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Abstract—We present TIARA, a novel approach to recovering
container classes in C++ binaries. Given a variable address in
a C++ binary, TIARA first applies a new type-relevant slicing
algorithm incorporated with a decay function, TSLICE, to obtain
an inter-procedural forward slice of instructions expressed as a
CFG to summarize how the variable is used in the binary (as our
primary contribution). TIARA then makes use of a GCN (Graph
Convolutional Network) to learn and predict the container type
for the variable (as our secondary contribution). According to our
evaluation, TIARA can advance the state of the art in inferring
commonly used container types in a set of eight large real-world
COTS C++ binaries efficiently (in terms of the overall analysis
time) and effectively (in terms of precision, recall and F1 score).

Index Terms—Binary Code Analysis, Type Inference, Contain-
ers, Template Classes

I. INTRODUCTION

Binary type inference aims to recognize typed variables
from untyped memory locations in binary executables [1]. This
has many applications, such as binary code reuse [2], [3],
reverse engineering [4], [5], vulnerability detection [4], [6],
and memory forensics [7]. For most COTS binaries, neither
source code nor debugging information is available. With bi-
nary type inference, it is possible, albeit extremely challenging,
to recover semantic information from their binaries.

Problem Statement. We address the problem of recovering
the container class type of a given variable address in a
C++ binary statically. For C++ programs, the C++ STL
provides a set of template classes for implementing standard
data structures such as linked lists, vectors, and maps. C++
templates support compile-time polymorphism instead of run-
time polymorphism, enabling C++ programs to reuse tem-
plate classes without the overhead of run-time performance
(incurred for resolving virtual functions). As a result, templates
are widely used in implementing container classes in modern
C++ programs [8]. Discovering container classes in binaries
leads to better understanding of C++ executables.

Prior Work. To the best of our knowledge, there is no
prior work on recovering container classes in C++ binaries
statically. Some past efforts identify certain data structures
in C/C++ binaries dynamically [9]–[12]. Some other past
efforts infer ordinary classes in C++ binaries statically [13]–
[19], but they are inapplicable in our setting, since they rely
on their virtual function tables (for polymorphic classes),
their member functions, the “this” pointer, and their data

The last two authors are the corresponding authors of this paper.

l.push_back(10);
00071164  mov  esi,dword ptr [l (074004h)]
0007116A  lea  eax,[argn]  

...
00071179  call std::_List_buy<int>::_Buynode<int>(

...
00071192 call dword ptr [_Xlength_error (073034h)] 
00071198  inc ecx

v.push_back(20);
00071199  mov  daword ptr [ebp+8],14h  

l.push_back(10);
000711A0  mov  dword ptr ds:[74408h],ecx

...
000711AC  mov  dword ptr [eax],edx

v.push_back(20);
000711AE  lea  eax,[ebp+8]

...

std::list<int> l;
std::vector<int> v;
l.push_back(10);
v.push_back(20);

Fig. 1. The disassembled code for the code snippet given.

sizes. OOANALYZER [20], which solves a different type
inference problem for C++ binaries, distinguishes different
ordinary classes by solving constraints in terms of code
usage patterns. In the presence of container classes, which
have different type-dependent instantiations, OOANALYZER
can only discover that these instantiations represent different
but unknown classes, but TIARA recognize, for example,
which are std::list and which are std::vector. For
C binaries, DEBIN [21] represents the state of the art, but it
focuses on identifying primitive types (by applying machine
learning techniques). As for compound types, DEBIN can only
classify all different types of structs as one non-primitive type.

Challenges. There are several challenges in inferring container
classes in C++ binaries statically. First, C++ containers em-
brace compile-time polymorphism (without resorting to virtual
member functions). Therefore, it is not possible to identify
container classes by looking for their virtual function tables
(VFTs) in binaries, as is done for polymorphic classes [14],
[17]. Second, the C++ compiler often applies function in-
lining to improve performance. This has two consequences:
(1) multiple copies of a member function may co-exist in
the binary, and (2) the instructions of the functions from
different container classes may be interleaved. In Figure 1,
l.push_back() and v.push_back() are inlined, with
their inlined code sequences mixed together. Therefore, it is
difficult to identify container classes based on their member
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Table 1: The process of slicing for the given std::list variable l in figure ??. Instructions with gray
background are identified as dependent on l.

I Disassembly Tracing Rules Faith Dep

I0 mov esi,dword ptr [v0(074404h)] esi 7→ {(ref, 0)} [Mov-riv] 1 T




Add a new
node and
link it to
the list

I1 lea eax, [argn] [Mov-rv-kill] 0.999 F
I2 push eax S[0] 7→ {} [Stk-Push] 0.994 F
I3 mov dword ptr [argn], 0ah [Mov-rc];[Mov-sr] 0.993 F
I4 push dword ptr [esi+4] S[1] 7→ {(other, ∗)} [Mov-ri];[Stk-Push] 0.983 T
I5 push esi S[2] 7→ {(ref, 0)} [Stk-Push] 0.978 T
I6 call List buy:: Buynode [Stk-Push] 0.218 T
I7 mov ecx, dword ptr ds:[v0+4] ecx 7→ {(ref, 4)} [Mov-rv] 0.217 T





Increase
the list
size by 1

I8 mov edx, eax [Move-rr] 0.216 F
I9 sub ebx, ecx ebx 7→ {(other, ∗)} [Op-rr] 0.215 T
I10 cmp ebx, 1 Use of ebx [Use-dep] 0.214 T
I11 jae main+128h (I14) 0.213 F
I12 push offset string. . . [Mov-rc];[Stk-Push] 0.208 F
I13 call Xlength error [Stk-Push] 0 F
I14 inc ecx ecx 7→ {(other, ∗)} [Op-rc] 0.213 T
I15 mov dword ptr [ebp+8], 14h [Mov-rc];[Mov-sr] 0.212 F
I16 mov dword ptr ds:[v0+4], ecx [Mov-rv];[Mov-dr] 0.211 T
I17 mov dword ptr [esi+4], edx [Mov-dr] 0.201 T





Link the
list to the
new node
added

I18 mov eax, dword ptr [edx+4] [Mov-ri] 0.191 F
I19 mov dword ptr [eax], edx 0.181 F
I20 lea eax, [ebp+8] [Mov-riv-kill] 0.180 F
. . . . . .
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(a) Type-relevant slicing (other is an unknown v0-dependent value)
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(b) Type classification

Fig. 2. An example illustrating how TIARA predicts the container type of an address v0, which is actually the address of variable l of type std::list in
Figure 1. The instructions in gray are translated from l.push_back(10) and the remaining ones from v.push_back(20) in Figure 1. The instructions
marked with a T in (a), i.e., those in (b) are in the slice of v0 found.

functions and the “this” pointer, as for polymorphic classes
[15]. Third, for a variable of a container type T , the data
size of T depends on its type parameters. If T is T∗ instead,
the data size of T∗ is fixed but no size information about T is
revealed. Thus, it is also difficult to identify the container type
of a variable from its data size. Finally, for large COTS C++
binaries such as clang (57MB stripped) containing more than
100K variable addresses, how to infer their container classes
efficiently and accurately is non-trivial.

Our Solution. We present TIARA, a novel approach to recov-
ering the container types of the variables in stripped COTS
C++ binaries statically. Our key insight is that variables of
different container types exhibit different behaviors in terms
of how they are used. For example, std::vector and
std::list share an identically-named member function,
push_back(), but the former performs heap reallocation
(via malloc() and free()) internally while the latter
performs only allocation (via malloc()). Thus, the variables
of these two types can be identified by exploiting such use-
related features.

