

Edinburgh Research Explorer

F3M: Fast Focused Function Merging

Citation for published version:
Stirling, S, Rocha, RCO, Hazelwood, K, Leather, H, O’Boyle, M & Petoumenos, P 2022, F3M: Fast Focused
Function Merging. in JW Lee, S Hack & T Shpeisman (eds), 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, pp. 242-253, 2022 International Symposium on Code
Generation and Optimization, 2/04/22. https://doi.org/10.1109/CGO53902.2022.9741269

Digital Object Identifier (DOI):
10.1109/CGO53902.2022.9741269

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1109/CGO53902.2022.9741269
https://doi.org/10.1109/CGO53902.2022.9741269
https://www.research.ed.ac.uk/en/publications/791c73e7-930f-4686-b99f-13e65b690489

F3M: Fast Focused Function Merging

Sean Stirling∗, Rodrigo C. O. Rocha†, Kim Hazelwood‡, Hugh Leather‡,

Michael O’Boyle† and Pavlos Petoumenos§

∗Codeplay, United Kingdom, sean.stirling@codeplay.com
†University of Edinburgh, United Kingdom, {rrocha,mob}@ed.ac.uk

‡Facebook AI Research, United States, {kimhazelwood,hleather}@fb.com
§University of Manchester, United Kingdom, pavlos.petoumenos@manchester.ac.uk

Abstract—From IoT devices to datacenters, code size is im-
portant, motivating ongoing research in binary reduction. A key
technique is the merging of similar functions to reduce code
redundancy. Success, however, depends on accurately identifying
functions that can be profitably merged. Attempting to merge
all function pairs is prohibitively expensive. Current approaches,
therefore, employ summaries to estimate similarity. However
these summaries often give little information about how well
two programs will merge. To make things worse, they rely on
exhaustive search across all summaries; impractical for real-
world programs.

In this work, we propose a new technique for matching similar
functions. We use a hash-based approach that better captures
code similarity and, at the same time, significantly reduces the
search space by focusing on the most promising candidates.
Experimental results show that our similarity metric has a better
correlation with merging profitability. This improves the average
code size reduction by 6 percentage points, while it reduces the
overhead of function merging by 1.8x on average and by as much
as 597x for large applications. Faster merging and reduced code
size to compile at later stages mean that our approach introduces
little to no compile time overhead, while in many cases it makes
compilation faster by up to 30%.

Index Terms—Code-Size Reduction, Function Merging, LLVM,
Compiler Optimization

I. INTRODUCTION

Code size is a first order limitation for computing devices

with constrained resources. An application binary package of

hundreds of megabytes might be easy to accommodate on a

server but will put extra strain on an embedded device or a

smartphone, especially if that package needs to be downloaded

first. Application delivery platforms might impose additional

restrictions on executable size. For example, Google Play does

not generally allow APKs larger than 100MB [1], while the

Apple App Store does not allow executables larger than 500MB

[2]. Under such conditions, larger binary sizes translate directly

to higher hardware costs and/or lower adoption.

One promising approach for reducing binary size is function

merging. At its most straightforward [3], [4], the idea is to

identify identical functions, redirect all their calls to only

one of them, and remove all the redundant copies of these

identical functions. More sophisticated implementations are

able to merge non-identical functions as long as they are

This work has been supported in part by the UK Engineering and Physical
Sciences Research Council (EPSRC) under grant EP/L01503X/1 (CDT in
Pervasive Parallelism). This work was supported by the Royal Academy of
Engineering under the Research Fellowship scheme.

similar in some way, for example having isomorphic control

flow graphs [5] or overlapping instruction subsequences [6]–[8].

The latter approach, known as function merging by sequence

alignment, is very flexible as it can merge even functions with

little structural or algorithmic similarities. Candidate function

pairs are represented as linear sequences of instructions.

A sequence alignment algorithm identifies the overlapping

parts of the two sequences. A code generator produces a

replacement merged function which contains a single copy of

each overlapping subsequence. The remaining non-overlapping

subsequences are copied in as they are but their execution is

guarded by an original function identifier. The new function

replicates the functionality of the two original functions while

removing the redundant instruction subsequences.

While this crop of sophisticated function merging algorithms

can get more code size reduction, finding the right functions

to merge is still very expensive and can hinder the practicality

of function merging. A simple function hashing scheme is

guaranteed to find identical functions to merge. For sequence

alignment on the other hand, there is no accurate way to

find functions that align well, apart from attempting to align

every function with every other function. The state-of-the-art

technique uses a heuristic to find somewhat acceptable function

pairs [6], [8]. It computes a fingerprint for each function, a fixed

size vector of instruction opcode frequencies in the function.

Choosing function pairs is then equivalent to finding all nearest

neighbor pairs in the n-dimensional fingerprint space. While

comparing all fingerprints against all other fingerprints is faster

than actually aligning all possible function pairs, this is still

an expensive quadratic process. When we used the publicly

available code on a range of applications, it worked sufficiently

well for the small and medium sized programs of traditional

benchmark suites but on Google Chrome matching fingerprints

took almost two days, a very high overhead for an approach

claiming to deliver function merging for free [8]. Unless we

overcome this limitation, sequence alignment based function

merging is unlikely to leave the confines of academic research.

Our fundamental insight for solving this problem is that

function similarity ranking is at its core just a form of Nearest

Neighbor Search (NNS) and there are more efficient NNS

approaches than exhaustive search. In particular, approximate

NNS techniques, which trade-off accuracy for vastly reduced

search times, could accelerate function merging by orders

of magnitude. But for this to happen, we also need better

978-1-6654-0584-3/22 © 2022 IEEE

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

242

https://www.acm.org/publications/policies/artifact-review-and-badging-current

fingerprints. Approximate search delivers good results only

as long as the similarity metric is a good proxy for the real

similarity of the nearest neighbors [9]. For our problem, this

means that fingerprint similarity needs to correlate well with

function similarity. This is not currently the case. Fingerprints

do not carry any information about the structure of code, only

about instruction type frequencies. Fingerprint similarity is at its

best an optimistic metric: what is the highest possible similarity

between two functions if they happen to be as structurally

similar as possible. At its worst, it is little better than a random

number which correlates poorly with function similarity.

In this work, we propose Fast Focused Function Merging

(F3M) a new combination of function fingerprint and search

strategy that solves these problems, delivering significant

speedups and improved code size reduction in the process.

Specifically, we use a MinHash [10] representation of the code

as the fingerprint and Locality Sensitive Hashing (LSH) [11]

to quickly discover close neighbors in the fingerprint space.

MinHash reduces the function into a fixed length vector of

hashes, each hash being associated with a different subsequence

of instructions in the function. Two functions with similar

MinHashes are thus likely to have many identical subsequences

which makes them a good candidate pair for merging. With

LSH, we assign each function into a small number of buckets

based on their MinHashes. When searching for a good merging

pair for a function, we only calculate MinHash similarities

with the functions mapping into the same buckets, a small

fraction of the functions of the program.

This new approach results in significant speedups which be-

come more and more pronounced as the size of the application

grows. For large ones, like Google Chrome, F3M delivers orders

of magnitude faster function merging, reducing its runtime from

days down to minutes. Regardless of size, applications benefit

from the improved fingerprint which leads to better merging

candidate pairs and higher code size reduction. Evaluated over a

large selection of benchmarks and real applications, we decrease

object file size by 7.6% while also decreasing compilation time

5.6% compared to a baseline without function merging.

In this paper, we make the following three contributions:

• We introduce a new function similarity metric that

correlates strongly with how well two functions merge.

• We combine this metric with a hashing scheme that

actively adapts to the code, eliminating in the process

most of the overhead of finding similar functions.

• We show that our approach works on real large code

bases where we accelerate function merging by orders of

magnitude while delivering superior code size reduction.

II. BACKGROUND AND MOTIVATION

In this section, we describe the state-of-the-art function

merging technique and show its inefficiency when optimizing

large programs.

