y`1(o)

κ1 = C`2(o)

`2 : ∗p = r

κ2 = Y`2(o)

κ1 = C`3(o)

`3 : x = ∗

κ1 = Y`3(o)

κ1 � κ2 = C`4(o)

`4 : y = ∗

κ1 � κ2 = Y`4(o)

κ1 � κ2 = C`5(o)

`5 : z = ∗

κ1 � κ2 = Y`5(o)

o

o

o
o

o
o

(a) SVFG fragment from GNU Coreutil’s true. We assume pt(p)={o}, pt(q)={a},
and pt(r)={b} during flow-sensitive solving.

SFS Our approach

Object
points-to
sets

pt`1|(o) = {a}
ptκ1(o) = {a}pt|`2(o) = {a}

pt|`3(o) = {a}
pt`2|(o) = {a, b} ptκ2

(o) = {a, b}
pt|`4(o) = {a, b} ptκ1�κ2(o) = {a, b}pt|`5(o) = {a, b}

Generated
constraints

pt`1|(o) ⊆ pt|`2(o)
pt`1|(o) ⊆ pt|`3(o)
pt`1|(o) ⊆ pt|`4(o) ptκ1

(o) ⊆ ptκ1�κ2
(o)

ptκ2(o) ⊆ ptκ1�κ2(o)
pt`2|(o) ⊆ pt|`4(o)
pt`1|(o) ⊆ pt|`5(o)
pt`2|(o) ⊆ pt|`5(o)

(b) Points-to sets stored and propagated.

Fig. 2. A motivating example.

because they are defined and used through STORE and LOAD
instructions (by dereferencing a top-level pointer) and it is
otherwise unknown which top-level pointer points to which
address-taken object. Furthermore, the join points of address-
taken objects (MEMPHI instructions) are unknown without a
prior analysis. Thus, these indirect value-flows are determined
through the memory SSA form [5].

To realise the memory SSA form, we annotate instructions
with χ and µ functions using information from the auxiliary
analysis. All STORE instructions which may store to an object
o are annotated with a χ function as o = χ(o) indicating
that o may be defined, potentially based on the previous
definition of o. Similarly, all LOAD instructions which may
load an object o are annotated with a µ function as µ(o).
FUNENTRY and FUNEXIT instructions are annotated with χ
and µ functions, respectively, to mimic parameter passing and
returning of address-taken objects. Each CALL instruction is
annotated with µ(o) or o = χ(o) if o may be used or modified,
respectively, in any callees. The address-taken objects can then
be converted to SSA form, giving objects unique definitions.
For example, o = χ(o) may become o2 = χ(o1). MEMPHI
instructions are then introduced where the definition of an
object needs to be selected (analogous to PHI instructions for
top-level pointers).

In all, the final SVFG contains every instruction as its own
node (including inserted MEMPHI instructions), direct value-
flows which represents the definition and use of a top-level
pointer, and indirect value-flows which represent a possible
definition and use of an address-taken object at the source
and destination respectively. Given the SVFG of a program,
SFS is able to conduct a sparse analysis by propagating points-
to information along the def-use/value-flow chains rather than
propagating and maintaining all points-to information at each
program point.

Figure 1b shows the SVFG on top of the IR presented in
the previous section. We have omitted the trivial direct edges

to avoid visual noise, and have included the χ/µ annotations
(determined through the auxiliary points-to analyses results),
and the indirect value-flow edges (`3

a1−→ `8 and `6
o1−→ `7).

III. MOTIVATING EXAMPLE

Figure 2 presents a motivating example to illustrate the key
idea of our approach. It shows an SVFG fragment derived
from a real program’s SVFG (true in GNU Coreutils1) in
Figure 2a, with some extraneous edges and nodes removed,
and the required points-to sets and propagation constraints for
flow-sensitive analysis in Figure 2b (SFS and our approach).
Direct edges are omitted (for readability; they are irrelevant
to our purposes) so all edges are indirect edges and they
are labelled with an object o. The double-lined nodes are
STORE nodes which may define objects (i.e., place other
objects in their points-to sets) and the remaining nodes are
LOAD nodes which may use objects (in this case, o). The `
labels represent instruction labels for ease of reference. For
exemplary purposes, we assume pt(p) = {o}, pt(q) = {a},
and pt(r) = {b} (according to the current state of the flow-
sensitive analysis), so the two STORE nodes may define o.
According to Figure 2b, o’s resulting points-to set is {a}
immediately after `1, and immediately before `2 and `3 and
it is {a, b} immediate after `2 and immediately before `4 and
`5. The C and Y functions and the usage of versions (κ) are
introduced by our approach and described later in this section.

SFS: In SFS, every SVFG node maintains an IN set and
an OUT set to represent the points-to sets of objects before and
after each instruction, respectively. STORE instructions update
the points-to sets of objects in the node’s OUT set to propagate
forward. When an indirect edge is labelled with an object o,
its points-to set is propagated from the OUT set of the source
node to the IN set of the destination node. Thus, the points-to

1GNU’s true pulls in, and calls, functions common across the GNU
Coreutils suite. So while simple, it requires the facilities of an interprocedural
points-to analysis unlike more straightforward implementations of true.

set of an object in the IN set of a node is the union of all the
points-to sets of that object in the OUT sets of its incoming
neighbours. We denote the points-to set of o in the IN set of
` as pt|`(o) and the points-to set of o in the OUT set of `
as pt`|(o). Since top-level pointers are defined once in partial
SSA form, only a global points-to set (like pt(p)) is required
for each pointer.

Applying SFS: In the example, SFS needs to maintain a
points-to set for o in the IN set of every node and in the OUT
of the two STORE nodes. This necessitates redundant storage
and propagation since some of these points-to sets may be
equivalent and can be shared instead of repeatedly storing the
same points-to set and repeatedly propagating to form the same
points-to sets (Column 2 of Figure 2b shows the maintained
points-to sets and required constraints during flow-sensitive
resolution for SFS). For example, the points-to set of o in the
IN sets of `2 and `3 are equivalent to the points-to set of o in
the OUT set of `1 since their IN sets are formed by propagation
of `1’s OUT set only. Similarly, the IN sets of `4 and `5 are
equivalent since they are both made up of the union of the
OUT sets of `1 and `2 so pt|`4(o) = pt|`5(o).

Our Approach: Instead of retrieving the points-to set
of an object o from an IN or OUT set stored at each node,
we break o into different versions so that the points-to set
of version κ of o (ptκ(o)) is global and shared by multiple
SVFG nodes. We say that an instruction ` “consumes” version
C`(o) of o and “yields” version Y`(o) of o. The version
of an object which an instruction consumes can be used to
access the object’s points-to set before the instruction and
the version which it yields can be used to access the object’s
points-to set after the instruction. Thus, for example, a STORE
instruction ` storing to o would operate on ptY`(o)(o) and a
LOAD instruction ` reading from o would read from ptC`(o)(o).
The flow-sensitive analysis propagates points-to sets from
ptY`(o)(o) to ptC`′ (o)

(o) if an edge ` o−→ `′ exists rather than
propagating from pt`|(o) to pt|`′(o). Versions are simply labels
or IDs which matter in how they relate to each other. With a
fast pre-analysis, we can ensure the following:

C`(o) = C`′(o)⇒ pt|`(o) = pt|`′(o) (1)
C`(o) = Y`′(o)⇒ pt|`(o) = pt`′|(o) (2)
Y`(o) = Y`′(o)⇒ pt`|(o) = pt`′|(o) (3)

The result is that for each object, nodes will have a consumed
version and a yielded version which can be used to access
points-to sets of objects instead of accessing them through
IN and OUT sets (which we completely forego). Importantly,
nodes accessing the same version of an object can share a
points-to set for that object.