Therefore, TIARA infers the container type of an address
representing a variable in a binary in two stages. In the first
stage (as our primary contribution), we apply a new type-
relevant slicing algorithm incorporated with a decay function,
TSLICE, to obtain an inter-procedural forward slice of instruc-
tions context-sensitively, expressed as a CFG to summarize
how the variable is used. For large binary programs, traditional
slicing algorithms are unscalable or “very imprecise, often
including essentially the entire program” [22]. Thus, TSLICE is
designed to find a small yet relevant slice to capture where and
how the variable is used both efficiently (0.2 seconds per slice,
on average) and effectively (with 50 instructions per slice, on
average, that are sufficient to identify its container type in most
cases). In the second stage (as our secondary contribution), we
make use of a GCN (Graph Convolutional Network) [23], [24]

to predict the container type for the given variable (based on
a learned classifier).
Contributions. TIARA (https://sites.google.com/view/
tiara-tool) represents a general-purpose approach to recovering
the container classes in C++ binaries statically. TIARA is
expected to provide benefits for many other binary type
inference tasks mentioned earlier.

1) We present TIARA, a novel type inference approach to
recovering container types in COTS C++ binaries.

2) We offer a type-relevant slicer, TSLICE, which extracts
just enough relevant instructions for a variable in C++
binaries in order to characterize its container type.

3) We design a GCN-based classifier to learn and predict the
container types of the variables in C++ binaries, where
data labeling is fully automatic.

4) We show that TIARA advances the state of the art in
inferring STL container types in eight real-world COTS
C++ binaries efficiently (in terms of analysis times) and
effectively (in terms of precision, recall and F1 score).

The rest of the paper is organized as follows. Section II,
motivates TIARA with an example. Section III, introduces
TIARA. Section IV evaluates TIARA. Section V discusses the
related work. Finally, Section VI concludes the paper.

II. MOTIVATION

We illustrate the basic idea behind TIARA by using a binary
program in Figure 2, translated from the code snippet in
Figure 1. Given v0 = 074404h, which represents the address
of variable l of type std::list at the source code, we
describe how TIARA predicts its type at the binary level.
TIARA works by first finding a type-dependent slice starting
from v0, as shown in Figure 2(a) (Section II-A) and then using
a machine-learning-based type classifier to infer its type, as
shown in Figure 2(b) (Section II-B). In this work, we focus
on inferring container types and will thus treat all the primitive
types as one single primitive type (non-discriminately).

https://sites.google.com/view/tiara-tool
https://sites.google.com/view/tiara-tool


A. Type-Relevant Slicing

We explain first how TSLICE works and then how we
address the efficiency and precision challenges in slicing
binary code to recover the container types in COTS C++
binaries.

In Figure 2, its instructions are translated
from Figure 1, where l.push_back(10) and
v.push_back(20) are inlined and interleaved.
I0 − I14 and I16 − I19 are from l.push_back(10)
and the rest from v.push_back(20). We can
divide the instructions for l.push_back(10) into
(1) I0 − I6 for calling _Buynode(_Nodeptr
_Next, _Nodeptr _Prev, _Valty&&
... _Val), where its actual arguments are ∗v0, ∗v0 + 4
and 10 (stored in argn), to create a new node and link
it to _Next and _Prev, (2) I7 − I14 and I16 for calling
_Incsize(size_t _Count) (inlined) to increase the
size of the underlying std::list by 1 (with error
handling), and (3) I17 − I19 for linking _Next and _Prev
to the new node created.

Given v0 as a slicing criterion, Figure 2(a) illustrates
the slicing process. Column “Disassembly” lists the instruc-
tions in the assembly format. Column “Tracing” shows the
dependence-based analysis for each instruction along the
control flow, attempting to establish its dependence with
v0 context-sensitively. Column “Rules” gives the rules used.
Column “Faith” indicates the amount of faith we have on an
instruction being v0-dependent (calculated by a decay function
along the control flow). Finally, Column “Dep” indicates
whether an instruction actually depends on v0 or not.

Starting from v0, TSLICE computes context-sensitively an
inter-procedural forward slice of v0, Sv0

, by searching for the
instructions that depend on v0, i.e., operate on values derived
from v0. TSLICE starts from I0, the first instruction operating
on v0 = 074404h, and searches for some v0-dependent
instructions forwards. As I0 moves ∗v0 to register esi, we can
assert that (1) I0 depends on v0, and (2) any future instruction
that uses esi will also depend on v0 (if not killed). Thus,
we record esi 7→ {(ref, 0)}, where (ref, c) denotes the value
∗(v0 + c), and mark esi as being dependent on v0. I1 is
skipped as it does not depend on v0. When I2 is analyzed,
we keep track of the values in the call stack, abstracted as
S, in order to find the stack values that are dependent on v0.
As I2 does not depend on v0, S[0] 7→ {} (with an empty set
of v0-dependent values recorded). I3 is skipped as it does not
depend on v0. For I4, we record S[1] 7→ {(other, ∗)}, where
(other, ∗) represents a v0-dependent but unknown value (i.e.,
∗v0 + 4, a value computed by an arithmetic operation on a
heap address v0) that will not be further tracked precisely.
I5 is analyzed similarly as I2, except that S[2] 7→ {(ref, 0)}
is recorded. As I6 is a call instruction, we analyze context-
sensitively _Buynode(), which allocates a new node in the
heap. At the end of its analysis, the top three elements in
S will be removed (due to its three pop instructions, which
match the three push instructions I2, I4 and I5). When I7

is analyzed, we record ecx 7→ {(ref, 4)}, as I7 also depends
on v0 (i.e., ∗(v0 + 4)). I9 and I14 are each found to operate
a v0-dependent but unknown value, obtained by an arithmetic
instruction on ∗(v0+4). I17−I19 serve to adjust the pointers in
the underlying std::list to point to the new node created
by the call to _Buynode() at I6. As TSLICE keeps track of
the dependences on v0 only, L17 is considered to be dependent
on v0 but I18 and I19 are not. Finally, Sv0 consists of the
instructions given in {I0, I4–I7, I9–I10, I14, I16, I17}.

TSLICE is designed to recover container types in COTS C++
binaries with the following two salient properties:

• Type-Relevant Tracing. TSLICE traces context-sensitively
from v0 by including in Sv0 only a sample of instructions
characterizing how v0 is used. In our example, Sv0 contains
(1) {I0, I4 − I6}, a subset of the instructions for calling
_Buynode() to allocate a new node, (2) {I7, I9, I10, I14},
a subset of the instructions for incrementing the size of the
underlying std:list by 1, and (3) {I17}, a subset of
the instructions for adjusting the std::list to accom-
modate the new node inserted. Unlike existing techniques
[13]–[20], which are inapplicable to recovering container
types (as discussed in Section I), TSLICE overcomes their
limitations by characterizing v0 with a number of its use-
related instructions.

• Type-Relevant Pruning. TSLICE prunes away instructions
based on three principles, by (1) ignoring some potentially
v0-dependent instructions, such as I18 and I19, that do not
operate on some values derived from v0, (2) abstracting
v0-dependent values in the heap (obtained by perform-
ing arithmetic operations on heap addresses of the form
∗(v0 + c), where c is a constant), such as I4, I9 and I14,
by an v0-dependent but unknown value, (other, ∗), and (3)
using a decay function to decease the faith or likelihood of
an instruction’s dependence on v0 along the control flow.
For C++ container types, our key insight is that the slice
Sv0 that contains the v0-dependent instructions captured
via the register and stack dependences according to our
inference rules is sufficient to predict its type in most cases
(Section IV). This is in sharp contrast to the state-of-the-art
(sound) slicing algorithms for binary codes, which are either
unscalable or imprecise [22] (Section I).

As a result, TSLICE is both efficient (by finding type-
relevant slices in seconds each) and effective (by enabling
predicting the C++ container types of variables accurately).
To the best of our knowledge, this is the first paper for
recovering C++ container types in real-world stripped COTS
C++ binaries.

B. Type Classification

Once a slice Sv0 (represented as a CFG) has been found
for v0, TIARA will make use of a GCN-based classifier (for
the first time), which is pre-trained with automatically labeled
data, to predict the type of v0, as illustrated in Figure 2(b).



GCN

Prediction
Model

COTS Binary Type-Relevant Slicing Type Classification

Training 
Binary

Predicted 
Types

Training
Source 

Program

Automatic Labelling

Fig. 3. Workflow of TIARA (with two stages).