A. Function Merging via Sequence Alignment

In the last few years, there has been a flurry of function

merging techniques that rely on Sequence Alignment [6]–[8].

Block Pairing

Sequence Alignment

Code Generation

Function Pairing

Fig. 1. Overview of HyFM’s function merging operation.

...

x
o
r
1

z
e
x
t
1

s
t
o
r
e
9

r
e
t
1

l
o
a
d
7

m
u
l
1

o
r
1

p
h
i
3

s
u
b
0

f
a
d
d
2

a
d
d
2

a
l
l
o
c
a
3

a
n
d
0

b
i
t
c
a
s
t
4

b
r

8
c
a
l
l
2
0

f
d
i
v
2

f
m
u
l
0

f
s
u
b
0

g
e
p
2
2

i
c
m
p
3

i
n
v
o
k
e
0

f
n
e
g
0

f
r
e
m
0

s
d
i
v

0
u
d
i
v

0

Fig. 2. Example of a fingerprint used by HyFM for pairing functions.

They have significant differences but they all work following

these key stages: a) select pairs of similar functions for merging,

b) merge each pair of functions by using sequence alignment to

identify equivalent code that can be reused by both functions,

and c) if deemed profitable, replace the two original functions

with the merged function that combines the functionality

of both. The execution of mismatched subsequences in the

merged function is guarded by an original function identifier

but matching subsequences are not guarded and are executed

regardless of the function identifier. Figure 1 illustrates the

function merging workflow in HyFM [8], which is the state-

of-the-art used throughout this paper. Its code alignment

strategy works on the basic block level, with a linear alignment

algorithm applied on pairs of similar blocks.

Merging two functions is an expensive operation. Applying

it on every possible pair of functions to discover which

ones should be merged is infeasible even for medium sized

programs. Instead, all existing approaches rely on a ranking-

based mechanism for pairing similar functions. Each function

is associated with a fingerprint, i.e., a vector representing the

frequencies of all the instruction opcodes in its function body.

Figure 2 shows an example of a fingerprint. When searching for

function pairs to merge, called ranking, each candidate function

is compared against all other functions in terms of fingerprint

similarity. The most similar function, the one with the lowest

fingerprint distance from the candidate, is then aligned and,

perhaps, merged with the candidate.

B. Limitations of the State of the Art

While all these works have significantly improved the

performance of the function merging operation, the ranking

mechanism used for pairing similar functions still scales

poorly to larger codebases. Figure 3 shows the compila-

tion time breakdown of HyFM for three different programs:

400.perlbench, the Linux kernel, and Google Chrome.

The ranking overhead grows quadratically as the num-

ber of functions in the program increases. While for

243

80.0% 9.4%

5.2%

3.2%1.0%

400.perlbench
1.94 seconds

79.3%

5.9%10.9%
1.6%

1.9%

linux
134 seconds

93.3%

6.4%

chrome
46.4 hours

Preprocess
Ranking Success

Ranking Fail

Align Success

Align Fail

Codegen Success

Codegen Fail

Fig. 3. Breakdown of the relative runtime for the different stages of HyFM [PA].
Ranking takes 0.07 seconds, 1.9 minutes, and 46.3 hours on 400.perlbench,
Linux, and Google Chrome, respectively. More than 90% of the ranking
time is spent on unprofitable function pairs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fingerprint similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

R: 0.2003

100

101

102

103

104

105

106

107

Fig. 4. Heatmap of normalized fingerprint similarity for all 800M possible
candidate function pairs in the Linux kernel versus their alignment ratio. The
2D space is discretized into squares of size 0.01x0.01. Each square’s color
indicates the number of functions pairs with that similarity and alignment ratio.
Quality of alignment and fingerprint similarity show low correlation (R=0.20)

400.perlbench, ranking its 1837 functions represents only

a small (but not negligible) part of the optimization’s runtime,

for the 45k functions of Linux, ranking takes minutes and is

responsible for 80% of HyFM’s runtime. For the 1.2m functions

of Google Chrome, practically the whole compilation overhead

(almost two days!) is due to ranking. Even worse, most of

this effort, about 93%, does not contribute anything towards

reducing code size, it is wasted pairing functions that will be

later deemed unprofitable by the compiler’s cost model.

This is a result of the quadratic nature of the function ranking

mechanism. The act of comparing fingerprints itself is only

moderately expensive: for HyFM it involves calculating the

Manhattan distance of two integer vectors of 68 elements. But

even medium sized programs, e.g. Linux, need to perform

approximately 800M such calculations which is enough to

dominate the runtime of function merging.

This wasteful aspect of HyFM is a side-effect of the poor

quality of the ranking metric itself. Figure 4 shows the ratio of

aligned instructions for all possible function pairs of the Linux

void perf_kprobe_destroy(p_event)

 call mutex_lock(@event_mutex)

 %z1 = getelementptr %p_event, 0, 62

 %z2 = load %z1

 %z3 = getelementptr %z2, 0, 1

 %z4 = load %z3

 %z5 = getelementptr %z4, 0, 3

 %z6 = load %z5

 %z7 = bitcast %p_event

 %z8 = tail call %z6(%z2, 5, %z7)

 call perf_trace_event_unreg(%p_event)

 call mutex_unlock(@event_mutex)

 %z9 = load %v1

 call destroy_local_trace_kprobe(%z9)

 ret void

void fat_put_super(sb)

%x1 = getelementptr %sb, 0, 28

 %x2 = bitcast %x1

 %x3 = load %x2

call fat_set_state(%sb, 0, 0)

 %x4 = getelementptr %x3, 0, 29

 %x5 = load %x4

 call iput(%x5)

 %x6 = getelementptr %x3, 0, 28

 %x7 = load %x6

 call iput(%x7)

 %x8 = getelementptr %x3, 0, 36

 call call_rcu(%x8, @delayed_free)

 ret void

void perf_trace_destroy(p_event)

 call mutex_lock(@event_mutex)
 %v1 = getelementptr %p_event, 0, 62
 %v2 = load %v1
 %v3 = getelementptr %v2, 0, 1
 %v4 = load %v3
 %v5 = getelementptr %v4, 0, 3
 %v6 = load %v5
 %v7 = bitcast %p_event
 %v8 = tail call i32 %v6(%v2, 5, %v7)
 call perf_trace_event_unreg(%p_event)
 call mutex_unlock(@event_mutex)
 ret void

b
i
t
c
a
s
t

c
a
l
l

g
e
t
e
l
e
m
e
n
t
p
t
r

l
o
a
d

r
e
t

1 4 3 3 1

Fingerprint

1 4 4 3 1

Distance: 1

1 5 3 4 1

Distance: 2

Fig. 5. Linux function perf_trace_destroy and the merging candidate
selected by HyFM fat_put_super. Their fingerprints differ only in one
value but half their instructions are not matched and another quarter has
different operands. HyFM cannot merge the two functions profitably. The
ideal candidate would be perf_kprobe_destroy which has a less similar
fingerprint but is almost identical to perf_trace_destroy.

0
.1

5

1
.0

0

2000

4000

6000

8000

10000

#
 M

e
rg

e
 A

tt
e
m

p
ts

profitable

unprofitable

0
.0

0

0
.0

5

0
.1

0

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

0
.9

9
9

Fingerprint Similarity

Fig. 6. Normalized fingerprint similarity histogram for function pairs selected
by HyFM, indicating whether the pairs are profitable or not. These pairs are
by definition nearest neighbors in the fingerprint space but they might still
be distant from each other. Profitable pairs are more common for similar
fingerprints but almost 10% of the profitable pairs have low similarity (< 0.5).

kernel versus the normalized similarity of their fingerprints.