Applying Our Approach: The consumed and yielded
versions of the nodes in our example can be seen in Figure 2a.
The points-to set of o in the IN sets of `2 and `3 is generated
through the propagation of the points-to set of o in the OUT
set of `1 and are thus equivalent, so C`2(o) = C`3(o) =
Y`1(o) = κ1, and `4 and `5 have a similar relationship (κ1�κ2

is another version separate to κ1 and κ2 and the � operator is

described in Section IV-B). Since multiple nodes may share
versions, we can store fewer points-to sets. We also generate
fewer propagation constraints since there are fewer points-to
sets which need to be formed. Improvements to the number
of points-to sets required and the number of propagation
constraints generated are shown in Figure 2b where they are
listed in Column 3 for our approach. Instead of storing 6
points-to sets, we store 3, and we reduce the number of
propagation constraints generated from 6 to 2. Hence, our
approach saves both space, through storing fewer points-to
sets, and time, through fewer propagations.

IV. APPROACH

This section first formulates the ideas of existing flow-
sensitive points-to analysis and our analysis. We then detail
the 3 main parts of our approach, i.e., meld labelling, using
meld labelling to version objects, and performing finer-grained
sparse analysis using versioned objects.

We utilise various notation, some introduced in this
section, frequently. The following describes some of the more
common notation for ease of reference,

pt(p) The points-to set of p.
ptκ(o) The points-to set of version κ of o.

pt|`(o)
The points-to set of o immediately before
instruction `.

pt`|(o)
The points-to set of o immediately after
instruction `.

pta(o)
The points-to set of o according to the
auxiliary analysis.

δ(`)
Returns whether instruction ` is a δ node in
the SVFG.

κ1 � κ2 Melding of versions κ1 and κ2.

C`(o)
The version of o which instruction `
consumes.

Y`(o) The version of o which instruction ` yields.

A. Flow-Sensitive Points-To Analysis

Traditional data-flow-based flow-sensitive points-to analysis
computes the maximal-fixed-point solution as an over approx-
imation of the meet-over-all paths problem by solving an
iterative data-flow problem. The analysis is performed on an
interprocedural control-flow graph (ICFG) by maintaining and
computing points-to sets of each variable v immediately before
(pt|`(v)) and after (pt`|(v)) each statement `. We write IN` and
OUT` to denote all the points-to sets at |` and `|.

For each node ` in the ICFG, flow-sensitive analysis itera-
tively computes the following until a fixed point is reached:

IN` =
⋃

`′∈pred(`)

OUT`′ (4)

OUT` = Gen` ∪ (IN` −Kill`) (5)

where pred(`) denotes the predecessor nodes of ` in the ICFG
and Gen` and Kill` represent the points-to relations generated
and killed after analysing statement `.

Staged flow-sensitive analysis (SFS) [11] is an optimised
version of traditional data-flow-based analysis. Instead of
resolving data-flow facts on the ICFG, SFS operates on top of
a def-use graph or sparse value-flow graph (SVFG) [11], [23]
which captures the program’s def-use chains conservatively.
In particular, an edge ` v−→ `′, where v ∈ V , from statement
` to statement `′ signifies a potential def-use chain for v with
its definition at ` and use at `′. This representation is sparse
since the intermediate program points between ` and `′ are
omitted. With the SVFG, SFS can perform points-to analysis
using the following equations,

INv` =
⋃

`′∈spred(`,v)

OUTv`′ (6)

OUTv` = Genv` ∪ (INv` −Killv`) (7)

where spred(`, v) denotes the set of instructions with a value-
flow of variable v ∈ V to ` in the SVFG. Every data-flow set
(e.g., INv` and OUTv`) is qualified by a variable v at ` where
v is defined or used. Compared with traditional flow-sensitive
analysis on the ICFG, by computing and maintaining points-to
sets on the SVFG, SFS can separate points-to set propagation
to achieve multiple-object sparsity.

Our approach aims to reduce the number of INv and OUTv

for each v, such that only one points-to solution for each
version κ of v is computed and maintained globally (note
that here we only care about the version for abstract memory
objects rather than top-level pointers which are only defined
once). For example, ptκ(o), the points-to set of object o with
version κ, is stored globally rather than at each program point.
This approach avoids redundant points-to propagation within
a single object (single-object sparsity) through meld-labelling-
based object versioning.

We thus have,

INv:κ
` =

⋃
`′∈spred(`,v)

OUTv:κ′

`′ (8)

OUTv:κ′

` = Genv` ∪ (INv:κ
` −Killv`) (9)

where OUTv:κ
` represents the retrieval of the globally main-

tained points-to set of object v with version κ = Y`(v), and
similarly for INv:κ

` and κ = C`(v).

B. Meld Labelling
A meld labelling is a prelabelling extension on directed

graphs where each node is labelled with a “melding” of the
labels found at the source ends of its incoming edges. Given
that the label domain is K, to achieve meld labelling, we define
the meld operator � : K2 7→ K. The meld operator can be any
operation that is commutative, associative, idempotent, and has
an identity element in relation to K. In other words, given that
κ1, κ2, κ3, ε ∈ K and ε is the identity,

κ1 � κ2 = κ2 � κ1 (Commutativity)
κ1 � (κ2 � κ3) = (κ1 � κ2) � κ3 (Associativity)

κ1 � κ1 = κ1 (Idempotence)
κ1 � ε = κ1 (Identity)

The set union operator, ∪, and the bitwise-or operator found in
many programming languages, are examples of suitable meld
operators when labels are represented as sets or bit sets.

The initial graph is prelabelled with labels in K, except
ε, according to some condition chosen according to the
meld labelling’s purpose. Nodes which are not part of that
prelabelled subset are labelled with the identity ε. The meld
labelling process is simple: meld the label of each node with
its incoming neighbours’ labels repeatedly until all nodes
which would be labelled are labelled (i.e., that a fixed-point
is reached). This is exemplified by the [MELD]M rule in
Figure 3 where n and n′ are nodes, and κn and κn′ are the
labels of n and n′.

[MELD]M
n′ −→ n κn′ 6= ε

κn = κn′ � κn

Fig. 3. Meld labelling process. κn is the label of node n.

Prelabelled nodes and nodes reachable by any prelabelled
node will be labelled with some non-ε label by the end of the
meld labelling process. All other nodes will finish labelled
with ε. The final result is that nodes have been split into
equivalence classes according to the melding of prelabels
which transitively reach them. Those which finish with ε are
in their own class: nodes unreachable by any prelabelled node.

11 22

3344

55

66

77 88

(a) Prelabelled graph.

11 22

3344

55

66

77 88

(b) Result of meld labelling.

Fig. 4. An example of meld labelling. Patterns are labels and � combines
them. The blank pattern is the identity.