III. DESIGN OF TIARA

TIARA proceeds in two stages (Figure 3). In the type-
relevant slicing stage (Section III-A), an inter-procedural for-
ward slice for a a variable address is found context-sensitively.
In the type classification stage (Section III-B), a GCN-based
classifier is used to predict the type for the given variable.

A. Type-Relevant Slicing

To infer the type of a variable at a given address v0 in a
C++ binary program, TIARA will construct a small forward
slice that reflects the behavior of v0 by using v0 as the slicing
criterion. To reason about the data dependences in the binary
program, TIARA will disassemble it into an intermediate
representation (IR). We introduce our slicing algorithm for a
small language, where an instruction I has the form:

I := mov opr1, opr2 | op⊕ opr1, opr2

| use . . . oprk . . . | push r | pop r

opr := c | loc | [loc] (1)
loc := addr | addr + c

addr := r | m
A mov instruction moves a value from opr2 to opr1. An

op⊕ instruction represents a binary arithmetic operation such
as add or mul. For example, “op+ opr1, opr2” adds opr1

and opr2 and then stores (i.e., moves) the result to opr1. A
use instruction represents any instruction (e.g., jmp) that reads
the given operands without any side effect. An operand opr
can be either a constant c, a reference to a location loc, or
an indirect reference to loc. A location loc may be an address
addr, or an addr with an offset c. Finally, an address addr
may denote either a register r or a memory address m.

In our language, function calls are represented implicitly.
A call instruction can be modeled simply as a push followed
by a use (i.e., jmp) while a return instruction is modeled as a
pop followed by a use (i.e., jmp). As a result, we can use one
single CFG, G = (I, E), to represent a binary program, where
I = {I0, I1, ..., In} is the set of instructions and E ⊆ I × I
is the set of edges. If (Ip, Is) ∈ E, Is may be executed right
after Ip. Let I0 be the entry of the program. For a variable v0,
TSLICE aims to find a forward slice, i.e., a subset Sv0 ⊆ I .

TSLICE builds Sv0 , starting from I0 (as any instruction may
operate on v0), by finding the v0-dependent instructions along
the control flow through reasoning about data dependences. To
keep Sv0 small, TSLICE will keep track of only approximately

Input: A CFG G = (I, E) and a variable address v0
Output: A subset Sv0 ⊆ I .
Data: V : I → (R→ 2A), S : I → (Z→ 2A),

D : I → {true, false}, and F : I → [0, 1].

1 V(I0)← λr.∅;
2 S(I0)← λz.∅;
3 D ← λi.if i = I0 true else false;
4 F ← λi.1;
5 foreach i ∈ I do

Decay(i)=

 0.01 if i is in an indirect addressing mode
0.005 elif i is push or pop
0.001 otherwise

6 foreach j ∈ I such that (I0, j) ∈ E do
CompDependences(I0, j);

7 return Sv0 = {i ∈ I | D(i) = true}
procedure CompDependences(pre : I, i : I)

8 if D(pre) = true and F(pre) = 0 then return;
9 Update (V(i), S(i), D(i)) by the rules in Figure 4;

10 F(i)← max(min(F(pre),F(i))− Decay(i), 0);
11 if (V(i),S(i),D(i)) is not changed then return;
12 foreach j ∈ I such that (i, j) ∈ E do

CompDependences(i, j);
end

Algorithm 1: Finding a forward slice.

the v0-dependent heap values that are obtained by arithmetic
operations on ∗(v0+c), where c is a constant. As the majority
of template-related values (such as iterators) are already allo-
cated in registers and the call stack by modern C++ compilers,
Sv0 will usually still contain the relevant instructions for the
type of v0 to be deduced.

We make use of four functions to reason about data depen-
dences. The function V : I → (R → 2A) records all possible
values in a register after an instruction i ∈ I has been executed,
where R is the set of registers and A = {ptr, ref, const} ×
Z ∪ {(other, ∗)} denotes the set of all possible values that
TSLICE may care about. If (ptr, c) ∈ V(i)(r), register r
may contain a pointer to (v0 + c) after i has been executed.
Similarly, (ref, c) means that r may contain the value stored
in v0 + c (aka. ∗(v0 + c)), (const, c) represents a constant c,
and (other, ∗) denotes a v0-dependent but unknown value. The
function S : I → (Z → 2A) reveals the set of stack values
at an offset z ∈ Z from fp ∈ R after an instruction i ∈ I
has been executed. In order to track the inter-procedural data
flow, TSLICE monitors the frame pointer register fp ∈ R and
the stack pointer register sp ∈ R (i.e., ebp and esp in x86)
to update S. The function D : I → {true, false} indicates
whether an instruction is data-dependent on v0. The function
F : I → [0, 1] estimates the faith, i.e., the likelihood of an
instruction i’s dependence on v0. If F(i) = 1, TSLICE is fully
confident that i depends on v0. If F(i) = 0, TSLICE believes
that i does not depend on v0 at all. When computing F(i),
TSLICE may opt to decay F(i), as it only needs to find a
decent number of instructions to capture the behavior of v0.

As depicted in Algorithm 1, TSLICE starts from I0 (lines 1
– 5) and invokes CompDependences() recursively to update V ,
S, D, and F for each reachable instruction (line 6). After all
the dependent instructions have been found, Sv0 is obtained



r /∈ {fp, sp} ∆ = {(ptr, c)} U = V(i)(r) ∪∆

Γ;mov r, v0 + c ` V(i)[r 7→ U ] D[i 7→ true]
[Mov-rv]

r /∈ {fp, sp} v 6= v0

Γ;mov r, v + c ` V(i)[r 7→ ∅] [Mov-rv-kill]

r /∈ {fp, sp} ∆ = {(ref, c)} U = V(i)(r) ∪∆

Γ;mov r, [v0 + c] ` V(i)[r 7→ U ] D[i 7→ true]
[Mov-riv]

r /∈ {fp, sp} v 6= v0

Γ;mov r, [v + c] ` V(i)[r 7→ ∅] [Mov-riv-kill]

r1 /∈ {fp, sp} ∆ = V(pre)(r2) U = V(i)(r1) ∪∆

Γ;mov r1, r2 ` V(i)[r1 7→ U ] D[i 7→ hasDep(∆) ∨ D(i)]
[Mov-rr]

r1 /∈ {fp, sp} ∆ = {(ref, c + c′) | (ptr, c′) ∈ V(pre)(r2)} ∪ {(other, ∗) | (ref, c′) ∈ V(pre)(r2)} U = V(i)(r1) ∪∆

Γ;mov r1, [r2 + c] ` V(i)[r1 7→ U ] D[i 7→ hasDep(∆) ∨ D(i)]
[Mov-ri]

r /∈ {fp, sp} {(const, n)} = V(pre)(fp) ∆ = S(pre)(n + c) U = V(i)(r) ∪∆

Γ;mov r, [fp + c] ` V(i)[r 7→ U ] D[i 7→ hasDep(∆) ∨ D(i)]
[Mov-rs]

{(const, n)} = V(pre)(fp) ∆ = V(pre)(r) U = Si(n + c) ∪∆

Γ;mov [fp + c], r ` S(i)[n + c 7→ U ] D[i 7→ hasDep(∆) ∨ D(i)]
[Mov-sr]

r /∈ {fp, sp} ∆ = {(const, c)} U = V(i)(r) ∪∆

Γ;mov r, c ` V(i)[r 7→ U ]
[Mov-rc]

r /∈ {fp, sp} addr 6= v0

Γ;mov r, addr + c ` V(i)[r 7→ ∅] [Mov-rc-kill]
r ∈ {fp, sp} ∆ = {(const, c)}

Γ;mov r, c ` V(i)[r 7→ ∆]
[Mov-rc-1]

{(const, s)} = V(pre)(sp)

Γ;mov fp, sp ` V(i)[fp 7→ {(const, s)}] [Mov-fp]
{(const, n)} = V(pre)(fp)

Γ;mov sp, fp ` V(i)[sp 7→ {(const, n)}] [Mov-sp]
B = hasDep(V(pre)(r))