The correlation between the two is low, around 21%. Finger-

prints only carry information about the frequency of different

instruction opcodes in the functions, ignoring important aspects,

such as the order these instructions appear in the function, their

data types, or their inputs. As a result, dissimilar functions

often have similar or even identical fingerprints. Conversely,

functions with enough similarity may have vastly different

fingerprints. Figure 5 shows such an example from the Linux

kernel. HyFM matches functions perf_trace_destroy

and fat_put_super because their fingerprint distance is

only one. The two functions have similar instruction frequencies

but their structure is so different that they cannot be merged

profitably. At the same time, perf_trace_destroy aligns

almost perfectly with function perf_kprobe_destroy but

they are never selected because the two extra instructions in

the second function lead to a fingerprint distance of two.

244

This does not just mean that HyFM often selects candidate

pairs that are unprofitable, it also means that speeding up

ranking with an approximate nearest neighbor approach will

have a further detrimental effect on the effectiveness of function

merging [9]. This is clear in Figure 6, which shows the

distribution of fingerprint similarities for the Linux function

pairs selected by HyFM through a nearest neighbor search.

While the majority of selected pairs have similar fingerprints,

selected pairs can be in very different areas of the fingerprint

space: 8% of them have a similarity less than 0.5, 25% a

similarity less than 0.7. These are not low quality merging

candidates. 8% to 10% of them are profitable, roughly the

same success rate as for similar (but not identical) fingerprints.

A faster approximate search that focuses in neighboring areas

of the fingerprint space would miss such distant profitable pairs

leading to code size increase.

Making function merging feasible for large codebases

requires us to solve these two problems together: reduce the

computational complexity of ranking and improve the quality

of the ranking metric. The rest of the paper examines how.

III. OUR APPROACH

In this section, we propose F3M (Fast Focused Function

Merging), an application of the MinHash and Locality Sensitive

Hashing techniques that can effectively pair functions at just-

above-linear speeds. Our solution has a three-fold effect: 1) A

better metric for estimating the similarity of two functions leads

to more profitable function merging; 2) Sufficiently dissimilar

functions are not even considered for merging; 3) Merging

candidate lookup times are reduced enough to be of little

concern anymore. We also discuss several design choices that

can be tuned to better suit the needs of the application.

A. Overview

In a pre-computational stage, we generate a MinHash

fingerprint for each function. The MinHash fingerprint is a

fixed-size integer vector containing multiple hashes computed

across all instructions of the function. Each hash is directly

produced by one instruction subsequence in the function’s body,

so identical hashes indicate identical instruction subsequences.

Based on the hashes in their fingerprints, we assign each

function to a number of buckets in a hashmap structure.

Functions in the same bucket have overlapping fingerprints, so

they are more likely to be similar to one another. We exploit this

by limiting function ranking (and full fingerprint comparison)

to candidate functions that share buckets. This reduces the

number of candidates that each function must be compared

against down to only a handful or even none.

The rest of the function merging process continues after that

in the same way it does in previous works [8]: we align the two

selected functions, we generate the code of the merged function,

and if it is profitable, we replace the selected functions with

the merged one. Function merging as a whole is applied after

all source files have been optimized for size (-Os) and their

IRs have been linked together.

F1

h1 h2 hk

...

MH Fingerprint

H1(x) ...H2(x) Hk(x)

...

Hashing & Minimizing

...

No Matching Shingles No Matching Hash

F2

Shingling

Fig. 7. The MinHash algorithm: Textual documents are broken up into
overlapping subsequences; Each subsequence is hashed with k different hash
functions; For each function, the smallest hash is saved creating a fingerprint
of k entries. In this example, two functions differ in only a couple extra
instructions inside F2. For F2’s fingerprint, this creates shingles and hashes
with no matches in F1, representing the slight difference between them.

B. MinHash Fingerprint

In Section II, we exposed the low correlation between the

existing similarity metric used for pairing functions and the

actual result of aligning the paired functions. A better metric

should be able to identify when two functions have instruction

subsequences that can be aligned. If we represent functions as

sets of such instruction subsequences, then the Jaccard index

perfectly captures this similarity. Formally, the Jaccard index

of two sets is the fraction between the number of intersecting

elements and the magnitude of their union:

J(A,B) =
| A ∩B |
| A ∪B | (1)

In the case of function similarity, the Jaccard index rep-

resents the likelihood of matching instruction subsequences.

Unfortunately, calculating the Jaccard index is linear on the size

of the sets so it cannot work as a practical function similarity

metric for moderately sized programs. Instead, we can rely on

MinHash [10], a popular technique for estimating the Jaccard

index in constant time. Figure 7 illustrates the generation

of the MinHash fingerprint. The central idea is to split the

text into a set of shingles, which are fixed-length overlapping

subsequences, and then to hash each shingle multiple times

using a different hash function each time. For each hash

function, we save the smallest value generated. Given a set of

k hash functions, this gives us a fingerprint of size k.

Each of the hashes in the fingerprint corresponds (roughly)

to a randomly selected shingle. When two fingerprints contain

the same hash value, this indicates a very high probability that

the corresponding texts include the same shingle. When two

hash values are different, this indicates a lower probability of

matching shingles. Over the whole length of the fingerprints,

the likelihood of identical hash values (the fingerprints’ Jaccard

index) is an approximation of the likelihood of identical

shingles (the texts’ Jaccard index) within an error of O(1/
√
k).

Applying MinHash directly on the function’s textual repre-

sentation can work but delivers suboptimal results. MinHash,

as described above, would produce identical hashes only for

100% identical instruction sequences. But for the purposes of

245

function merging, two shingles can be merged even if they are

not textually identical, for example if the instruction opcodes

are the same but their arguments differ. We need MinHash

to help us identify such shingle pairs which means producing

identical hashes for them despite their textual differences.

A straightforward way to achieve this is by applying

MinHash on a different representation of the function, ignoring

aspects of the function that are insignificant to the alignment

strategy. For this representation we translate each instruction

into a 32-bit integer that encodes the four most important

properties with regards to merging: opcode, result type, number

of operands, and operand types. Operand count is already

an integer and LLVM already associates an integer with

each opcode, so we can store these two numbers directly

in specific bits of the encoded instruction. Types are a bit more

complicated. We assign a unique number to each type, for

example, we can use the addresses of the unique pointers used

internally by LLVM for each type. For the combined type of

all the operands, we multiply all the numerical representations

of the operand types. We store this number into the remaining

bits of the encoded instruction. Despite its simplicity and

certain ad-hoc aspects of it, this scheme generally succeeds in

producing identical integer numbers for mergeable instructions

and different numbers for instructions that cannot merge.

Having transformed the sequence of instructions into a

sequence of integers, we split it into shingles of length K = 2.

We empirically found that this produces the best results: K > 2
leads to fewer hash matches and higher cost for generating

the hashes, while K = 1 works on individual instructions and

does not capture the function’s structure.

Finally, we hash the shingles, get the minimum for each hash

function, and produce the fingerprint. In our implementation, we

use for that purpose the FNV-1a variant of the Fowler–Noll–Vo

hash function [12]. We chose FNV-1a for its robustness to

permutations, computational efficiency, widespread use in

practice, and simple implementation but any well behaving

hash function should produce similar results. To reduce the

computational cost, instead of using k different variations of the

FNV-1a hash, we use a single function whose output for each

shingle is xor-ed with k different random values to produce k
different hashes. This has a very small effect on the quality of

the MinHash while making its generation many times faster.

Larger values for k give a better estimation of the Jaccard

index of the two functions but deliver diminishing returns

while increasing the effort required to compare fingerprints. In

practice, a value of k = 200 (the default for the rest of the

paper) achieves a good compromise as we see in Section IV.

C. Locality Sensitive Hashing

Comparing MinHash fingerprints requires calculating the

Jaccard Index of the two fingerprints (or its opposite, their

Jaccard distance). While this is usually faster than directly

calculating the Jaccard Index of two functions or even aligning

them, it is still an expensive operation if performed exhaustively

on all function pairs.