Figure 4 shows an example of a prelabelled graph and
its state after meld labelling. In this instance, the label
domain, K, is made up of patterns, specifically K =
{ , , , , , , , } where is the identity.
Nodes are prelabelled with , , and , and remaining
nodes are labelled with the identity . The meld operator
combines the patterns. With the following subset of cases for
the meld operator (though other subsets would be sufficient
too), knowledge that � is commutative, associative, and idem-
potent, and that is the identity, all cases can be derived,

� = � = � =

� =

In Figure 4, despite nodes 5 and 8 (and similarly nodes 4 and
7) having different incoming neighbours, they finish with the

same label because the melding of their incoming neighbours’
labels is the same. Thus, equivalence is of labels at nodes is
not a result of sharing incoming neighbours but by sharing the
set of labels (from prelabelling) which reach them.

1) Complexity: In the worst case, meld labelling takes
O(|E|P) time where P is the number of nodes prelabelled
with other than the identity and E is the set of edges. This
is because each label already on the graph may need to be
propagated along each edge (whether as a part of a melding
or on its own). In space, it would always take O(|N |) space
where N is the set of nodes since a label would need to be
stored at each node.

C. Versioning Objects Using Meld Labelling

SFS propagates points-to sets across instructions such that
at each instruction there is a points-to set (or two) for every
object it may use or define. However, two instructions which
rely on the exact same modifications to an object’s points-to
set can share the points-to set they use. In such a case, we
say that those two instructions (i.e., SVFG nodes) consume
the same version of an object. Complementary to consuming
a version of an object, we say that the version an instruction
yields is the version of an object it defines (and if it does not
define an object, it yields what it consumes).

A version of an object represents a state of that object’s
points-to set such that any change in an objects points-to set
warrants a version. There are two ways the points-to set of an
object o at a program point can change: (1) through a STORE
instruction ∗p = q when p points to o, and (2) through the
merging of the points-to sets of o at different program points
before a specific instruction (i.e., when the points-to set of
an object in an IN set is the union of that in multiple OUT
sets). All instructions only consume a single version of an
object and yield a single version. Determining the versions
of an object, which version each instruction may consume,
and which version each instruction may yield requires points-
to information, and since flow-sensitive points-to information
is obviously unavailable before the flow-sensitive analysis is
performed, we use the pointer information of the auxiliary
analysis (Andersen’s analysis, in our case). This may give us
more versions than necessary whereby two versions may be
collapsible into a single version (both versions have equivalent
points-to sets per the flow-sensitive analysis) if versioning was
done using more precise points-to information, but the over-
approximation is sound and is still performant as evaluated in
Section V.

We give each instruction ` a C (for consume) function,
defined as,

Definition 1: C : A 7→ K where C`(o) is the version of o
which ` consumes.
And a Y (for yield) function, defined as,

Definition 2: Y : A 7→ K where Y`(o) is the version of o
which ` yields.

Overall, versioning objects allows two or more instructions
to access the same points-to set of o if those instructions rely

on the same modifications to o (through stores and control-
flow merges). By foregoing IN and OUT sets we can save time
and space propagating and storing points-to sets, since many
instruction may consume/yield the same version of an object
(which is represented by a single points-to set).

Meld labelling discussed in the previous section encodes
reliances between nodes according to the prelabelling which
it extends such that if nodes share the same label, they rely on
the same prelabelled nodes. With a prelabelling of nodes which
modify objects’ points-to sets (with some caveats), we can use
meld labelling to version objects. Since the set union operator
which is used by inclusion-based points-to analysis fulfils the
requirements of the meld operator, meld labelling can be seen
as a light-weight simulation of the real points-to analysis’s
propagation using labels/versions to represent points-to sets
and relying on imprecise points-to information from the aux-
iliary analysis rather than flow-sensitive information. The first
step is to appropriately describe the graph which we wish to
meld label and prelabel it. In the context of meld labelling for
versioned staged flow-sensitive points-to analysis (VSFS), our
analysis, the terms label and version are synonymous.

1) Prelabelling: At any given node, multiple objects may
be used or defined. Thus, we are not aiming for a single version
at each node, but rather a version per object (of interest) at
each node. Furthermore, we want two versions per object at
each node: one to consume and one to yield, because some
nodes may not propagate (yield) the same version they use
(consume). Since the only points-to information available to
us is from the imprecise auxiliary analysis results, we are
aiming for a versioning that signifies the worst case of the
flow-sensitive analysis (unrealistically being no more precise
than the auxiliary analysis).

In the course of execution, assuming a STORE instruction
may point to o, it may propagate forward a different points-to
set of o than the one propagated to it because it may modify o’s
points-to set. Whether a STORE instruction ∗p = q modifies
an object’s points-to set relies on whether p points to o and
whether the points-to set of q contains elements not found
in the points-to set of o. This information is unavailable to
us before the analysis so we soundly assume that STORE in-
structions yield a different version to that which they consume
in case they modify the points-to sets of the objects which
they point to during flow-sensitive solving. Having spurious
versions is sound, and as it stands, SFS can be thought of as
having a unique consumed and yielded version for each object
in the IN and OUT, respectively, at each node. Since the version
a STORE yields is a new version, not necessarily reliant on
any other version, prelabelling should occur at STORE nodes.
For each STORE instruction `, we need to provide `’s yielded
version as a prelabel (i.e., set Y`(o)).

Example 1: The state of the motivating example from
Figure 2 after prelabelling is shown in Figure 5. The STORE
nodes are given prelabels (κ1 and κ2) to yield for o, and all
other consumed or yielded versions are set to the identity.

If we use the results from the (Andersen’s) auxiliary anal-
ysis to perform call graph resolution [11], this is sufficient.

ε = C`1(o)

`1 : ∗p = q

κ1 = Y`1(o)

ε = C`2(o)

`2 : ∗p = r

κ2 = Y`2(o)

ε = C`3(o)

`3 : x = ∗

ε = Y`3(o)

ε = C`4(o)

`4 : y = ∗

ε = Y`4(o)

ε = C`5(o)

`5 : z = ∗

ε = Y`5(o)

o

o

o
o

o
o

Fig. 5. SVFG from the motivating example after the prelabelling phase.
Versions introduced in this phase are boxed .

However, we perform on-the-fly call graph resolution using
results from the flow-sensitive points-to analysis itself, which
is more precise and performant, so some nodes are missing
incoming edges which may affect versioning. In other words,
some reliances between versions (e.g. that C`(o) is a melding
of itself and some Y`′(o)) are not determined until we perform
the flow-sensitive analysis. To remedy this, any such node,
referred to as a δ node, consumes a unique version (from
prelabelling) for each object it may propagate forward. As
determined by the auxiliary analysis, these nodes are any
FUNENTRY instruction that may be the target of an indirect
call and any CALL instruction which makes an indirect call
(i.e., the return target of an indirect call). This is a sound over-
approximation since in actuality we either need to introduce a
new version, which we have done, or reuse a version, which
enhances performance and would only be possible if we had
flow-sensitive points-to information available.

For convenience, we define a δ function to encode this as,
Definition 3: δ : L 7→ B such that

δ(`) = true⇔ ∃`′ ∈ L. ∃o ∈ O. `′ 6 o−→ ` ∧ P (`′ o−→ `)

where P (`′ o−→ `) indicates the possibility of an edge `′ o−→ `
being created during the flow-sensitive analysis due to on-the-
fly call graph resolution. For all objects o, every other node’s
consumed and yielded versions are set to the identity ε.