Γ;mov [r + c], r′ ` D[i 7→ B ∨ D(i)]
[Mov-dr]

r /∈ {fp, sp} ∆ = {(t, c′ ⊕ c) | (t, c′) ∈ V(pre)(r)} U = V(i)(r) ∪∆

Γ; op⊕ r, c ` V(i)[r 7→ U ] D[i 7→ hasDep(V(pre)(r)) ∨ D(i)]
[Op-rc]

r ∈ {fp, sp} {(const, n)} = V(pre)(r) ∆ = {(t, n⊕ c)}
Γ; op⊕ r, c ` V(i)[r 7→ ∆]

[Op-rc-1]

r1 /∈ {fp, sp} U = V(i)(r1) ∪ {(t, c⊕ c′) | (const, c) ∈ V(pre)(r1), (t, c′) ∈ V(pre)(r2)} ∪ {(t, c⊕ c′) | (t, c) ∈ V(pre)(r1), (const, c′) ∈ V(pre)(r2)}
Γ; op⊕ r1, r2 ` V(i)[r1 7→ U ] D[i 7→ hasDep(V(pre)(r2)) ∨ D(i)]

[Op-rr]

r1 /∈ {fp, sp} ∆ = {(other, ∗) | (t, c) ∈ V(i)(r1), t 6= const, (t′, c′) ∈ V(pre)(r2), t′ ∈ {ref, other}}
Γ; op⊕ r1, r2 ` V(i)[r1 7→ V(i)(r1) ∪∆] D[i 7→ hasDep(V(pre)(r2)) ∨ D(i)]

[Op-rref]

r1 /∈ {fp, sp} ∆ = {(other, ∗) | (ptr, c′) ∈ V(pre)(r2)} U = V(i)(r1) ∪∆

Γ; op⊕ r1, [r2 + c] ` V(i)[r1 7→ U ] D[i 7→ hasDep(V(pre)(r2)) ∨ D(i)]
[Op-ri]

r /∈ {fp, sp} {(const, n)} = V(pre)(fp) ∆ = {(other, ∗) | (t, c′) ∈ S(pre)(n + c), t 6= const}
Γ; op⊕ r, [fp + c] ` V(i)[r 7→ V(i)(r) ∪∆] D[i 7→ hasDep(S(pre)(n + c)) ∨ D(i)]

[Op-rs]

{(const, n)} = V(pre)(fp) ∆ = {(other, ∗) | (t, c′) ∈ V(pre)(r), t 6= const}
Γ; op⊕ [fp + c], r ` S(i)[n + c 7→ S(i)(n + c) ∪∆] D[i 7→ hasDep(V(pre)(r)) ∨ D(i)]

[Op-sr]

{(const, s)} = V(pre)(sp) ∆ = V(i)(r) U = S(i)(s) ∪∆

Γ; push r ` V(i)[sp 7→ {(const, s + 1)}] S(i)[s 7→ U ] D[i 7→ hasDep(∆) ∨ D(i)]
[Stk-Push]

{(const, s)} = V(pre)(sp) ∆ = S(pre)(s) U = V(i)(r) ∪∆

Γ; pop r ` V(i)[sp 7→ {(const, s− 1)}, r 7→ U ] D[i 7→ hasDep(∆) ∨ D(i)]
[Stk-Pop]

P =
∨

k

if oprk ∈ {r, [r + c]} s.t. r 6= fp then hasDep(V(i)(r)) elif oprk = [fp + c] s.t. {(const, n)} = V(pre)(fp) then hasDep(S(i)(n + c))

Γ;use . . . oprk . . . ` D[i 7→ P ∨ D(i)]
[Use-dep]

1

Fig. 4. Rules for updating V(i), S(i) and D(i) based on V(pre), S(pre) and D(pre) at instruction i.

as desired (line 7). When CompDependences() is called, i is an
instruction and pre is one of its predecessors. If F(pre) (the
faith of pre) has decayed to 0, CompDependences() simply
returns (line 8). Otherwise, V(i), S(i), and D(i) are updated
according to the rules in Figure 4 (line 9) and F(i) is updated
(line 10), as explained below. If V , S or D has changed after i
has been analyzed, CompDependences() is invoked recursively
to update the dependence for each successor of i (line 12).
Otherwise, CompDependences() returns (line 11).

In TSLICE, we use the faith function F and a decay
function, Decay : I → N, to find a small slice with relevant
instructions quickly. Initially, if an instruction i is found to
depend on v0, we are fully confident about the dependence,
since F(i) = 1 (line 4). Every time when we descend to i
from one of its predecessor instructions, pre, F(i) is decayed
according to line 10 to ensure that F(i) drops monotonically
(since Decay(i) > 0) and quickly (due to the use of min). As
a result, no successor instructions of pre will ever be visited
once F(pre) = 0 (line 8), since we are now fully confident
about their independence on v0. To define Decay, we use a
linear decay function (line 5). When an instruction i is visited

(line 10), we decrease our confidence about its dependence on
v0 by 0.001, in general. However, our decrement will be 0.005
for each push or pop instruction and 0.01 for each indirect
addressing instruction, as we become less and less confident
about the dependence of i on v0. These heuristically tuned
parameters work well in practice (Section IV). Of course, other
more sophisticated decay functions can also be used.

Let us explain the notations used in our inference
rules (Figure 4) for updating (V(i),S(i),D(i)) based on
(V(pre),S(pre),D(pre)) given. Given an evaluation environ-
ment consisting of (1) both Γ = (V(pre), S(pre), D(pre),
V(i), S(i), D(i)) and (2) i is an instruction, each rule gives
the updated (V(i), S(i), D(i)) in the conclusion under its given
premises. Given a function F ∈ {V(i),S(i),D}, F [x 7→ n]
represents the same function F except that F (x) has been
updated as F (x) = n. In addition, we also make use of the
following auxiliary function to test if i depends on v0:

HasDep(X) = if ∃ (t, c) ∈ X s.t. t ̸= const then true else false (2)

By convention, sp (fp) is the stack (frame) pointer register.
Let us examine the rules given in Figure 4, which are

applied in line 9 of Algorithm 1. Two points are in order.



• We distinguish fp and sp from every other register r /∈
{fp, sp} so that V(i)(fp) and V(i)(sp) are always strongly
updated and V(i)(r) is always weakly updated except
in [MOV-RV-KILL], [MOV-RIV-KILL] and [MOV-RC-KILL].
This design decision allows us to keep track of only one
stack frame instead of multiple stack frames when analyzing
a call in order to achieve efficiency at some slight loss of
precision for the slice obtained. In practice, most COTS
C++ programs are compiled without turning on a so-called
frame-pointer omission flag, which can be checked easily.
Consider the binaries on x86 produced by the Microsoft
Visual C++ compiler for Windows. If a function’s prologue
and epilogue are of the form “push sp; mov fp,sp”
and “leave; ret”, respectively, then its /Oy (frame-
pointer omission) flag is off. If we see something like
“sub sp, ...” and “add sp, ...; ret”, then /Oy
is on. When /Oy is on (causing fp to be used as a general
register), we can modify each rule by simply changing
r ∈ {fp, sp} (if it exists) to r ∈ {sp} in its premises.

• When reaching a call instruction (flagged by IDA Pro [25]
as discussed in Section IV), we record the address of its
ensuing instruction as a return address. As discussed earlier,
we handle a call as a push and a use (i.e., jmp) in our
formalism. When reaching a return instruction (modeled as
a pop and a use, i.e., jmp) in analyzing the function called,
we will continue to analyze the instruction marked by the
previously recorded return address. Thus, TSLICE finds an
inter-procedural slice context-sensitively.

We go through our four groups of rules, [MOV-*], [OP-*],
[STK-*] and [USE-*], for handling four types of instructions
in our language. In our rules, S(i) is only updated in [MOV-
SR], [OP-SR], as well as [STK-*]s, D(i) is updated in the
majority of the rules similarly except that i is checked to
see if it becomes now dependent on v0 (if it is not before),
and V(i) is updated also in the majority of the rules but
differently, depending on the nature of instruction i being
analyzed. Therefore, we focus naturally more on describing
how V(i) is updated (i.e., how each register is updated) below.