Hashmap

r

Fingerprint
MinHash Candidates

Pairing

Fig. 8. LSH - Similar sequences hashing to the same buckets. Three fingerprints
with 10 hashes each, setting b to 5 and r to 2. References to each item are
placed in each of their respective buckets. Since they share at least one of
their bands they will be compared during candidate lookup.

Luckily, MinHash works well with an approximate nearest

neighbor search strategy known as Locality Sensitive Hashing

(LSH). The underlying idea is to group together fingerprints

with overlapping hashes and limit the search to within these

groups. We associate each fingerprint with b groups by breaking

up the vector of integers representing the fingerprint into b
non-overlapping r-sized sub-vectors, where k = b∗r is the size

of the fingerprint. We then hash each sub-vector using FNV-1a

yielding b values. Similar fingerprints are likely to match on

at least one of these b values, known as bands. Conversely,

fingerprints with no matching bands are unlikely to contain

meaningful similarities. Hence, when searching for similar

items, only the ones which share at least one of these bands

needs to be compared against, eliminating the vast majority of

pairwise computations.

In practice, we implement this around a hashmap. For each

band, we insert the function into the corresponding hashmap

bucket. When we start merging, we iterate serially over all

functions to find a similar function for each. We do this by

getting that function’s bands and retrieving the other functions

placed in the same buckets. This principle can be seen in Figure

8. We then calculate the Jaccard distances of the function with

all its candidates, selecting the nearest one.

The values of b and r have a direct effect on the probability

that two items will share at least one of their bands. For the

same fingerprint size, increasing r and decreasing b lowers

the probability of matching bands, whereas decreasing r and

increasing b will make matching on at least one of their bands

much more likely. It only takes sharing one band for two items

to be fully compared. The probability that two items will share

at least one of those bands can be calculated as follows:

p = 1− (1− sr)b (2)

where s is the Jaccard similarity of the MinHashes of the two

items. As two fingerprints become more similar, the chances

of them being placed into the same bucket become larger.

Depending on the number of functions and the minimum

pairwise similarity that we aim for, b and r can be adjusted

appropriately to favor more bucket matches of less similar

246

0

5

10

15

20

25
%

 C
o
n
tr

ib
u
ti

o
n

Size Decrease

Time Overhead

0
.1

5

1
.0

0
.0

0

0
.0

5

0
.1

0

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

0
.9

9
9

MinHash Fingerprint Similarity

Fig. 9. Contribution of each function pair selected by F3M on Linux in terms
of merging time overhead and estimated size reduction. Results are grouped
by fingerprint similarity. Less similar pairs are responsible for most of the
time overhead but contribute little to code size reduction.

fingerprints at the cost of more fingerprint comparisons or,

conversely, fewer comparisons and faster ranking at the cost

of potentially missing a few highly similar fingerprints.

While most buckets have few or no functions, there are

outliers with a large number of functions. This is usually due

to very common instruction subsequences, causing the same

hash values to be generated for multiple functions, which lead

to the same bucket being selected time and time again. This

is a common occurrence, especially for larger programs and

smaller r values, though it only affects a very small number of

buckets. Still it may limit the efficiency of our approach, forcing

us to calculate the Jaccard similarity of each fingerprint with

thousands or tens of thousands of other fingerprints mapping

into the same bucket. For that reason, we limit the number of

fingerprint comparisons per bucket to 100. As we examine in

Section IV, this affects only a few buckets, allowing highly

similar functions to match through other, less crowded, buckets.

D. Adaptive Construction

Previous implementations of sequence alignment suffer from

having to align every selected pair of functions regardless of

how dissimilar the two functions may be. This is a direct

consequence of the inexact similarity metric: functions with

different fingerprints are still likely to be profitably merged

(see Figure 6) so we need to try merging them. In contrast,

Figure 9 shows the relative contributions in terms of code

size reduction and merging overhead of all the function pairs

selected by F3M when applied to Linux. These contributions

are accumulated by fingerprint similarity. This Figure indicates

both that less similar pairs of MinHash fingerprints are less

likely to lead to significant code size reduction and that these

pairs are responsible for most of the overhead of merging.

Merging them is often not worth the effort.

Despite that, we discovered (see Section IV-D) that there is

no global ideal cutoff point for rejecting dissimilar pairs. The

same cutoff point can cause us to reject many profitable pairs

for some applications while not rejecting enough unprofitable

pairs for others. While we cannot predict this ahead of time,

we can predict how each outcome would affect us. For smaller

programs, function merging is already fast so a few extra

unsuccessful merges will have little negative impact on the

overall compilation, while a few missed successful merges will

have a disproportionate effect on code size. Conversely, for

larger programs accelerating function merging is critical, while

skipping a few successful merges would have little effect given

the large number of merged functions.

We empirically found that programs with fewer than 5000

functions do not benefit from aggressive similarity thresholds.

A very conservative threshold of 0.05 is enough to catch the few

very dissimilar pairs that may be selected but almost definitely

will not be profitably merged. LSH by design already filters out

most of these pairs, so this low threshold has little effect. At

the other end, we found that functions with similarity over 0.4

are very likely to be profitable and are almost always worth our

effort, even when dealing with very large programs. Between

those two extremes, we need the threshold to rise gradually.

Based on these observations, we define our threshold t as:

t =











0.05 x <= 103.5

log10(x)−3.0
10 103.5 < x < 107

0.4 x >= 107
(3)

where x is the number of functions in the program.

As discussed earlier, the b and r sizes have a strong effect

on the efficiency of our searching strategy. According to

Equation 2, more bands means higher probability of two similar

fingerprints sharing a bucket (and thus a higher probability of

calculating their fingerprint similarity) but it also means more

buckets to examine when looking for matches. As we show

in Section IV-D, this creates a delicate trade-off between the

effectiveness of function merging at reducing code size and

the overhead it introduces.

Given that we already reject pairs with similarity below the

threshold, there is no benefit from discovering such pairs to

begin with, so we need values for k, r, and b that reflect that.

We use Equation 2 to connect the three values to the similarity

threshold under the following (relatively ad-hoc) restrictions:

a) r always equals 2, and b) we should have at least 90%

probability of discovering pairs with similarities slightly above

the threshold. This gives us the following equation:

b = ⌈ log(0.1)

log(1.0− (t+ 0.1)2)
⌉ (4)

Since this value is close to 100 for small programs with

less than 5k functions, we set it to exactly 100 for them. For

larger programs the number of bands decreases fast: 57 for

programs with 10k functions, 25 for 100k functions, 14 for 1m

functions. By reducing the number of bands (and with them

the fingerprint size) so aggressively, we are able to cut the

ranking overhead drastically while having a minimal impact

on the ability of F3M to discover profitable function pairs.

E. Code Generation

F3M’s core aim is to improve the selection of functions to

merge. This is mostly orthogonal to how they will be merged,

so in this work we reuse the code merging part of HyFM.

In the process of evaluating F3M, we found that the binaries

produced for some programs were broken. We traced the source

of the problem back to how HyFM (and SalSSA [6] before it)

247

resolves cases where the merged code violates the dominance

property of the SSA form. While most such violations are

resolved by inserting new phi-nodes, a small number of them

is resolved by breaking the use-def chains of variables via the

stack memory: HyFM stores them in memory directly after

definition and loads them back right before they are used.

In two cases where HyFM cannot store a variable right

after definition, this is handled incorrectly. In the first one, the

definition is a phi-node followed by other phi-nodes. HyFM

incorrectly saved the variable at the end of the block, while

still updating all its uses in that block to load the value from

memory. We fixed this by inserting the store in the first legal

point after the definition. In the second one, the definition is

an invoke instruction and its use is a phi-node in a succeeding

block.Since the invoke is a terminator, the first place we can

insert a store is in the succeeding block, after the phi-nodes

and the value’s use. Similarly, a load instruction can only be

placed in the block prior to the phi-node, before the terminator

instruction and before the value’s definition. Therefore, there is

no valid placing for the store-load pair. This is easily resolved

by just not inserting any instructions. The dominance property

was never violated in the first place as the invoke is guaranteed

to be defined as an incoming value for the phi-node.