Prelabelling is fast to the point where time taken is incon-
sequential as it only performs a linear scan on the SVFG and
sets C or Y to new versions for a relatively small number of
nodes. The inference rules in Figure 6 show this performed on
a graph with all C and Y having been already set as the identity
ε. The [STORE]P rule ensures that STORE instructions yield
a new version for each object they may define, as determined
by the auxiliary analysis, and the [OTF-CG]P rule ensures
that δ nodes similarly consume a new version for each object
which they may eventually yield in case such is necessary.

2) Versioning with Meld Labelling: At this point, we have
an SVFG with the versions consumed and yielded set at a
small portion of nodes (prelabels). In our meld labelling of
the prelabelled SVFG we need to account for the fact that
edges are labelled with address-taken objects. We only need
to propagate versions for objects along edges labelled with

[STORE]P
` : ∗p = q o ∈ pta(p) ε = Y`(o)

Y`(o) = nv(o)

[OTF-CG]P
δ(`) `

o−→ `′ ε = C`(o)

C`(o) = nv(o)

Fig. 6. Prelabelling inference rules. nv(o) returns a new version for o and
pta(p) is the points-to set of p according to the auxiliary analysis.

that object because if there does not exist an edge ` o−→ `′ then
`′ is unaffected by any definition of o at `.

Example 2: In Figure 7, κ1 = Y`1(a) is only propagated
along the edge to `2 labelled with a. This occurs similarly for
`3 and b.

. . .

`1 :

κ1 = Y`1(a)
κ2 = Y`1(b)

κ1 = C`2(a)
ε = C`2(b)

`2 :

. . .

ε = C`3(a)
κ2 = C`3(b)

`3 :

. . .

a
b

Fig. 7. An example SVFG involving two objects, a and b.

That each node may have two versions per object (a
consumed and a yielded version) also needs to be considered.
We thus perform meld labelling propagation by introducing
propagation “internal” to, and “external” to, nodes. Internal
propagation occurs when a node yields what it consumes,
which are all non-STORE nodes since no other type of node
can ever propagate a different points-to set for an object o than
the one propagated to it. At such a node `, Y`(o) = C`(o)
for all o ∈ A. When an edge `

o−→ `′ exists, we perform
external propagation. In such a case, we meld Y`(o) into C`′(o)
(i.e, `′ consumes what ` yields, and it potentially consumes
other versions too) except when δ(`′) because C`′(o) would
be a prelabel and they are not changed. We explicitly avoid
changing what was set in the prelabelling phase as unique
versions were specifically chosen for those positions, and we
want to maintain that. More formally, the inference rules in
Figure 8 will, for each node, provide the consumed and yielded
version of objects used at that node.

[EXTERNAL]V
`
o−→ `′ ¬δ(`′)

C`′(o) = C`′(o) � Y`(o)

[INTERNAL]V
¬` : ∗p =

Y`(o) = C`(o)

Fig. 8. Meld labelling inference rules for versioning.

The [EXTERNAL]V rule propagates a yielded version
from the incoming neighbours of a node and melds that with
the consumed version of that node. This rule is similar to
[MELD]M in the original definition of meld labelling in
Section IV-B. It excludes δ nodes because they have had their
relevant consumed versions set in the prelabelling phase. The
[INTERNAL]V rule ensures that any node which yields what

it consumes (i.e., non-STORE nodes) has its yielded version
set to its consumed version.

Example 3: In Figure 9, we revisit our motivating example
from Figure 2 again after being prelabelled in Example 2.
o’s version is propagated externally from Y`1(o) to C`2(o),
C`3(o), C`4(o) and C`5(o), and from Y`2(o) to C`4(o) and
C`5(o). When more than one version is propagated to another
node, melding occurs, as can be seen in the consumed version
of o at nodes `4 and `5 (κ1 �κ2). Finally, internal propagation
occurs at `3, `4, and `5 since they are not STORE nodes and
yield what they consume. For example, Y`3(o) = C`3(o).

. . .

`1 : ∗p = q

κ1 = Y`1(o)

κ1 = C`2(o)

`2 : ∗p = r

κ2 = Y`2(o)

κ1 = C`3(o)

`3 : x = ∗

κ1 = Y`3(o)

κ1 � κ2 = C`4(o)

`4 : y = ∗

κ1 � κ2 = Y`4(o)

κ1 � κ2 = C`5(o)

`5 : z = ∗

κ1 � κ2 = Y`5(o)

o

o

o
o

o
o

Fig. 9. The SVFG from the motivating example after being versioned.
Consumed/yielded versions changed during meld labelling are boxed .

D. Flow-Sensitive Points-To Analysis Using Object Versioning

At this point, every instruction which may access the points-
to set of an address-taken object is labeled with two versions
for that object: the version it consumes and the version it
yields. We use these versions to choose which points-to set to
access for each object of interest instead of accessing objects’
points-to sets from IN/OUT sets in order to avoid maintaining
redundant points-to sets at each program point. The inference
rules in Figure 10 modify SFS [11] to use versions instead of
IN/OUT sets. We use the notation ptκ(o) to refer to the points-
to set of o version κ and we refer to our new formulation of
a flow-sensitive points-to analysis as versioned staged flow-
sensitive points-to analysis (VSFS).

The [LOAD]F and [STORE]F rules work exactly as
their original counterparts except they, instead of accessing the
points-to set of o from an IN or OUT set, use the consumed
and yielded versions of o’s points-to sets at `, respectively.
For LOAD instruction p = ∗q, the [LOAD]F rule adds q’s
pointees’ points-to sets (consumed versions) into p’s points-to
set, and for STORE instruction ∗p = q, the [STORE]F rule
adds q’s points-to set into p’s pointees’ points-to sets (yielded
versions). The [SU/WU]F rule propagates from the points-to
sets of the consumed versions of objects at ` to the points-
to sets of yielded versions of objects at the same instruction
instead of propagating from the IN set to the OUT set of `. It
performs strong updates by interacting with the kill function
in the same way as the standard approach; if an object is a
singleton, the consumed version of the object’s points-to set is
killed and not propagated to the yielded version of the object’s

points-to set. Finally the [A-PROP]F rule propagates points-
to sets between nodes. Given `′

o−→ `, instead of propagating
from the IN set or OUT set of `′ (depending on what type of
instruction `′ is) to the IN set of `, for o, it includes the points-
to set of the yielded version of o at `′ in the points-to set of the
consumed version of o at `. Since many nodes may consume
and yield the same versions, propagation occurs far less often
than in SFS and we save space by storing fewer points-to sets.
The [CALL]F and [RET]F rules copy the value of actual
arguments to formal arguments and return values to pointers,
respectively. Using a pointer q as the called function allows
for on-the-fly call graph resolution. As shown in gray, if the
instructions are annotated with χ/µ, they produce new edges
if they did not already exist.

The remainder of the analysis works in the exact same way
as SFS. The [ADDR]F rule inserts a newly allocated object
in the left-hand side pointer’s points-to set. The [φ]F and
[CAST]F rules add the right-hand side pointer’s or pointers’
points-to set(s) to the left-hand side pointer’s points-to set.
The [FIELD*]

F rules give the analysis field-sensitivity by
inserting a field object (offset into another object) in the left-
hand side pointer’s points-to set. We use the [FIELD-ADD]F

rule to avoid creating field objects from field objects as it is
easier to reason about and implement the analysis with objects
like ô.fi+j rather than ô.fi.fj .