• mov opr1, opr2 . All the mov instructions are handled
by the 14 [MOV-*] rules. [MOV-RV] is simple. V(i) is
updated to reflect the fact that r may now also contain a
pointer to v0 + c, and consequently, instruction i is now
known to depend on v0. [MOV-RIV] is similar except that
r contains (ref, c), i.e., ∗(v0 + c) (known as a reference to
v0). [MOV-RR] handles a register move instruction i of the
form “mov r1, r2”, by updating V(i)(r1) with V(i)(r2) and
making i dependent on v0 (if it is not yet) as long as r2
contains any v0-dependent value. Consider [MOV-RI] now.
If r2 contains (ptr, c′), i.e., a pointer to v0, r1 is added
with (ref, c + c′), i.e., a reference to v0 after the update.
If r2 contains (ref, c′), i.e., a reference to v0, r1 is added
with (other, ∗). If r2 contains (other, ∗) already, (other, ∗)
is ignored to reduce the number of irrelevant instructions
added to Sv0 . [MOV-RS] and [MOV-SR] propagate the value
information between a stack slot and a register r in either

direction, except that r /∈ {fp, sp} holds in [MOV-RS] and
S(i) is updated in [MOV-SR]. [MOV-RC] recognizes that
r /∈ {fp, sp} may now also contain a constant c. [MOV-
RC-1] behaves similarly for r ∈ {fp, sp} except that a
strong update to V(i)(r) is performed. [MOV-FP] handles
an assignment of sp to fp while [MOV-SP] handles an
assignment of fp to sp. In both cases, a strong update is
performed. [MOV-DR] says that an instruction that writes
into a v0-dependent address depends on v0. Finally, [MOV-
RV-KILL], [MOV-RIV-KILL] and [MOV-RC-KILL] perform a
strong update to r ∈ {sp, fp} as described.

• op⊕ oprk, opr2 . The binary arithmetic instructions are
handled by the seven [OP-*] rules. [OP-RC] is similar
to [MOV-RC] except that we must now account for the
semantics of ⊕. Similarly, [OP-RC-1] is an analogue of
[MOV-RC-1]. For an instruction of the form “op⊕ r1, r2”,
[OP-RR] updates V(i)(r1) only when either r1 or r2 contains
a constant (in order to keep Sv0 small and relevant), and
additionally, [OP-RREF] propagates a reference or (other, ∗)
conservatively as (other, ∗) from r2 to r1. [OP-RI] is a
(conservative) analogue of [MOV-RI], as it handles an op⊕
instead of a mov instruction. Finally, [OP-RS] ([OP-SR])
is an analogue of [MOV-RS] ([MOV-SR]), except that it is
much more conservative. Let us examine [OP-RS] for han-
dling “op⊕ r, [fp+ c]”. If [fp+ c] contains a v0-dependent
value, then r will contain an over-approximation of that
value as (other, ∗). If [fp+c] contains a constant (const, c),
r will not be made to contain also (const, c′ + c), even if
r contains (const, c′), for two reasons. First, (const, c′+ c)
often results in no extra relevant instructions added to Sv0

than (const, c′) already does. Second, tracking only relevant
constants makes TSLICE lightweight.

• push/pop r . These two stack manipulating instructions are
straightforward. [STK-PUSH] stores every pushed value at
the top stack location and increases sp by 1. [STK-POP]
handles the information flow in the opposite direction.

• use . . . oprk . . . . All the use instructions are handled by
one single rule, [USE-DEP], to update D(i) only.
There is no rule for mov [fp+c′], c, as it can be modeled as

a sequence of two instructions, mov r, c and mov [fp+ c′], r.

B. Type Classification

Given a slice Sv0 , we have designed a GCN-based classifier
to infer its type. In Section III-B1, we describe how to encode
each node (i.e., instruction) in a slice with a feature vector
in order to find a feature vector representation for the entire
slice. In Section III-B2, we introduce a GCN-based classifier.

1) Encoding Instructions with Feature Vectors: To apply
a GCN [23], [24] to turn a slice into a graph representation
characterized by a feature vector, we first encode each node
in the slice, which contains instruction i, as a 42-dimensional
feature vector, according to the following seven features:
• F 1

i : Whether i is a direct target of a call/jump or not.
• F 2

i : A 12-bit binary representation of the opcode of i.
One-hot encoding is not used as there are more than 1700



call 0A71267h ;_Emplace_realloc

[0000100..00...1...010000...0110]

              1:  
        2–13:  
      14–26:  
      27–39:  
            40:  
            41:  
            42:  

Instruction itself is not a call/jump target   
Opcode of “call”                                        
Operand 1 is an immediate value               
Operand 2 does not exist                            
Calls malloc() indirectly                             
Calls free() indirectly                                  
No pointers used directly                            

Fig. 5. An example for encoding a call instruction.

opcodes. Since the opcodes with similar semantics are
close together (e.g., push/pushaw/pusha assigned with
143/144/ 145), our opcode representation is preferred.

• F 3
i (1st operand) and F 4

i (2nd operand): A 13-bit one-hot
encoding of the operand type of every such an operand
in i. There are 13 operand types: nil operand, register,
direct memory reference, memory reference with base and
index registers, memory reference with base and index
registers plus a displacement, immediate value, immediate
far address, immediate near address, and five additional
processor-specific types provided by IDA Pro [25].

• F 5
i : Whether i calls a heap allocation function (e.g.,

malloc()) directly or indirectly or not (along a call chain).
• F 6

i : Whether i calls a heap free function (e.g., free()) or
not.

• F 7
i : The number of levels of pointer indirections for using

v0 in i represented by an integer (as i depends on v0).

Figure 5 illustrates how a call instruction (identified by
IDA Pro [25] as discussed in Section IV) is encoded.

2) A GCN-based Classifier: We first describe how to obtain
a GCN-based classifier during a training process. We then
discuss how to use it to predict the type of a variable.

Training. Let T = {t1, t2, . . . , tn, tprimitive} be a set of types to
recover from C++ binaries, where t1, t2, . . . , tn are candidate
container types and tprimitive represents any of all the possible
primitive types (which are not distinguished as discussed in
Section I). Let G = {G1, G2 . . . , Gm} be a set of slices with
each slice of a variable address being labeled by a unique type
t ∈ T , implying that the variable is of type t or a pointer to t
(with one or more levels of indirections). Our objective is to
learn a classifier to predict the type of Gi.

We have designed a GCN [23] to learn a graph representa-
tion hG of a slice G in a message-passing manner. Each node
v ∈ G starts with Xv encoded as per Section III-B1:

h(0)
v = Xv (3)

We then perform k iterations of aggregation along the edges in
G. We update the representation of a node by aggregating its
representation with those of its predecessor neighboring nodes
by using the element-wise mean pooling mechanism:

hk
v = ReLU(W k ×

∑

u∈N (v)∪{v}

hk−1
u

|N (v) ∪ {v}| ) (4)

where N(v) gives the set of predecessor nodes of v in G.

At the end of the k-th iteration, we use a simple readout
function to obtain (with V being the set of nodes in G):

hG =
∑

v∈V
hv (5)

Finally, we connect the output hG to a linear transformation
layer and apply softmax to estimate the probabilities for G to
have different types in T . Thus, we can choose the predicted
type, ŷG, as the one with the largest probability:

ŷG = argmax
ti∈T

(softmax(WLhG)i) (6)

Note that WL above and W k given in (4) are the parameters
in the prediction model learned during the training process.

Prediction. Given a variable address, the slice found by
TSLICE will be fed into our classifier to predict its type.

IV. EVALUATION

TIARA is the first to infer container types in COTS C++
binaries (Section I). Due to the lack of earlier tools to compare
with, we focus on demonstrating that TIARA is effective in
recovering container types by answering four RQs:

• RQ1: Is TIARA effective in identifying container types
by restricting training and testing to the same project?

• RQ2: Is TIARA effective in identifying container types
by performing training and testing in different projects?

• RQ3: Is TIARA more effective when compared with a
version of TIARA that uses a simple slicer (due to the
lack of an open-source slicer for C++ binaries)?