While these bugs were seemingly minor, they caused

undefined behavior in the affected basic blocks. Some of

them were then mistakenly optimized away. HyFM attributed

this to function merging, causing it to erroneously report

higher code size reduction. After backporting the bug fixes

to HyFM, we measured their effect on the set of benchmarks

from Section IV. In total, 13 out of 40 benchmarks were

visibly affected. The worst cases were for 510.parest_r

(20% lower), 447.dealII (18% lower), and 444.namd

(8% lower). On average, this reduced the code size savings

from 8.5% to 7.2%. The rest of this paper uses the bug free

version of HyFM.

IV. EVALUATION

A. Experimental Setup

Our experimental system is a dedicated server with a quad-

core Intel Xeon CPU E5-2650 and 64GB of RAM. The OS is

Ubuntu 18.04. The compiler for all experiments is LLVM v14.

Timings were collected while the system was idle to reduce

noise. To increase our confidence in our results, we repeat each

experiment 10 times or for three hours, whichever is shorter.

We report the average and 95% confidence interval.

We evaluate our novel technique, F3M, against the state-of-

the-art function merging approach, HyFM [8], modified with

the bug fixes of Section III-E. Since the main focus of this work

is on reducing the cost of merging, both HyFM and F3M use

fast pairwise alignment. We evaluate two variants of F3M. The

static one uses the default k = 200, r = 2, b = 100, t = 0.0,

while the adaptive one chooses these parameters according to

the equations in Section III-D. Additionally, we examine the

effect of various design parameters: fingerprint size, number

of LSH rows, similarity threshold, and bucket size cap.

TABLE I
BENCHMARKS USED IN THE EVALUATION

Application NumFunctions Notes

SPEC CPU2006 19 to 19359 19 benchmarks

SPEC CPU2017 20 to 45682 16 benchmarks

GNU gcc cc1plus 35756 Based on version 11.2.0

Google Chrome 1239140 Cloned from official repo on 2021-08-10

Libreoffice 286390 Version 7.2.0. Combined most of the

∼250 dynamic libraries implementing its

functionality into a monolithic one

Linux kernel 45250 Sami Tolvanen’s LTO branch v5.11

LLVM clang 104204 v14 RelMinSize target

Table I lists the workloads used in our evaluation. They

include not only C/C++ benchmarks from SPEC CPU2006 and

SPEC CPU2017 but also code from real large applications. For

all of them, we compiled and linked all their source files to

a monolithic LLVM bitcode file. We can then apply function

merging and optimize the monolithic LLVM bitcode file in

a LTO fashion. In cases where low level code and/or name

conflicts made it impossible to link all bitcode files together,

we linked as many as possible, leaving the remaining code to

be compiled and linked separately.

For the experiments, we report the time needed for function

merging alone as well as the time needed to compile the

optimized bitcode down to the target object file, including all

further optimizations, object code generation, and linking. We

also report code size reduction for the generated object file.

Benchmarks, when appearing on the x-axis, are ordered by

number of functions. All baselines are built with LLVM v14

in full LTO mode without any function merging.

B. Similarity Metric and Code Size

Our approach aims to overcome the limitations of fingerprints

based on opcode frequency that are used in the existing function

merging techniques. The most fundamental limitation is the

low correlation between the similarity score computed from

the fingerprints versus the actual functions. In this section, we

examine how well MinHash fairs and how this translates into

more code size reduction.

Figure 10 shows the relationship between fingerprint simi-

larity and the alignment quality for the same 800m function

pairs from the Linux kernel as in Figure 4. We see that the two

variables are much more closely correlated, 61.6% vs 20%, 3x

higher. The relationship is not perfect though. There are 832

pairs with identical fingerprints and no alignment, as well as

142k pairs with no fingerprint overlap but perfect alignment.

The former might cause us to expend effort on the wrong pairs

but it is uncommon. The latter group could represent missed

merging opportunities but in closer inspection they cause no

problem. All of these functions contain only a single return of

different data types. Since we encode the data type into our

hashing scheme, our fingerprint similarity metric differentiates

these return instructions, while the sequence alignment treats

them as mergeable regardless of type. Given the overhead

needed to handle the different types, merging these function

pairs turns out to be unprofitable anyway.

248

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fingerprint similarity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Al

ig
nm

en
t

R: 0.6161

100

102

104

106

108

Fig. 10. Heatmap of MinHash similarity for all 800M possible candidate
function pairs in Linux versus their alignment ratio. Quality of alignment and
MinHash similarity show high correlation (R = 0.62).

For most pairs, however, our predicted similarities lead to

better merging decisions. On average, this means 20% more

successful merges and 19% fewer unsuccessful ones. For all

benchmarks, except 429.mcf which is very small, F3M pairs

functions that are more likely to be profitably merged.

Figure 11 shows how this translates into code size reduction.

Although F3M attempts to merge fewer pairs of functions by

filtering out dissimilar fingerprint pairs, its results are typically

better or similar to HyFM. The two povray-based benchmarks,

two of the gcc-based benchmarks, and libquantum are the

only ones with a statistically significant size increase for F3M

relative to HyFM, typically 0.5% to 1.0%. All other benchmarks

end up smaller by up to 3.8% (638.imagick_s), 0.4% on

average. This represents a clear improvement on code size

reduction from 7.2% to 7.6%.

F3M-adapt achieves similar results in terms of code size

reduction. In most cases, the difference from F3M is not

statistically significant. On average, the adaptive approach

achieves almost the same code size reduction despite aggres-

sively reducing the function merging overhead as we see below.

C. Function Merging Overhead

In this section, we demonstrate how F3M significantly

reduces compilation time for large programs, from days to

hours, while still producing smaller object files. Figure 12

shows the normalized compilation time across the whole

benchmark suite. It includes the time for the back-end compi-

lation pipeline, starting from the function merging pass on the

fully linked bitcode and ending with the final object file. We

measure the impact on the whole compilation pipeline because

reducing code size has knock-on effects: reducing the number

of functions tends to reduce the amount of work for subsequent

compilation passes, but only as long as the merged functions

are not too complex to process. So, we cannot fully understand

the trade-off between merging overhead and size reduction

without examining the compilation process as a whole.

It is immediately apparent how HyFM becomes impractical

for large real-world programs. While it has a negligible compile-

time overhead for most small programs, it takes over 46 hours to

compile the Chrome web browser, 27.6x slower than the default

LTO build without any function merging. However, compiling

Chrome with F3M takes only 124 minutes, a speedup of 23x

over HyFM, representing an overhead of 23% over the baseline.

Our adaptive variant improves this even further. By reducing the

number of bands to just 13 and raising the similarity threshold

to 0.31, it makes compilation as fast as no function merging.

We get similar results for all other large programs. The

cutoff point seems to be 620.omnetpp_s. Larger programs

(> 9k functions) are always compiled faster with F3M than

with HyFM, on average 26% faster with the static version and

30% faster with the adaptive version. For smaller programs,

HyFM and F3M achieve similar compilation times, with F3M

1.8% faster and F3M-adapt 2.2% faster. The only significant

outlier is 508.namd_r for which F3M is 18-21% slower.

To help us better understand why, Figure 13 shows how the

processing time of the function merging pass is distributed

across its various stages. All bars are normalized to the total

time of the HyFM pass for each benchmark. For smaller

programs, the short compilation time is dominated by code

generation. By using a MinHash fingerprint, we increase

the preprocessing cost, as well as the cost of calculating

fingerprint similarity during ranking. Using an LSH-based

ranking mechanism instead of an exhaustive search reduces

that cost but given the small number of functions, this has

only a limited effect. In most cases, the small differences

in function merging time are dwarfed by the longer time

required by the rest of the compilation pipeline. The outlier

from Figure 12, 508.namd_r, shows a different behavior.