E. Correctness

This section discusses how our approach produces the same
results as SFS. Intuitively, we aim to have global points-to sets
for each o numbering less than the points-to sets of o in IN/OUT
sets (or numbering the same, in the unrealistic theoretical worst
case). Our approach treats multiple points-to sets as one when
it can soundly determine that in they would be equivalent in
SFS.

The number of versions for an object introduced in the
prelabelling phase is the minimum number of points-to sets
we will store for that object, thus we try to minimise the
number introduced. We introduce a new version for each
STORE to yield because we cannot determine whether the
consumed version of an object at a STORE would have the
same points-to set as the yielded version without the flow-
sensitive analysis. In other words, we do not know what the
STORE instruction will actually do. We also introduce a new
version for δ nodes to consume to soundly handle on-the-fly
call graph construction. This is also because we do not know
if δ nodes will have any new incoming indirect edges (and
from where) until we perform the flow-sensitive analysis.

Then in the meld labelling phase, we propagate versions
across and within nodes. The meld operator is specifically
designed to mimic the set union operator which is used in
inclusion-based points-to analysis (a constraint pt(p) ⊆ pt(q)
translates to pt(q) = pt(q) ∪ pt(p)). Like the meld operator,
∪ is commutative ({o1} ∪ {o2} = {o2} ∪ {o1} = {o1, o2}),
associative (({o1} ∪ {o2}) ∪ {o3} = {o1} ∪ ({o2} ∪ {o3}) =
{o1, o2, o3}), idempotent ({o}∪ {o} = {o}), and has an iden-
tity, the empty set ∅ ({o} ∪ ∅ = {o}). So when we perform

[ADDR]F
` : p = allocô
ô ∈ pt(p) [φ]F

` : p = φ(q, r)

p(q) ∪ p(r) ⊆ p(p) [CAST]F
` : p = (t) q

p(q) ⊆ p(p)

[LOAD]F
` : p = ∗q o ∈ pt(q) c = c`(o)

ptc(o) ⊆ pt(p)
[STORE]F

` : ∗p = q o ∈ pt(p) y = y`(o)

pt(q) ⊆ pty(o)

[SU/WU]F
` : ∗p = o ∈ A \ kill(`) y = y`(o) c = c`(o)

ptc(o) ⊆ pty(o)
[A-PROP]F `′

o−→ ` κs = Y`′(o) κd = C`(o)

ptκs
(o) ⊆ ptκd

(o)

[FIELD]F
` : p = &q→fi ô ∈ pt(q)

ô.fi ∈ pt(p)
[FIELD-ADD]F

` : p = &q→fj ô.fi ∈ pt(q)
ô.fi+j ∈ pt(p)

[CALL]F

` : = q(. . . , r, . . .) µ(o) ofun ∈ pt(q)
`′ : fun(. . . , r′, . . .) o = χ(o)

pt(r) ⊆ pt(r′) `
o−→ `′

[RET]F

` : p = q(. . .) o = χ(o)
ofun ∈ pt(q) `′ : retfunp

′ µ(o)

pt(p′) ⊆ pt(p) `′
o−→ `

kill(` : ∗p =)
∆
=

{o} if pt(p) ≡ {o} ∧ o ∈ SN
A if pt(p) ≡ ∅
∅ otherwise

Fig. 10. Inference rules for the new main-phase flow-sensitive analysis.

meld labelling, we are performing an extremely lightweight
version of the IN/OUT set propagation SFS performs using
versions to represent points-to sets and relying on information
from the auxiliary analysis. So, instead of propagating the
points-to sets of objects from OUT sets to IN sets, and from IN
sets to OUT sets internally, we propagate yielded versions to
the versions to be consumed, and vice versa internally. Similar
to in the prelabelling phase, we may introduce excess versions.
For example, if ` consumed version κ1 � κ2, pt|`(o) would
actually be made up of the union of at least two points-to
sets. However, κ1 may be sufficient for ` to consume if the
points-to set represented by κ2 is a subset of the points-to set
represented by κ1. We would not know until the flow-sensitive
analysis, so we assume the worst to maintain soundness.

Since our pre-analysis assumes the worst when it requires
flow-sensitive points-to analysis results (the pessimistic prela-
belling and the excess versions), it soundly ensures our analy-
sis only treats multiple points-to sets as one when they would
be the same in SFS (Equations 1, 2, and 3) and so produces
the same results as SFS.

V. EVALUATION

This section describes our experiments comparing the per-
formance and memory usage of our approach (VSFS) against
SFS. Open source pointer analysis framework SVF [23] con-
tains an implementation of SFS as described in Section V of
the original paper [11], and we implement our new versioned
analysis alongside it for comparison. The auxiliary analysis
used to build the SVFG is Andersen’s analysis boosted by
wave propagation [19]. We use LLVM’s SparseBitVector
data structure and the bitwise operator defined upon it during
the versioning phase for the labels/versions and the meld
operator, respectively. During the versioning phase, as an
optimisation, analogous to SFS, if a node consume what it
yields, we store the version once and do not explicitly perform

the [INTERNAL]V rule. To make the analysis cheaper, after
the versioning phase, we use unsigned integers to represent
versions, converting equivalent SparseBitVectors to the
same integer, and we explicitly store all consumed and yielded
versions for simplicity’s sake (though this incurs a slight time
and memory penalty).

We use 15 open-source programs to benchmark and com-
pare our analysis as listed in Table II. Of these benchmarks,
ninja, astyle, and hyriseConsole are written in C++, and the
remainder are written in C. We compile the benchmarks
using Clang 10 (O3 flag) through Whole Program LLVM
(WLLVM)2 to generate bitcode files. For each benchmark, the
number of lines of code (LOC) listed in Table II is obtained by
counting the number of lines of code in every source file listed
in the LLVM debug information (excluding system headers).
Finally, we strip debug information to get a better view of the
bitcode size.

We run Andersen’s analysis (also provided by SVF), SFS,
and VSFS 5 times on each benchmark and record the average
running times in seconds and memory usage (maximum res-
ident set size) in gigabytes in Table III. We give each run a
maximum of 12 hours to complete (no benchmark exhausted
this) and 120 GB of memory (lynx could not be analysed
by SFS within this limit). For SFS and VSFS, we omit the
running time of the required auxiliary analysis, memory SSA
construction, and SVFG construction, and only show the time
taken by the main phase of the analysis (and versioning
time for VSFS). Memory usage statistics do not make this
distinction and include everything. Time is measured with C’s
clock function and memory is measured with GNU’s time
program. The average in the bottom row is calculated using
the geometric mean, and non-existent data (running time for
SFS for lynx, specifically) is ignored. All experiments were

2https://github.com/travitch/whole-program-llvm

https://github.com/travitch/whole-program-llvm

TABLE II
BENCHMARKS USED TO EVALUATE VSFS. FOR EACH BENCHMARK, WE LIST THE NUMBER OF LINES OF CODE (LOC), BITCODE SIZE (KIB) AFTER

OPTIMISATION (O3) AND DEBUG INFORMATION IS STRIPPED, THE NUMBER OF NODES, AND DIRECT (D. EDGE) AND INDIRECT (I. EDGE) EDGES IN THE
SVFG, THE NUMBER OF TOP-LEVEL AND ADDRESS-TAKEN VARIABLES, AND A BRIEF DESCRIPTION.