• RQ4: Is TIARA efficient in slicing and training?

COTS C++ Binaries. We consider the binaries in the Mi-
crosoft Portable Executable (PE) format targeting x86, which
are generated by using the Microsoft Visual C++ 15 2017
toolchain (abbreviated to MSVC). For a binary, we use IDA
Pro [25] to disassemble it and find the information required
by TIARA. In type-relevant slicing, we find its entry point
I0 as needed. For type classification, we need to encode each
instruction in terms of a feature vector (Section III-B1). We use
IDA Pro to find the functions calling malloc() and free()
(possibly indirectly). When it fails to provide the information
of a particular feature for an instruction, the default 0 is used.

Benchmarks. We consider eight programs from eight projects
(Table I), which mostly include more than one executable. We
have selected only one program from each project in order to
prevent code duplications due to reasons like static linking.
We have compiled these programs with the “release mode”
settings, by enabling the most aggressive optimization (/O2),
to simulate how COTS programs are compiled when released.

For the eight programs selected, Table I gives their binary
sizes and the number of variable addresses having type t or
a pointer type to t (with one or more levels of indirections),
where t is one of the four types considered, std::list,
std::vector, std::map, and primitive (representing
all possible primitive types). We have selected std::list,
std::vector and std::map, since they are, respectively,



TABLE I
BENCHMARK STATISTICS FOR THE COTS BINARIES (WITH THE NUMBER OF VARIABLES ADDRESSES OF A PARTICULAR TYPE GIVEN).

# GitHub Repository Version Program Name Binary Size #std::list #std::vector #std::map #primitive

1 llvm/llvm-project 3.8.0 clang 47 M 89 1685 2446 98495
2 Kitware/CMake v3.17 cmake 9.4 M 25 2340 2074 35676
3 bitcoin/bitcoin v0.18 bitcoind 5.4 M 23 1042 1125 30023
4 gabime/spdlog v1.x spdlog-utests 1.6 M 3 106 51 4600
5 SOCI/soci 3.2.3 soci odbc test mysql static 1.3 M 0 123 117 4353
6 google/re2 2020-04-01 filtered re2 test 410 k 2 76 89 1137
7 bblanchon/ArduinoJson 6.x TextFormatterTests 484 k 0 41 72 1377
8 List Extension 11/04/2016 list ext 76 k 47 6 0 227

the representatives of non-contiguous sequential, contiguous
sequential, and associative containers, the three common STL
container categories in C++ programs. The first seven are the
popular C++ programs from GitHub. However, std::list
is not as frequently used as the other two due to the reasons
explained by Stroustrup [26]. As the first seven programs
contain relatively few variables of type std::list, we have
added an eighth program, called list_extension, which
contains a few list-related code snippets taken directly from
a Microsoft documentation [27], resulting in an increase of
std::list-related variables by 33%.

For a binary, we find its addresses representing variables by
using Microsoft Debug Interface Access SDK [28]. We then
apply TIARA to predict their types. For a COTS binary without
debugging information, its variable addresses must be detected
orthogonally. However, finding such addresses is much less
challenging than finding their types [29].

To summarize, we use std::vector, std::list, and
std::map. to measure the effectiveness of TIARA. T =
{tlist, tvector, tmap, tprimitive} is the set of type labels used.

Training. The GCN used in TIARA is made up of two graph
convolutional layers of size 64 each. This GCN is implemented
in terms of Deep Graph Library [30] with PyTorch [31] as the
back-end. We train it by using the Adam algorithm [32] as
the optimizer with the cross-entropy loss function. We have
used a learning rate of 0.001 and an epoch size of 300. In
TIARA, data labeling is fully automatic. When labeling a slice
constructed for a variable, we use Microsoft Debug Interface
Access SDK [28] to find its type automatically.

When evaluating TIARA in recovering container types
within a project (RQ1) and across the projects (RQ2), we will
discuss how their training and testing programs are selected.

Metrics. We evaluate TIARA by considering three metrics:
precision, recall and F1 score. Precision is the percentage of
variables with a correctly inferred type among all the variables
that are inferred to have that type. Recall is the percentage of
variables with a correctly inferred type among all the variables
that actually have that type. Finally, F1 score is the harmonic
mean of Precision and Recall. We evaluate the efficiency of
TIARA by considering its slicing and training times.

Computing Platforms. TIARA has two stages (Figure 3). Its
type-relevant slicing stage (TSLICE) runs on a Windows 10
desktop containing an Intel Core i9-10900X CPU of 3.70
GHz with 64G memory. Its type classification stage runs on

a Ubuntu server containing two Intel Xeon CPUs of 2.6 GHz
with 128G memory, accelerated by a 16G Tesla P100 GPU.

Results. Table II gives the results for addressing RQ1 – RQ3
(with each row representing one independent experiment to be
explained when we discuss these RQs). In addition, Table III
contains some additional results for addressing RQ3 only.
Finally, Table IV gives the results for addressing RQ4.

A. RQ1: Intra-Project Type Prediction

To address RQ1, we report and analyze the results of five
independent experiments listed in five rows marked as I1a –
I5a in Table II. In each experiment, the project(s) considered
are given. In each experiment, the data, which is given as
a set of variable addresses with their associated types in
T = {tlist, tvector, tmap, tprimitive} (Table I), is divided into a
training set and a testing set. The ratio of training over testing
samples is 4 : 1 (with both randomly selected).

According to the results reported in I1a – I5a of Table II,
TIARA is highly effective, achieving the precision (ranging
from 0.86 to 1.00) with an average of 0.94, the recall (ranging
from 0.79 to 1.00) with an average of 0.89, and the F1 scores
(ranging from 0.88 to 0.98) with an average of 0.91 across all
the variables of the four types in the five experiments. TIARA’s
effectiveness is also revealed by the average precision, recall
and F1 score both across the four types for an experiment and
across the five experiments for a given type.

Several observations are in order. First, TIARA can identify
all the three container types equally well (as reflected by
the average precision, recall and F1 score for each container
type across the five experiments). Second, TIARA achieves a
precision or recall of 1.0 in five cases when its corresponding
samples are small (Table I). This explains why TIARA is more
effective in I4a – I5a than in I1a – I3a for std::list. Third,
TIARA can recover primitive types well, due to (1) a relatively
large number of samples available for primitives (Table I),
(2) relatively smaller slices found (Table III), and (3) the fact
that different primitive types are not distinguished. Finally,
TIARA loses some precision since the compiler may optimize
variables of different types that do not have overlapping scopes
to share the same stack slot, i.e., the same binary address.

B. RQ2: Cross-Project Type Prediction

To address RQ2, we report and analyze the results of four
independent experiments listed in four rows marked as C6a
– C9a in Table II. In each experiment, we simulate real-
world inference scenarios by performing training in one set



TABLE II
EXPERIMENTAL RESULTS FOR RQ1–RQ3. FOR ALL METRICS, LARGER IS BETTER.

std::list std::vector std::map Primitive Macro Average# Training Data Testing Data
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

In
tr

a-
Pr

og
ra

m



I1a 0.92 0.80 0.86 0.87 0.76 0.82 0.95 0.79 0.86 0.98 0.99 0.99 0.93 0.84 0.88
I1b clang 0.50 0.33 0.40 0.57 0.32 0.41 0.82 0.78 0.80 0.98 0.99 0.98 0.72 0.60 0.65
I2a 1.00 0.85 0.92 0.89 0.84 0.87 0.93 0.80 0.86 0.94 0.98 0.96 0.94 0.87 0.90
I2b cmake + list ext 0.50 0.75 0.60 0.46 0.56 0.51 0.75 0.74 0.74 0.94 0.93 0.94 0.66 0.75 0.70
I3a 0.86 0.92 0.89 0.91 0.88 0.89 0.95 0.81 0.87 0.95 0.98 0.97 0.92 0.90 0.90
I3b bitcoind + list ext 1.00 0.50 0.67 0.58 0.44 0.50 0.80 0.89 0.84 0.97 0.97 0.97 0.84 0.70 0.74
I4a 0.90 1.00 0.95 0.94 0.89 0.91 0.90 1.00 0.95 0.99 0.99 0.99 0.93 0.97 0.95
I4b spdlog + list ext 0.60 1.00 0.75 0.27 0.50 0.35 0.75 0.33 0.46 0.97 0.96 0.97 0.65 0.70 0.63
I5a 1.00 0.88 0.93 1.00 0.80 0.89 1.00 0.81 0.89 0.96 1.00 0.98 0.99 0.87 0.92
I5b soci odbc test static + list ext 0.75 1.00 0.86 0.38 0.50 0.43 0.68 0.81 0.74 0.96 0.91 0.93 0.69 0.80 0.74