Ranking and preprocessing times are similar for all approaches

but using MinHash allows us to merge successfully 14% more

functions, which translates into 14% more code size reduction

and 42% higher code generation time.

For larger programs, Figure 13 shows that the function

merging overhead is mostly ranking. By switching to an LSH-

based search, we are able to eliminate increasingly more and

more of the cost of function merging. At its most extreme, for

Chrome, we reduce the function merging overhead by 98.9%

making merging 94x faster. With the adaptive version, we

further increase the speedup to a remarkable 597x.

A secondary effect on the compilation time comes from

reducing the time spent generating code. This is a result of

F3M filtering out merging attempts where two functions have

almost no similarity. Unlike HyFM which will pair all functions

with another function candidate, F3M pairing depends on the

hashing scheme and their predicted similarity. The adaptive

similarity threshold has a direct effect on that but, even without

it, dissimilar pairs might be missed by the LSH-based search,

reducing the code generation workload. We observe this on

458.sjeng where code generation time is reduced by 25%

for the static variant, with the code generation time spent

249

4
7
0
.l
b
m

6
1
9
.l
b
m

_
s

4
2
9
.m

c
f

6
0
5
.m

c
f_

s
4
0
1
.b

z
ip

2
4
6
2
.l
ib

q
u
a
n
tu

m
6
3
1
.d

e
e
p
s
je

n
g
_
s

4
4
4
.n

a
m

d
4
5
8
.s

je
n
g

4
7
3
.a

s
ta

r
5
0
8
.n

a
m

d
_
r

4
3
3
.m

il
c

6
4
4
.n

a
b
_
s

4
8
2
.s

p
h
in

x
3

6
5
7
.x

z
_
s

4
5
6
.h

m
m

e
r

4
6
4
.h

2
6
4
re

f
6
2
5
.x

2
6
4
_
s

6
4
1
.l
e
e
la

_
s

4
5
0
.s

o
p
le

x
4
7
1
.o

m
n
e
tp

p
4
0
0
.p

e
rl

b
e
n
c
h

5
1
1
.p

o
v
ra

y
_
r

4
5
3
.p

o
v
ra

y
6
3
8
.i
m

a
g
ic

k
_
s

4
4
5
.g

o
b
m

k
6
0
0
.p

e
rl

b
e
n
c
h
_
s

4
0
3
.g

c
c

6
2
0
.o

m
n
e
tp

p
_
s

4
4
7
.d

e
a
lI
I

4
8
3
.x

a
la

n
c
b
m

k
6
0
2
.g

c
c
_
s

6
2
3
.x

a
la

n
c
b
m

k
_
s

5
1
0
.p

a
re

s
t_

r
c
c
1
p
lu

s
li
n
u
x

5
2
6
.b

le
n
d
e
r_

r
ll
v
m

li
b
re

o
ff

ic
e

c
h
ro

m
e

G
M

e
a
n

0

10

20

30
R

e
d
u
c
ti

o
n
 (

%
)

7
.2

7
.6

7
.5

HyFM

F3M

F3M-adapt

Fig. 11. Linked object file size reduction for HyFM and F3M. Benchmarks are sorted by number of functions. F3M achieves significant code size reduction
even while attempting to merge fewer functions.

4
7

0
.l
b
m

6
1

9
.l
b
m

_
s

4
2

9
.m

c
f

6
0

5
.m

c
f_

s
4

0
1

.b
z
ip

2
4

6
2

.l
ib

q
u
a
n
tu

m
6

3
1

.d
e
e
p
s
je

n
g
_
s

4
4

4
.n

a
m

d
4

5
8

.s
je

n
g

4
7

3
.a

s
ta

r
5

0
8

.n
a
m

d
_
r

4
3

3
.m

il
c

6
4

4
.n

a
b
_
s

4
8

2
.s

p
h
in

x
3

6
5

7
.x

z
_
s

4
5

6
.h

m
m

e
r

4
6

4
.h

2
6

4
re

f
6

2
5

.x
2

6
4

_
s

6
4

1
.l
e
e
la

_
s

4
5

0
.s

o
p
le

x
4

7
1

.o
m

n
e
tp

p
4

0
0

.p
e
rl

b
e
n
c
h

5
1

1
.p

o
v
ra

y
_
r

4
5

3
.p

o
v
ra

y
6

3
8

.i
m

a
g
ic

k
_
s

4
4

5
.g

o
b
m

k
6

0
0

.p
e
rl

b
e
n
c
h
_
s

4
0

3
.g

c
c

6
2

0
.o

m
n
e
tp

p
_
s

4
4

7
.d

e
a
lI
I

4
8

3
.x

a
la

n
c
b
m

k
6

0
2

.g
c
c
_
s

6
2

3
.x

a
la

n
c
b
m

k
_
s

5
1

0
.p

a
re

s
t_

r
c
c
1

p
lu

s
li
n
u
x

5
2

6
.b

le
n
d
e
r_

r
ll
v
m

li
b
re

o
ff

ic
e

c
h
ro

m
e

G
M

e
a
n

25

0

25

50

75

C
o
m

p
il
e
-t

im
e

In
c
re

a
s
e
 (

%
)

9
.0

-3
.3

-5
.6

HyFM

F3M

F3M-adapt

110
338

2761

Fig. 12. Compile time overhead for the overall compilation process. F3M behaves similarly to HyFM for smaller programs. It occasionally increases compilation
time due to the increased preprocessing costs and numbers of successful merge operations. For larger programs, compilation under F3M becomes much faster.

on unprofitable pairs going from 235ms to 168ms (while also

increasing the time spent on profitable pairs from 5ms to 12ms).

The adaptive approach brings that further down to 142ms.

D. LSH parameters

As discussed in Section III-D, similarity thresholds work by

filtering out candidates with low similarity scores to avoid

wasteful merging attempts. Figure 14 shows the average

reduction of compilation time and the average increase of

object file size for a range of thresholds, across all benchmarks

except for the three largest ones. The percentages are relative

to t = 0.0 for each benchmark. We also show the average of

an oracle policy that tailors the threshold to each benchmark

individually. If we want to minimize compilation time while

limiting the average missed code size reduction below 0.1%, the

ideal threshold is t = 0.1 which reduces compilation time by

an average of about 1.5%. But if we choose the ideal threshold

for each benchmark individually, the picture is different: ten

benchmarks require t = 0.4, t = 0.3 for four, t = 0.2 for

three, t = 0.1 for eight. For the remaining 12 any threshold

higher or equal to 0.1 will have a negative impact on code

size. An oracle policy would be able to aggressively reduce

the compilation time for 15 benchmark, raising the reduction

of compilation time to 2.3%. This indicates how an adaptive

approach could significantly reduce compilation time with a

negligible impact on code size reduction.

A similar trade-off affects the fingerprint size k, the number

of rows r, and the number of bands b. Our default parameters

of k = 200, r = 2, and b = 100 favor code size reduction.