Bench. LOC Size SVFG # Variables Description
(KiB) # Nodes # D. Edges # I. Edges Top-Level Address-Taken

du 27704 376 27192 16229 367638 35314 1705 Disk usage (GNU)
ninja 8702 576 46776 31594 392071 46075 2681 Build system
bake 20548 580 78426 34038 1833144 40668 3097 Build system
dpkg 21934 612 77793 32117 379719 38843 2884 Package manager
nano 27564 828 84637 42463 1911821 72663 2637 Text editor
i3 22895 1016 100009 54532 268501 67716 3237 Window manager
psql 47444 1120 92421 62659 495139 67310 3513 PostgreSQL frontend
janet 56500 1172 128838 54625 2491254 99753 3154 Janet compiler
astyle 16715 1560 156322 86563 8616092 125992 8712 Code formatter
tmux 48205 1656 154683 101518 8302942 123889 6009 Terminal multiplexer
mruby 50807 1732 118992 101613 1145376 149346 2381 Ruby interpreter
mutt 64046 1820 297971 106211 11044405 147712 6939 Terminal email client
bash 102319 2200 309236 100660 29697360 187307 6217 UNIX shell
lynx 138182 3800 554940 172969 35091128 232829 7802 Terminal web browser
hyriseConsole 37300 9524 627834 437230 6377348 607274 37339 Hyrise DB frontend

conducted on a machine running 64-bit Ubuntu 18.04.2 LTS
with an Intel Xeon Gold 6132 processor at 2.60 GHz and 128
GB of memory.

Overall, we see that since VSFS sees improvement in both
time and memory, and VSFS targets the excessive propagation
and storage of IN and OUT sets, a considerable amount of SFS
overhead is spent on the propagation and storage of them.

A. Time

We find that our analysis always performs better than
SFS. The versioning process is always cheap. For bench-
marks which are easy for VSFS to analyse, it can be a
large percentage of total running time (see mruby and bake,
for example), but in our tests this never caused the overall
analysis to be slower than SFS. As benchmarks take longer to
analyse, versioning time becomes more and more negligible.
For example, VSFS’s main phase takes almost 3 and a half
hours to analyse lynx, but only takes less than a minute to
perform versioning.

Benchmarks like bake (the most extreme case with a 26.22×
improvement), astyle, hyriseConsole, ninja, and janet benefit
greatly from the reduced propagation required and the version-
ing time is negligible. Benchmarks dpkg and bash see little
speedup, 1.74× and 1.46×, respectively. Programs like dpkg
are not really targets of our analysis being that they can be
analysed by SFS easily, and bash still sees some improvement
and no regression. The remaining benchmarks benefit with
speedups in the range of 2.43× to 6.27×. The geometric
mean of speedups is 5.31× which we believe is an indication
of success, especially considering this includes benchmarks
which did not show a drastic performance improvement (dpkg
and bash). If we exclude all benchmarks which take less than
30 seconds for SFS to analyse (which are not the target of our
work), du, dpkg, i3, psql, and mruby, we obtain a geometric
mean speedup of 6.74×. The time for lynx is missing because

it ran out of memory (in what appears to be) early in the
analysis.

B. Memory Usage

We find that our analysis improves memory usage compared
to SFS for all benchmarks except dpkg, i3, and mruby, where
it used about the same amount of memory as SFS. In these
instances, the analysis is small enough that the cheap memory
overhead from versioning accounts for a significant percentage
of overall memory usage. On the other hand, SFS runs out of
memory analysing lynx meaning that it required more than
120 GB while VSFS used less than 22 GB. At best, for
our benchmarks, our approach reduced memory by 5.46× or
more, and offered significant improvements in analysing lynx,
bash, and astyle. Overall our analysis sees a (geometric) mean
improvement of at least 2.11× meaning VSFS uses half the
memory SFS does on average whilst improving performance.

The memory overhead present by versioning grows much
slower than the main phase analysis, similar to the time
overhead. We believe that overhead could perhaps be further
reduced by designing a data structure specifically catered
to versioning rather than using one off-the-shelf (LLVM’s
SparseBitVector) which perhaps may use a completely
different meld operator.

VI. RELATED WORK

To improve performance, flow-sensitive points-to analy-
sis has seen its sparsity improved over time. Earlier ap-
proaches [4], [12], [16] focused on reducing the ICFG by
removing irrelevant (to the analysis) nodes, rather than in-
troducing a new data structure to perform the analysis on.
Hardekopf and Lin [10] introduce a semi-sparse analysis
which makes use of the partial SSA form [24] to perform the
analysis sparsely on top-level pointers, whilst performing the
analysis in the same way as before for address-taken objects.

TABLE III
TIME, IN SECONDS, AND MEMORY USAGE (MAXIMUM RESIDENT SET SIZE), IN GIGABYTES, OF ANDERSEN’S ANALYSIS, SFS (MAIN PHASE TIME ONLY),
AND VSFS. TIME STATISTICS ARE SPLIT INTO 3 FOR VSFS: TIME TO VERSION OBJECTS, TIME TO PERFORM THE ANALYSIS USING VERSIONS, AND THE

SUM OF THOSE TWO TIMES WHICH IS THEN USED FOR COMPARISON. THE LAST TWO COLUMNS SHOW HOW MANY TIMES FASTER (OR SLOWER) OUR
APPROACH IS COMPARED TO SFS AND THE REDUCTION (OR INCREASE) IN MEMORY USAGE OF OUR APPROACH COMPARED TO SFS. OOM MEANS A

BENCHMARK WAS UNABLE TO COMPLETE BECAUSE IT EXHAUSTED MEMORY RESOURCES.

Benchmark Andersen’s SFS VSFS Time
diff.

Mem.
diff.Time Mem. Time Mem. Versioning Main phase Total time Mem.

du 1.15 0.19 21.43 2.24 0.27 3.94 4.20 1.52 5.10× 1.48×
ninja 1.15 0.22 60.97 2.37 0.24 4.01 4.25 1.47 14.35× 1.61×
bake 1.06 0.19 60.90 3.12 0.92 1.40 2.32 1.69 26.22× 1.84×
dpkg 0.60 0.16 3.34 1.41 0.37 1.55 1.92 1.41 1.74× 1.00×
nano 2.91 0.41 74.90 5.59 1.57 16.69 18.26 2.16 4.10× 2.58×
i3 1.14 0.27 3.28 1.55 0.32 0.81 1.13 1.52 2.90× 1.02×
psql 0.99 0.28 8.04 1.82 0.38 0.90 1.28 1.56 6.27× 1.17×
janet 2.93 0.43 116.76 7.09 1.35 8.32 9.67 2.34 12.07× 3.03×
astyle 20.18 1.14 12437.38 85.41 7.76 1199.55 1207.31 19.59 10.30× 4.36×
tmux 22.78 1.19 483.14 12.75 14.50 167.25 181.75 7.79 2.66× 1.64×
mruby 7.65 0.64 16.78 2.75 1.97 3.45 5.41 2.62 3.10× 1.05×
mutt 13.74 1.05 981.53 26.59 15.84 388.72 404.56 8.13 2.43× 3.27×
bash 19.54 1.48 2160.97 77.70 24.50 1458.23 1482.73 15.44 1.46× 5.03×
lynx 57.18 1.86 OOM OOM 58.80 11947.68 12006.48 21.96 – ≥5.46×
hyriseConsole 18.18 2.76 701.93 18.42 4.21 39.95 44.16 6.85 15.89× 2.69×

Average 5.31× ≥2.11×

Several recent works use the idea of a staged analysis [7],
[18], [26], for example to perform a sparse def-use analysis
for top-level variables, or to perform a sparse analysis upon
all variables [11] by building the memory SSA form [5], [25].
This is a form of multiple-object sparsity in that all object
points-to sets are no longer propagated together based on
control-flow but propagated on an object-to-object basis based
on the sparse value-flows. We build upon this work to improve
single-object sparsity, or sparsity within the propagation of
a single object’s points-to sets to different program points.
Our approach efficiently and effectively determines duplicate
points-to sets at different program points for a single object
and treats them as one. Hardekopf and Lin also introduce
“points-to graph equivalence” in their work on semi-sparse
analysis [10] however, their approach, while similar to ours,
is imprecise in that they conservatively determine entire IN and
OUT which cannot realise the same opportunities to collapse
objects’ points-to sets as in our single object sparsity. Their
pre-analysis is performed on the sparse evaluation graph,
whereas we perform our pre-analysis on the SVFG. We have
not compared to this optimisation since we do not know of a
modern implementation of it.