Average (TIARA) 0.94 0.89 0.91 0.92 0.83 0.88 0.95 0.84 0.89 0.96 0.99 0.98 0.94 0.89 0.91
Average (TIARASSLICE) 0.67 0.72 0.66 0.45 0.46 0.44 0.76 0.71 0.72 0.96 0.95 0.96 0.71 0.71 0.69

C
ro

ss
-P

ro
gr

am



C6a 0.85 0.80 0.84 0.94 0.74 0.83 0.90 0.82 0.86 0.86 0.95 0.90 0.89 0.83 0.86
C6b clang+cmake+bitcoind all -

{clang+cmake+bitcoind} 0.48 0.30 0.37 0.44 0.48 0.46 0.90 0.83 0.86 0.88 0.91 0.90 0.68 0.63 0.65
C7a 0.85 0.73 0.79 0.78 0.74 0.76 0.77 0.82 0.79 0.95 0.96 0.95 0.84 0.81 0.82
C7b all - clang clang 0.00 0.00 N/A 0.32 0.51 0.40 0.78 0.88 0.83 0.95 0.90 0.92 0.51 0.57 0.54
C8a 0.61 0.59 0.60 0.94 0.63 0.75 0.93 0.76 0.83 0.74 0.97 0.84 0.81 0.74 0.76
C8b all - cmake cmake 0.39 0.43 0.41 0.58 0.37 0.45 0.74 0.84 0.79 0.84 0.89 0.87 0.64 0.63 0.63
C9a 0.71 0.67 0.69 0.92 0.70 0.79 0.91 0.70 0.79 0.67 0.95 0.79 0.80 0.75 0.76
C9b all - bitcoind bitcoind 0.39 0.50 0.44 0.73 0.48 0.58 0.75 0.70 0.72 0.76 0.85 0.80 0.66 0.63 0.64

Average (TIARA) 0.76 0.70 0.73 0.90 0.70 0.78 0.88 0.78 0.82 0.81 0.96 0.87 0.84 0.78 0.80
Average (TIARASSLICE) 0.32 0.31 0.31 0.52 0.46 0.47 0.79 0.81 0.80 0.86 0.89 0.87 0.62 0.62 0.62

of projects but testing in all the remaining ones given in
our benchmark suite (Table I). For example, in row C7a,
clang is the testing project and all-clang indicates that
the remaining projects are used as the training programs.

According to the results in Table II, TIARA is effective,
achieving the precision (ranging from 0.61 to 0.95) with an
average of 0.84, the recall (ranging from 0.59 to 0.97) with
an average of 0.79, and the F1 scores (ranging from 0.60 to
0.95) with an average of 0.80 across all the variables of all
the four types in the four experiments.

When comparing C6a – C9a (for cross-project type recov-
ery) with I1a – I5a (intra-project type recovery) in Table II,
we find that TIARA is only slightly less effective, with the
average precision, recall and F1 score dropping from 0.94, 0.89
and 0.91 to 0.84, 0.78 and 0.80, respectively (calculated again
across all the four types in all their respective experiments).
The slight performance degradation is as expected since, for
example, different coding styles and conventions in different
projects will lead to different program behaviors in their
binaries. Given this, TIARA is considered to be effective in
recovering container types in real-world COTS binaries.

C. RQ3: Comparing with the State of the Art
To the best of our knowledge, TIARA is the first tool

for recovering container types in C++ binaries. To evaluate
TIARA against the state of the art, we compare TIARA with
a version of TIARA in which a different slicing algorithm
is used. However, we are not aware of any open-source
tool for computing inter-procedural slices in COTS binaries.
BEST [33], which targets PowerPC binaries, is designed to
estimate statically the WCET (Worst-Case Execution Times)
of a program and is thus limited to single-function programs.

Therefore, we have decided to compare TIARA with a
version of TIARA, denoted TIARASSLICE, where TSLICE has
been replaced by a simple slicer, named SSLICE. Given a
variable address v0, SSLICE produces a slice consisting of
all the instructions in the function that contains the first
access to v0 and all the instructions in its directly called

TABLE III
AVERAGE SLICE SIZES PRODUCED BY TSLICE AND SSLICE.

SSLICE TSLICE

Type #Nodes #Edges #Nodes #Edges

std::list 1873.41 2055.12 68.39 95.53
std::vector 2518.07 2769.04 64.01 86.58
std::map 860.30 945.50 54.04 71.64
primitive 1537.04 1676.24 12.73 17.86

functions. This comparison is reasonable, as existing scalable
binary slicers are very imprecise, often producing a slice that
includes nearly the entire program [22]. Table III compares
the average slice sizes obtained by TSLICE and SSLICE
in terms of average node and edge counts. For each type
in T = {tlist, tvector, tmap, tprimitive}, the number of slices
produced by each slicer is the same as the number of variable
addresses in Table I. TSLICE is lightweight, producing one
slice in 0.2 seconds, on average. The slices found by TSLICE
are one order (two orders) of magnitude smaller than those
found by SSLICE for a container (primitive) type, one average.

In Table II, we have compared TIARA (rows I1a – I5a
and C6a – C9a) with TIARASSLICE (rows I1b – I5b and
C6b – C9b). Except for a few cases highlighted by red
boxes, TIARASSLICE is substantially less effective than TIARA,
resulting in significantly lower average precision, recall and
F1 score (both across the different types for an experiment
and across the different experiments for a given type).

These results show that, given a variable address, the slice
produced by TSLICE, while substantially smaller than that
from SSLICE (in general), contains still enough type-relevant
instructions for characterizing its type (Figure 2). Consider
the extreme but illuminating case reported in C7a and C7b of
Table II when inferring std::list from the 89 variables in
clang by training with the 100 std::list-related samples
in all-clang (Table I). As the ratio of training over testing
samples is low, the impact of the imprecision of SSLICE
on the effectiveness of TIARASSLICE is maximally exposed.
TIARASSLICE failed to make any correct prediction, producing



the following classification for the 89 variables in clang: 53
of std::vector, 3 of std::map, and 33 of primitives. In
contrast, TIARA has achieved a precision, recall and F1 score
of 0.85, 0.73, and 0.79, respectively, predicting correctly 65
out of the 89 variables are typed std::list.

D. RQ4: Efficiency

TIARA, shown in Table IV, is highly efficient. The average
slicing time per intra-project (cross-project) experiment is 2
hours (10 hours, identically for each cross-project experiment
as all programs are involved). The average training time per
intra-project (cross-project) experiment is 5.1 (20.5) minutes.
On the other hand, TIARASSLICE, which is substantially less
effective in recovering container types than TIARA (Table II),
is even slightly slower overall. The average slicing time
per intra-project (cross-project) experiment is 1.7 hours (8.6
hours). However, due to the larger slices produced, its average
training time per intra-project (cross-project) experiment is
now much longer, reaching 11.4 (94.5) minutes.

TABLE IV
THE EFFICIENCY OF TIARA AND TIARASSLICE .

I1a I2a I3a I4a I5a C6a C7a C8a C9a

Slicing TIARA 5.5 h 2.2 h 1.8 h 0.3 h 0.3 h 10 h
TIARASSLICE 4.7 h 1.8 h 1.5 h 0.2 h 0.2 h 8.6 h

Training TIARA 14.4 m 5.6 m 4.5 m 0.4 m 0.4 m 25.5 m 12.2 m 22 m 22.3 m
TIARASSLICE 34.6 m 11.4 m 8.9 m 1.6 m 0.7 m 1.4 h 2.5 h 1.2 h 1.2 h

V. RELATED WORK

We review both rule- and machine-learning-based ap-
proaches for performing binary analysis in the literature.