Figure 15 presents a detailed exploration of this trade-off space,

demonstrating how varying fingerprint sizes and number of

250

4
7
0
.l
b
m

6
1
9
.l
b
m
_
s

4
2
9
.m

c
f

6
0
5
.m

c
f_
s

4
0
1
.b
z
ip
2

4
6
2
.l
ib
q
u
a
n
tu
m

6
3
1
.d
e
e
p
s
je
n
g
_
s

4
4
4
.n
a
m
d

4
5
8
.s
je
n
g

4
7
3
.a
s
ta
r

5
0
8
.n
a
m
d
_
r

4
3
3
.m

il
c

6
4
4
.n
a
b
_
s

4
8
2
.s
p
h
in
x
3

6
5
7
.x
z
_
s

4
5
6
.h
m
m
e
r

4
6
4
.h
2
6
4
re
f

6
2
5
.x
2
6
4
_
s

6
4
1
.l
e
e
la
_
s

4
5
0
.s
o
p
le
x

4
7
1
.o
m
n
e
tp
p

4
0
0
.p
e
rl
b
e
n
c
h

5
1
1
.p
o
v
ra
y
_
r

4
5
3
.p
o
v
ra
y

6
3
8
.i
m
a
g
ic
k
_
s

4
4
5
.g
o
b
m
k

6
0
0
.p
e
rl
b
e
n
c
h
_
s

4
0
3
.g
c
c

6
2
0
.o
m
n
e
tp
p
_
s

4
4
7
.d
e
a
lI
I

4
8
3
.x
a
la
n
c
b
m
k

6
0
2
.g
c
c
_
s

6
2
3
.x
a
la
n
c
b
m
k
_
s

5
1
0
.p
a
re
s
t_
r

c
c
1
p
lu
s

li
n
u
x

5
2
6
.b
le
n
d
e
r_
r

ll
v
m

li
b
re
o
ff
ic
e

c
h
ro
m
e

0.0

0.5

1.0

1.5

M
e
rg
in
g

B
re
a
k
d
o
w
n

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

H
y
F
M

F
3
M

F
3
M
-a
d
a
p
t

Preprocess

Ranking

Alignment

Code-Gen

Fig. 13. Breakdown of the function merging cost for HyFM, F3M, and F3M-adapt.

th
r=

0
.1

th
r=

0
.2

th
r=

0
.3

th
r=

0
.4

o
ra

c
le

0

1

2

3

4

%
 C

h
a
n
g
e

R
e
la

ti
v
e
 T

o
 t

=
0

.0

% Size Increase

% Comp. Time Reduction

Fig. 14. Average compilation time and object file size vs similarity threshold
over all benchmarks except llvm, libreoffice, and chrome. Values are normalized
to the default configuration of t = 0.0. The oracle selects the threshold for
each benchmark individually with the aim of keeping the loss of code size
reduction below 0.1%

25 50 100 200 400

fingerprint_size

1

2

4

8

L
S
H

 R
o
w

s

1.004

1.008

1.026

1.036

1.002

1.005

1.024

1.034

1.000

1.002

1.018

1.031

1.000

1.000

1.012

1.027

0.999

1.001

1.009

1.025

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035Object File Size

25 50 100 200 400

fingerprint_size

1

2

4

8

L
S
H

 R
o
w

s

0.977

0.972

0.941

0.935

0.993

0.975

0.946

0.934

1.011

0.985

0.942

0.937

1.048

1.000

0.957

0.940

1.114

1.028

0.967

0.938

0.950

0.975

1.000

1.025

1.050

1.075

1.100
Compilation Time

Fig. 15. Average compilation time and object file size vs fingerprint size
and number of LSH rows over all benchmarks except llvm, libreoffice, and
chrome. Values are normalized to the default configuration of k = 200 and
r = 2. Ranking quality is not affected heavily by fingerprint size. In contrast,
increasing the number of rows above 2 has a strong negative effect.

LSH rows impact on both compilation time and code size. In

general, as the number of rows increases, compilation time

drops rapidly but at the cost of increasing code size. For r = 8
much of the code size reduction of F3M is lost. But decreasing

the rows to 1 provides only limited size reduction. Decreasing

the fingerprint size has a similar effect but more gradual. While

both parameters can be used to control the trade-off between

compilation overhead and size, the fingerprint offers more fine-

grained control and reducing its size also reduces the memory

requirements of F3M as a side-effect. This is why the adaptive

policy always uses r = 2 and controls k and b.
Again, this trade-off is not the same for all programs. As the

number of functions increases, the contribution of F3M ranking

increases in a superlinear way, so it becomes increasingly

beneficial to reduce the fingerprint size. Going from k = 200
to k = 25, reduces the average compilation time by 1.2% for

small benchmarks (100-1k functions), by 4.3% for medium

sized benchmarks (1k-10k functions), and by 6.2% for large

benchmarks (10k-100k functions). The effect on object file size

is similar for all of them, 0.2% to 2%. Similarly to the threshold

discussion, this is why an adaptive policy that changes the

LSH parameters based on the number of functions outperforms

any static configuration.

E. Bucket Search Cap

As mentioned in Section III-C, some buckets can become

over-populated and for that reason we cap the number of

fingerprint comparisons per bucket to 100. This happens very

infrequently. Even for a large program like Linux, with more

than 45k functions, our results show that over-populated buckets

(population >= 128) are extremely uncommon, less than

0.03% of the total and their contribution to the search process

is relatively small. But because the cost of searching within

each bucket is quadratic on the number of bucket entries, large

buckets dominate the search process’ runtime: approximately

75% of the fingerprint comparisons happen in that tiny group

of overpopulated buckets.

Figure 16 shows the effect of applying a cap on the number of

fingerprint comparisons per bucket when using F3M on Linux.

It confirms that a cap of 100 has no statistically significant

effect on the output of F3M while at the same time reducing

the overall compilation time by 4%. It also shows that this

is a conservative choice. Even a cap of two would have no

251

c
a
p
=

1

c
a
p
=

2

c
a
p
=

3

c
a
p
=

6

c
a
p
=

1
0

c
a
p
=

1
8

c
a
p
=

3
2

c
a
p
=

5
6

c
a
p
=

1
0

0

c
a
p
=

1
7

8

c
a
p
=

3
1

6

c
a
p
=

5
6

2

c
a
p
=

1
0

0
0

0

2

4

6

8
R

e
d
u
c
ti

o
n
 %

R
e
la

ti
v
e
 T

o
 N

o
 C

a
p

Obj. Size

Comp. Time

Fig. 16. Effect on compilation time and object file size of varying the bucket
search cap on Linux. Capping the maximum number of fingerprint comparisons
per bucket to 100 has no negative impact on the effectiveness of function
merging. For Linux, anything above cap = 1 is acceptable.

6
0

5
.m

c
f_

s

4
6

2
.l
ib

q
u
a
n
tu

m

6
3

1
.d

e
e
p
s
je

n
g
_
s

4
4

4
.n

a
m

d

4
5

8
.s

je
n
g

4
7

3
.a

s
ta

r

4
3

3
.m

il
c

6
4

4
.n

a
b
_
s

4
6

4
.h

2
6

4
re

f

6
2

5
.x

2
6

4
_
s

6
4

1
.l
e
e
la

_
s

4
5

0
.s

o
p
le

x

5
1

1
.p

o
v
ra

y
_
r

4
5

3
.p

o
v
ra

y

4
4

5
.g

o
b
m

k

6
0

0
.p

e
rl

b
e
n
c
h
_
s

6
2

0
.o

m
n
e
tp

p
_
s

4
4

7
.d

e
a
lI
I

4
8

3
.x

a
la

n
c
b
m

k

6
0

2
.g

c
c
_
s

6
2

3
.x

a
la

n
c
b
m

k
_
s

5
1

0
.p

a
re

s
t_

r

5
2

6
.b

le
n
d
e
r_

r

G
M

e
a
n

0

10

20

R
u
n
 t

im
e

In
c
re

a
s
e
 (

%
)

3
.9

4
.1 5
.0

HyFM
F3M
F3M-adapt

Fig. 17. Effect of function merging on the execution time of SPEC benchmarks.
Benchmarks for which no technique is statistically likely to affect runtime
relative to the baseline (Student t-test with p > 5%) are excluded.

negative effect. This is connected to the distribution shown in

Figure 9. Most matches (and definitely the ones that contribute

the most) are highly similar. Because of that they are likely to

map together into multiple buckets. Even if the cap filters out

some of those shared buckets, they should still have enough

overlapping buckets for the search process to match them. So,

applying even an aggressively low cap should have little effect

on function merging effectiveness.

F. Impact on Program Performance

As previous work has also shown [6], [7], function merging

can have a negative impact on program performance. Merging

two functions, especially two with significant differences,

requires extra code and extra control flow. If this merged

function is frequently used at runtime, the code overhead will

manifest as performance overhead.