In Section 3.4 of their work [16], Lhoták and Chung
sparsely allocate instruction labels on the ICFG such that
propagation is skipped where they can determine that address-
taken objects’ points-to sets will not change during the analysis
(non-STORE instructions and non-merge points of control-
flow). Our work differs in that they perform their analysis
on the ICFG and their sparse allocation is not on an object-to-
object basis but upon all objects for each label allocation. Their
approach also always allocates separate labels for separate
merge points whereas our approach can sometimes determine
when merge points produce a points-to set that is being

merged and can be reused. Their label allocation is faster
than our versioning, but our versioning is more effective
(yet still performant), and this is crucial for larger programs
since constraint solving grows much faster than either label
allocation or versioning.

Our analysis is an instance of offline variable substitu-
tion [20] in that we collapse multiple equivalent variables (in
our case, variable/location pairs) before the main phase points-
to analysis. Variable substitution and similar techniques have
been applied successfully before [9], [10], [16], [22].

VII. CONCLUSION

This paper presents an object versioned flow-sensitive
points-to analysis, an improvement over the state-of-the-art
staged flow-sensitive points-to analysis (SFS) in both time
and space. We use a prelabelling extension, meld labelling, to
version objects such that SVFG nodes can in many instances
share the same points-to sets for an object. We achieve finer
grained single-object sparsity than SFS giving us an average
speedup of 5.31× (up to 26.22×) and an average memory
reduction of over 2.11× (up to 5.46×).

ACKNOWLEDGEMENTS

This research is supported by Australian Research Grant
DP210101348. Additionally, the first author is supported by a
PhD scholarship funded by CSIRO’s Data61.

ARTIFACT APPENDIX

A. Abstract

This artifact provides a Docker image containing our im-
plementation of VSFS alongside the benchmarked programs.
VSFS is built upon SVF and LLVM 10. The image also
includes SVF’s implementation of SFS. A script is included to

easily compare the running time and memory usage of VSFS
and SFS on a variety of open source benchmark programs and
reproduce Tables II and III.

B. Artifact Checklist

• Algorithm: Flow-sensitive points-to analysis utilising
versioned objects.

• Program: Analysis implemented in SVF. Benchmarks
are a variety of open source programs.

• Binary: SVF and benchmarks are built and included in
the Docker image. They can be rebuilt within the image.

• Runtime environment: Docker.
• Hardware: System with at least 120 GB of available

memory to run all 15 tests, with at least 32 GB of
available memory to run 11/15 tests, or with at least 8
GB of available memory to run 8/15 tests.

• Metrics: Analysis time and memory usage.
• Output: Tables (text) matching Table II and Table III.
• Experiments: Running a script and comparing output to

Table II and Table III. The “Time diff.” and “Mem. diff.”
columns should be similar.

• How much disk space required? The compressed
Docker image is 1.9 GB. It is 6.2 GB once loaded.

• How much time is needed to prepare workflow? Very
little time, depending on network connection.

• How much time is needed to complete experiments?
One run for all benchmarks takes approximately 10 hours
on a Xeon Gold 6132 CPU.

• Publicly available?: Yes.
• Code licenses? The GPL.
• Archived (DOI)? https://doi.org/10.6084/m9.figshare.

13269662.v1

C. Description

1) Distribution: The Docker image can be downloaded
from https://doi.org/10.6084/m9.figshare.13269662.v1. For in-
formation on running VSFS outside the benchmarking envi-
ronment, visit https://github.com/SVF-tools/SVF/wiki/VSFS.

2) Hardware Dependencies: The analyses are all single-
threaded so multiple cores will not have any effect, however
they can still be computationally intensive. In terms of mem-
ory, to run the analyses on the full set of benchmarks (15/15),
a machine with 120 GB of available memory is required. A
subset of benchmarks can be evaluated on machines with less
memory. To run the analyses on 11/15 of the benchmarks, a
machine with at least 32 GB of available memory is required.
To run the analyses on 8/15 of the benchmarks, a machine
with at least 8 GB of available memory is required.

3) Software Dependencies: Docker. We have tested the
image on Docker version 19.03.6 on an Ubuntu 18.04 machine.

D. Installation

Download the Docker image (vsfs.tar.gz) from the
URL in Appendix C1. Then, load the image,

$ docker load -i vsfs.tar.gz

Finally, run the image,

$ docker run -it vsfs bash

You are now in a full Linux environment.

E. Experiment Workflow

First, change into the benchmark directory,

$ cd $HOME/bench

Here, the bench.sh script runs the analyses and ta-
bles them automatically using the table.awk script. The
bench.sh script takes 4 arguments followed by at least 1
more:

1) The SVF binary (in the image it is wpa and already in
the path).

2) The number of runs for each analysis.
3) The maximum time limit (in seconds).
4) The maximum memory limit (in bytes).
5) The bitcode files to analyse.
For the bitcode file arguments we have created 3 envi-

ronment variables: W_8GB, W_32GB, and W_120GB. These
variables contain the names of the bitcode files (separated by
a space) which can be analysed by a system with 8 GB, 32 GB,
and 120 GB, respectively. For example, $W_120GB expands
to du.bc ninja.bc bake.bc dpkg.bc ..., i.e. the
full list of benchmarks.

The results in the paper were produced by,

$./bench.sh wpa 5 43200 120000000000 \
$W_120GB

When running on a system with only 8 GB of free memory,
for example, the following is more suitable to produce a
portion (about half) of the table,

$./bench.sh wpa 1 43200 8000000000 $W_8GB

We recommend performing only a single run for evaluation
purposes (by setting the second argument to 1) to save time.
Progress is printed as the benchmark currently being analysed
and with which analysis (ander is Andersen’s analysis,
vfspta is VSFS, and fspta is SFS).

The benchmarks can be rebuilt (note: this may require up
to 15 GB more disk space). First, change into the bitcode
directory,

$ cd $HOME/bench/bitcode

Remove the existing source and bitcode files,

$./clean.sh

Run the build script (note: source files are downloaded from
the network),

$./build.sh

Finally, move the produced bitcode and LLVM IR files to
$HOME/bench,

$ mv *.bc *.ll $HOME/bench

https://doi.org/10.6084/m9.figshare.13269662.v1
https://doi.org/10.6084/m9.figshare.13269662.v1
https://doi.org/10.6084/m9.figshare.13269662.v1
https://github.com/SVF-tools/SVF/wiki/VSFS

F. Evaluation and Expected Result

The aforementioned bench.sh will reproduce Tables II
and III. Most importantly, the “Time diff.” and “Mem. diff.”
columns should be similar with a 0.5× tolerance for bench-
marks with little difference, and 1.5× for benchmarks with
greater difference (more than 10×).