Rule-based Binary Type Inference. While there are many
previous efforts [34]–[36] on inferring primitive types, recur-
sive types, polymorphic types, variables, and function proto-
types from binaries, we review only a few related ones on class
type recovery. In C++ binaries, C++ classes may leave some
class-specific clues such as the “this” pointer and virtual func-
tion tables (VFTs). SmartDec [13] exploits the “this” pointer to
construct class hierarchies from binaries. vfGuard [37] and
VTint [38] reconstruct VFTs by using the dynamic dispatch
mechanism in C++. The run-time type information (RTTI) in
C++ has also been leveraged [17] to find class hierarchies
and member functions/variables. OBJDIGGER [15] recovers
objects by tracking the “this” pointer, by combining symbolic
execution and inter-procedural data flow analysis.

C++ templates support compile-time polymorphism instead
of run-time polymorphism. Existing efforts [13]–[19] for
recovering polymorphic classes in C++ binaries cannot be
applied to recover container classes (Section I).

OOANALYZER [20] recovers ordinary classes from C++
binaries by using a Prolog-based reasoning system. It distin-
guishes class types by distinguishing their related methods.
However, as each method of a container type has different
type-dependent instantiations in binaries, OOANALYZER can
only recognize these instantiations as belonging to different
classes without actually knowing what their types are.

TIARA (as proposed here) relies on a new type-relevant
slicing algorithm for finding a small slice from a variable

address in C++ binaries to predict its type. According to
a recent study [22], the slices computed by state-of-the-art
techniques for binaries are very imprecise. The only open-
source slicer that we are aware of works only for PowerPC
binaries, limited to small single-function programs only [33].
Machine-Learning-based Binary Analysis. Machine learn-
ing techniques are increasingly being used in reverse engineer-
ing and binary analysis. There are efforts on recovering partial
source-level information in binaries, including functions [39]–
[41], coding style and programmers’ names [42], and their
toolchains used [43]. EKLAVYA [44] utilizes an RNN to
identify function signatures from binaries. These approaches
tend to learn properties from blocks of binary codes, while
TIARA aims to predict the type for a single address.

Katz et al. [18] use a Markov model to predict types from
their object tracelets. Katz et al. [19] propose a variable-order
Markov model to recover the class hierarchies from binaries.
These techniques rely on the “this” pointer and VFTs to extract
the function calls related to receiver objects.

DEBIN [21] focuses on predicting the primitive types of
variables in COTS binaries compiled from C programs. It
transforms binary programs into dependence graphs and trains
a conditional random field (CRF) model from the graphs
thus obtained. During the inference, the model is used to
assign the types to unknown graph nodes to maximize the
joint probability. DEBIN applies a global strategy to infer a
variable’s properties from its relationships with other variables.
TypeMiner [45] recovers types in C binaries statically by re-
lying on dependence analysis and a classification of execution
traces of data objects. Like DEBIN, however, it focuses on
recovering primitive types and does not handle template class
types. TIARA, which focuses on inferring container types in
C++ binaries, utilizes a local strategy to infer the type of a
variable from its own behavior. TIARA is capable of obtaining
a high accuracy with a small number of training binaries.

VI. CONCLUSION

In this paper, we introduce an effective approach, TIARA,
for identifying container class types from COTS C++ binaries.
TIARA consists of a new slicing algorithm for finding a type-
relevant slice of a given variable in C++ binaries and a
new GCN-based classifier that allows its container type to be
predicted. Its type-relevant slicing algorithm can also be used
as a stand-alone tool in detecting code clones [46], security
vulnerabilities [4], [6], and software bugs [47], [48].

DATA AVAILABILITY STATEMENT

The experimental data and non-proprietary software for this
article are openly available in Zenodo at: https://zenodo.org/
record/5787482.

ACKNOWLEDGMENT

This work is supported by Australian Research Council
(DP180104069 and DP210102409), National Natural Science
Foundation of China (61872272 and 61640221), and the
Strategic Priority Research Program of Chinese Academy of
Science (XDC05040100).

https://zenodo.org/record/5787482
https://zenodo.org/record/5787482


APPENDIX

A. Abstract

Our artifact provides all non-proprietary components of
TIARA. TSLICE runs as an IDAPython plugin of IDA Pro,
which is proprietary, we cannot deploy it in the Docker image.

If you do not have access to IDA Pro, you can still reproduce
our results by using the pre-computed slices from TSLICE and
and the pre-trained models for all the experiments.

B. Description

The minimum requirement for using the artifact is:

• Software:
– Docker
– Microsoft Visual Studio (Optional)
– IDA Pro + IDAPython (Optional)

• Hardware:
– 64 GB or greater available storage
– 32 GB or greater RAM

C. Installation

Download the Docker archive from the following URL:

• https://zenodo.org/record/5787482

Then import and run it:
# docker load --input tiara-artifact.tar.gz
# docker run -it tiara-artifact

This will create a Ubuntu 20.04 environment with a proper ver-
sion of Python and other dependencies installed. The docker
will start a shell in the virtual environment. All sliced graphs
and scripts are in the directory /app/tiara-artifact.

D. Complete Experiment Workflow

Note that if you do not have access to IDA Pro or only want
to evaluate the pre-trained models, simply go to the last step.

1) Compilation: Compile sample projects using Microsoft
Visual Studio with the debugging flags (e.g., /Zi) turned on,
to generate PDB files. The compilation commands used vary
across different open-source C++ projects. Please refer to their
documentation for a detailed description.

We will use prog.exe as an example to introduce the
remaining steps.

2) Ground Truth Types from Debugging Information Ex-
traction: For each compiled program, there is a correspond-
ing PDB file generated by MSVC containing the debugging
information. Extract the type information from it by using
dia2dump.exe.

For example, prog.pdb is generated along with
prog.exe. Start a Windows command prompt (cmd) and
run the following command:
> dia2dump.exe prog.pdb -o prog.dump.csv

It extracts the necessary information in the given PDB file and
saves it in the named CSV file.

3) Disassembling and Slicing: Start IDA Pro to disassem-
ble the sample binary program. When you see “AU: idle”
on the left-bottom corner of IDA Pro, load the IDAPython
script tslice/main.py. Once the script has been loaded
successfully, the “main.py loaded” message will be displayed
on the console.

Type start() to compute slices with TSLICE or
start(’noslice’) with SSLICE. IDA Pro will popup
a message box “running Python script” and may look like
seemingly getting stuck when it is actually busy with slicing.

When slicing is done, TSLICE and SSLICE will generate
prog.json and prog.noslice.json, respectively.

4) Training and Test Data Generation: Transfer all JSON
files to the machine where learning and prediction will be
done.

For the inter-program experiments reported in Table II,
data from several projects is used for training and/or testing
purposes. We need to combine several files together. For
example, to generate the training data for C6a, run:

# combine.py clang.json cmake.json bitcoind.json
--mergeout out.json

It collects the graphs from the three JSON files and saves them
in out.json.

For the intra-program experiments, we split the JSON files
into the training and testing parts. For example, to generate
the training and test data for I2a, run:

# combine.py cmake.json listExtension.json --split
--trainout train.json --testout test.json

This will read the graphs from the two given JSON files and
split them into the training and test data in two separate files.

5) Training and Testing: The following command trains a
model using A.json, tests it with B.json, and generates a
file named model.pt:

# train.py -t A.json -v B.json -m model.pt

To evaluate a model, run:
# eval.py -f X.json -m model.pt

To evaluate all pre-trained models, simply run the shell
script:

# /app/tiara-artifact/eval-all.sh

The DGL Library may prompt to ask what valid backend
to use. Type pytorch and hit enter to continue.

E. Evaluation and Expected Results

Evaluating this work by using the pre-trained models should
reproduce all experimental results given in Table II. Similar
results are expected to be obtained if new models are trained.
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