Figure 17 shows this effect on 23 of the SPEC benchmarks.

For the remaining 12, no function merging technique affected

performance. For this set of benchmarks, the average slowdown

ranges from 3.9% to 5%. For most benchmarks, the slowdown

is relatively small, below 5%, though, for five it can reach over

10%. The amount of slowdown is rather random. Benchmarks

where F3M achieves more code size reduction than HyFM,

show little impact on runtime performance. For 462.libquantum,

where F3M causes the most significant slowdown relative to

HyFM, F3M actually merges fewer functions. This is because

whether the merged code causes slowdown depends on whether

that code is executed. Neither function merging technique takes

this into account. They may merge a function with a frequently

used function, even if another similarly good and rarely used

candidate exists. A more performance-aware implementation of

function merging would use profiling information to influence

candidate selection towards infrequently used functions. This

would eliminate all or almost all performance overhead.

V. RELATED WORK

Compilers have tackled code size by replacing a code

segment with another smaller but semantically-equivalent code

segment [13], [14], deleting unnecessary code [15], [16],

combining redundant code within a function [17], [18]. Merging

equivalent code for code size reduction has been explored in

several different forms [5]–[8], [19], [20]. Linkers merge text-

identical functions at the bit level [21], [22]. However, this

optimization is platform-specific and need to be adapted for

each object code format and hardware architecture.

Established compilers, such as GCC and LLVM, also

provide a target-independent optimization for merging identical

functions at the IR level [3], [4]. Merging only identical

functions allows for an efficient exploration based on a hashing

strategy, since identical functions have identical hashes.

More recently, we have seen a progress towards merging

non-identical functions [5], [6]. Rocha et al. [6] proposed

a technique capable of merging arbitrary pairs of functions

in order to reduce code size. Their technique employs a

sequence alignment algorithm to find equivalent code segments.

Functions with enough similarity are merged in a way that

their equivalent code is reused between them. Mismatching

code segments of code are also added to the merged function

but have their code guarded by a function identifier. They

later propose a better code generator that enables the function

merging operation to effectively support the SSA form [7].

More recently, they have proposed HyFM, where they avoid the

quadratic aspect of the alignment operation in two folds: first,

HyFM works on the basic block level, reducing the granularity

of the inputs for the alignment algorithm in practice; second,

it employs a simpler linear alignment strategy.

VI. CONCLUSION

In this paper, we have proposed a hash-based fingerprint to

summarize functions. The hash-based representation allows us

to compare the similarity score only among functions that share

some of their hash values, immediately excluding most of the

unprofitable candidates. This avoids the quadratic aspect of

the search strategy employed by the state-of-the-art, resulting

in significant speedups. For large real-world programs, such

as Google Chrome, we reduce compilation time from almost

two days to around two hours, a massive 23x speedup without

sacrificing code size reduction. Our adaptive approach increases

the speedup to 27x making compilation as fast as without

function merging.

For future work, we envisage further improvements that can

be achieved by integrating function merging to a summary-

based link-time optimization framework, such as ThinLTO

in LLVM. We also plan to analyze the interaction between

function merging and other optimizations such as inlining,

outlining, and code splitting.

252

REFERENCES

[1] Google, “Create and set up your app - play console help,” https://perma.
cc/RC9M-APDD, 2021, accessed: 2021-08-10.

[2] Apple, “Maximum build file sizes - app store connect help,” https:
//perma.cc/3T75-CFG5, 2021, accessed: 2021-08-10.

[3] “The LLVM Compiler Infrastructure. MergeFunctions pass, how it works,”
http://llvm.org/docs/MergeFunctions.html, 2020.

[4] M. Liška, “Optimizing large applications,” arXiv preprint

arXiv:1403.6997, 2014.
[5] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and A. Dasgupta,

“Exploiting function similarity for code size reduction,” in Proceedings

of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers

and Tools for Embedded Systems, ser. LCTES ’14. New York, NY,
USA: ACM, 2014, pp. 85–94.

[6] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Function merging by sequence alignment,” in Proceedings of the

2019 IEEE/ACM International Symposium on Code Generation and

Optimization, ser. CGO 2019. Piscataway, NJ, USA: IEEE Press, 2019,
pp. 149–163.

[7] ——, “Effective function merging in the ssa form,” in Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 854–868.

[8] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, K. Hazelwood,
and H. Leather, “Hyfm: Function merging for free,” in 22nd ACM

SIGPLAN/SIGBED International Conference on Languages, Compilers,

and Tools for Embedded Systems: Co-located with PLDI 2021, 2021.
[9] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions,” Commun. ACM,
vol. 51, no. 1, p. 117–122, Jan. 2008. [Online]. Available:
https://doi.org/10.1145/1327452.1327494

[10] A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.

No. 97TB100171). IEEE, 1997, pp. 21–29.
[11] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive

hashing scheme based on p-stable distributions,” in Proceedings of the

[21] S. Tallam, C. Coutant, I. L. Taylor, X. D. Li, and C. Demetriou, “Safe
ICF: Pointer safe and unwinding aware identical code folding in gold,”
in GCC Developers Summit, 2010.

twentieth annual symposium on Computational geometry, 2004, pp. 253–
262.

[12] L. C. Noll, “Fowler / noll / vo (fnv) hash,” http://www.isthe.com/chongo/
tech/comp/fnv/index.html, 2001, accessed: 2021-08-24.

[13] H. Massalin, “Superoptimizer: A look at the smallest program,” in
Proceedings of the Second International Conference on Architectual

Support for Programming Languages and Operating Systems, ser.
ASPLOS II. Los Alamitos, CA, USA: IEEE Computer Society Press,
1987, pp. 122–126.

[14] A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson, “Using peephole
optimization on intermediate code,” ACM Trans. Program. Lang. Syst.,
vol. 4, no. 1, pp. 21–36, Jan. 1982.

[15] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for
reduced code space using genetic algorithms,” in Proceedings of the

ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools

for Embedded Systems, ser. LCTES ’99. New York, NY, USA: ACM,
1999, pp. 1–9.

[16] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code elimination,” in
Proceedings of the ACM SIGPLAN 1994 Conference on Programming

Language Design and Implementation, ser. PLDI ’94. New York, NY,
USA: ACM, 1994, pp. 147–158.

[17] J. Cocke, “Global common subexpression elimination,” in Proceedings

of a Symposium on Compiler Optimization. New York, NY, USA: ACM,
1970, pp. 20–24.

[18] W. K. Chen, B. Li, and R. Gupta, “Code compaction of matching single-
entry multiple-exit regions,” in Static Analysis, R. Cousot, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 401–417.

[19] G. Lóki, Á. Kiss, J. Jász, and Á. Beszédes, “Code factoring in GCC,”
in Proceedings of the 2004 GCC Developers’ Summit, 2004, pp. 79–84.

[20] M. Chabbi, J. Lin, and R. Barik, “An experience with code-size
optimization for production iOS mobile applications,” in IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).
US: IEEE Press, 2021, pp. 1–12.

[22] D. Kwan, J. Yu, and B. Janakiraman, “Google’s C/C++ toolchain for
smart handheld devices,” in Proceedings of Technical Program of 2012

VLSI Technology, System and Application, April 2012, pp. 1–4.

253

https://perma.cc/RC9M-APDD
https://perma.cc/RC9M-APDD
https://perma.cc/3T75-CFG5
https://perma.cc/3T75-CFG5
https://doi.org/10.1145/1327452.1327494
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html

	Introduction
	Background and Motivation
	Function Merging via Sequence Alignment
	Limitations of the State of the Art

	Our Approach
	Overview
	MinHash Fingerprint
	Locality Sensitive Hashing
	Adaptive Construction
	Code Generation

	Evaluation
	Experimental Setup
	Similarity Metric and Code Size
	Function Merging Overhead
	LSH parameters
	Bucket Search Cap
	Impact on Program Performance

	Related Work
	Conclusion
	References