G. Experiment Customisation

Other programs can be used in place of the provided
benchmarks. To do so, build the program with WLLVM
(CC=wllvm CXX=wllvm++ build-command) in
$HOME/bench/bitcode, extract the bitcode file
(extract-bc program), copy the bitcode file to
$HOME/bench, and use the resulting bitcode file as an
argument to bench.sh.

To also count lines of code, the program must be
compiled with the debug flag (-g). The resulting bit-
code file (program.bc) must be dissassembled to LLVM
IR (llvm-dis program.bc) and also copied along
with the bitcode file to $HOME/bench in the form
program.dbg.ll. It may also be a good idea to opti-
mise the bitcode, and to strip the bitcode file of debugging
information to get a better reading of the size (opt -O3
--strip-debug program.bc).

For example, if we were to build web log analyser GoAccess
for analysis,

$ cd $HOME/bench/bitcode
$ wget https://tar.goaccess.io/\
goaccess-1.4.3.tar.gz

$ tar -xf goaccess-1.4.3.tar.gz
$ cd goaccess-1.4.3
$ CC=wllvm CFLAGS="-g -O0" ./configure
$ make
$ extract-bc -o goaccess.dbg.bc goaccess
$ llvm-dis goaccess.dbg.bc
$ opt -O3 --strip-debug goaccess.dbg.bc \

-o goaccess.bc
$ mv goaccess.bc goaccess.dbg.ll \

$HOME/bench

Finally, the bench.sh script can be run as described in
Appendix E with goaccess.bc as the fifth argument.

H. Source Code

SVF’s source code is available in $HOME/svf. Most of
our VSFS code resides in two files (relative to $HOME/svf):

include/WPA/VersionedFlowSensitive.h
lib/WPA/VersionedFlowSensitive.cpp

SVF can also be recompiled if modified. First, change into
the build directory,

$ cd $HOME/svf/Release-build

Then, run the build command.

$ make

VSFS’s source code has been merged into mainline SVF
and is actively maintained. SVF can be found at https://github.
com/SVF-tools/SVF.

REFERENCES

[1] L. O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, University of Copenhagen, Denmark,
1994.

[2] M. J. Bach. The design of the UNIX operating system. Prentice-Hall
International, USA, 1986.

[3] G. Balatsouras and Y. Smaragdakis. Structure-sensitive points-to anal-
ysis for C and C++. In International Static Analysis Symposium, SAS
’16, pages 84–104, Germany, 2016. Springer.

[4] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction of sparse
data flow evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’91, pages 55–66, USA, 1991. ACM.

[5] F. C. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Effective
representation of aliases and indirect memory operations in ssa form.
In Proceedings of the 6th International Conference on Compiler Con-
struction, CC ’96, pages 253–267, Germany, 1996. Springer.

[6] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis.
In Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, PLDI ’98, pages 106–117, USA,
1998. ACM.

[7] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM Transactions on
Software Engineering and Methodology, 17(2), May 2008.

[8] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn
verification framework. In Computer Aided Verification, pages 343–361,
Switzerland, 2015. Springer.

[9] B. Hardekopf and C. Lin. Exploiting pointer and location equivalence to
optimize pointer analysis. In International Static Analysis Symposium,
SAS ’07, pages 265–280, Germany, 2007. Springer.

[10] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis.
In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’09, pages 226–238,
USA, 2009. ACM.

[11] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions of
lines of code. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’11, pages
289–298, USA, 2011. IEEE Computer Society.

[12] M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer
alias analyses. In International Static Analysis Symposium, SAS ’07,
pages 57–81, Germany, 1998. Springer.

[13] J. Kuderski, J. A. Navas, and A. Gurfinkel. Unification-based pointer
analysis without oversharing. In 2019 Formal Methods in Computer
Aided Design, FMCAD ’19, pages 37–45, USA, 2019. IEEE Computer
Society.

[14] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, CGO ’04, page 75, USA, 2004. IEEE
Computer Society.

[15] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to
analysis with heap cloning practical for the real world. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’07, page 278–289, USA, 2007. ACM.

[16] O. Lhoták and K.-C. A. Chung. Points-to analysis with efficient strong
updates. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, pages
3–16, USA, 2011. ACM.

[17] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna. DR. CHECKER: A soundy analysis for linux kernel drivers.
In Proceedings of the 26th USENIX Conference on Security Symposium,
SEC’17, pages 1007–1024, USA, 2017. USENIX Association.

[18] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation
of sparse global analyses for C-like languages. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 229––238, USA, 2012. ACM.

https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF

[19] F. M. Q. Pereira and D. Berlin. Wave propagation and deep propagation
for pointer analysis. In Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
’09, pages 126–135, USA, 2009. IEEE Computer Society.

[20] A. Rountev and S. Chandra. Off-line variable substitution for scaling
points-to analysis. In Proceedings of the ACM SIGPLAN 2000 Confer-
ence on Programming Language Design and Implementation, PLDI ’00,
pages 47—-56, USA, 2000. ACM.

[21] P. D. Schubert, B. Hermann, and E. Bodden. PhASAR: an inter-
procedural static analysis framework for C/C++. In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS ’19, pages 393–
410, Germany, 2019. Springer.

[22] Y. Smaragdakis, G. Balatsouras, and G. Kastrinis. Set-based pre-
processing for points-to analysis. In Proceedings of the 28th Annual
ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’13, pages 253—-270, USA,
2013. ACM.

[23] Y. Sui and J. Xue. SVF: Interprocedural static value-flow analysis
in LLVM. In Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, pages 265–266, USA, 2016. ACM.

[24] Y. Sui, H. Yan, Z. Zheng, Y. Zhang, and J. Xue. Parallel construction
of interprocedural memory ssa form. Journal of Systems and Software,
146:186–195, 2018.

[25] Y. Sui, D. Ye, and J. Xue. Static memory leak detection using full-
sparse value-flow analysis. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA ’12, pages 254–
–264, USA, 2012. ACM.

[26] A. Tavares, B. Boissinot, F. Pereira, and F. Rastello. Parameterized
construction of program representations for sparse dataflow analyses.
In Proceedings of the 23rd International Conference on Compiler
Construction, pages 18–39, Germany, 2014. Springer.

[27] M. Weiser. Program slicing. IEEE Transactions on Software Engineer-
ing, SE-10(4):352–357, 1984.

[28] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free
vulnerabilities. In Proceedings of the 40th International Conference
on Software Engineering, ICSE ’18, pages 327–337, USA, 2018. ACM.

	Introduction
	Program Representation
	Domain and Intermediate Representation
	Value-Flow Graph

	Motivating Example
	Approach
	Flow-Sensitive Points-To Analysis
	Meld Labelling
	Complexity

	Versioning Objects Using Meld Labelling
	Prelabelling
	Versioning with Meld Labelling

	Flow-Sensitive Points-To Analysis Using Object Versioning
	Correctness

	Evaluation
	Time
	Memory Usage

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact Checklist
	Description
	Distribution
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Experiment Customisation
	Source Code

	References

