
PolyTOPS: Reconfigurable and Flexible Polyhedral
Scheduler

Gianpietro Consolaro∗‡, Zhen Zhang∗, Harenome Razanajato∗, Nelson Lossing∗, Nassim Tchoulak∗,
Adilla Susungi∗, Artur Cesar Araujo Alves∗, Renwei Zhang†, Denis Barthou∗, Corinne Ancourt‡,

Cedric Bastoul∗,
∗Huawei Technologies France, Paris, France †Huawei Technologies Co., Ltd., Beijing, China

‡Mines-Paris PSL University

Abstract—Polyhedral techniques have been widely used for
automatic code optimization in low-level compilers and higher-
level processes. Loop optimization is central to this technique,
and several polyhedral schedulers like Feautrier, Pluto, isl and
Tensor Scheduler have been proposed, each of them targeting a
different architecture, parallelism model, or application scenario.
The need for scenario-specific optimization is growing due to
the heterogeneity of architectures. One of the most critical
cases is represented by NPUs (Neural Processing Units) used
for AI, which may require loop optimization with different
objectives. Another factor to be considered is the framework or
compiler in which polyhedral optimization takes place. Different
scenarios, depending on the target architecture, compilation
environment, and application domain, may require different kinds
of optimization to best exploit the architecture feature set.

We introduce a new configurable polyhedral scheduler,
PolyTOPS, that can be adjusted to various scenarios with
straightforward, high-level configurations. This scheduler allows
the creation of diverse scheduling strategies that can be both
scenario-specific (like state-of-the-art schedulers) and kernel-
specific, breaking the concept of a one-size-fits-all scheduler
approach. PolyTOPS has been used with isl and CLooG as code
generators and has been integrated in MindSpore AKG deep
learning compiler. Experimental results in different scenarios
show good performance: a geomean speedup of 7.66x on
MindSpore (for the NPU Ascend architecture) hybrid custom
operators over isl scheduling, a geomean speedup up to 1.80x
on PolyBench on different multicore architectures over Pluto
scheduling. Finally, some comparisons with different state-of-the-
art tools are presented in the PolyMage scenario.

Index Terms—Polyhedral Optimization, Polyhedral Scheduling,
Configurability, Flexibility

I. INTRODUCTION

The polyhedral model has been widely used in modern
optimizing compilers and frameworks for deep learning work-
loads, e.g., TC (Tensor Comprehension) [1] for PyTorch,
AKG (Automatic Kernel Generator) [2] for MindSpore [3],
nGraph [4] and Affine Dialect in MLIR [5]. Loop-based repre-
sentations of computational kernels, combined with automatic
mathematical (affine) transformations, enhance parallelism
and data locality efficiency on the target hardware. This
technique is characterised by its ability to systematically
optimize execution time in most cases without (or with minimal)
manual adjustment. It has been demonstrated to be successful
on CPU, GPU and NPU (Neural Processing Unit), resulting in
impressive performance improvements.

The core of the polyhedral optimization is the polyhedral
scheduler, which applies affine transformations on the input
for-loops according to its objective function. Some well-known
polyhedral schedulers are the Feautrier scheduler [6], Pluto [7],
isl-scheduler [8][9], and Tensor Scheduler [10]. They are
characterized by the use of different cost functions, optimizing
for different specific scenarios.

Polyhedral scheduler algorithms are based on mathematical
optimization. Affine constraint systems and cost functions are
constructed to maximize hardware efficiency by iteratively
solving Integer Linear Programming (ILP) problems to find
optimal transformations for each loop dimension. The lack
of controllability and configurability makes it challenging
to produce efficient transformations for new architectures or
scenarios. For example, isl was used in the AKG project to
target Huawei’s NPU Ascend architecture [11]. It performs
well in many cases but poorly in others. For instance, it cannot
produce the transformation illustrated in Listing 1, which could
easily be lowered on the vector unit of the NPU.

f o r (i = 0 ; i < 100 ; i ++){
f o r (j = 0 ; j < 1 0 ; j ++){

0 : c [j] [i] = a [j] [i] * b ;
1 : d [i] [j] = e [i] [j] * x ;

}
}

f o r (j = 0 ; j < 1 0 ; j ++)
f o r (i = 0 ; i < 100 ; i ++)

0 : c [j] [i] = a [j] [i] * b ;

f o r (i = 0 ; i < 100 ; i ++)
f o r (j = 0 ; j < 1 0 ; j ++)

1 : d [i] [j] = e [i] [j] * x ;

Listing 1: Left: original for-loop code. It is fully parallel and suitable for
GPU architecture. The Right one is optimal for vectorization of the NPU (for
both vectorized data loading and computing) thanks to the loop distribution
and the interchange for the statement 0. Pluto or isl may be able to find the
loop distribution (specifying the correct fusion heuristic), but no interchange

would be found.

Improving performance when state-of-the-art schedulers
cannot find the optimal transformation can be attempted
by adjust the initial scheduling results through additional
passes, as can be seen, for example, in AutoPoly [12], the
AKG module for Ascend backend. This method can be
cumbersome, considering the complexity of finding optimal
transformations that preserve the semantics. A recent idea,
“Constraint Injection” [13], proposed to build an interface for
the classical polyhedral scheduler that allows the injection of
custom constraints or partial transformations. This approach can
drive the scheduler to generate appropriate initial scheduling.

ar
X

iv
:2

40
1.

06
66

5v
1

 [
cs

.D
C

]
 1

2
Ja

n
20

24

It shows execution time speed-ups of deep learning workloads
on GPU. However, it is kernel-specific and only allows to
optimize for the specific input case. Generalizing an expected
optimization for any input kernel requires more engineering
effort on pre-processing, e.g. dependency analysis, pattern
matching on memory access, etc.

This paper proposes a novel design of a fully controllable
iterative polyhedral scheduler: PolyTOPS. It allows the pro-
duction of architecture-oriented optimizations (e.g. Listing 1)
for any case from simple user configurations, and it can be
easily adapted to new scenarios. PolyTOPS innovations are
twofold:

• Configurability: PolyTOPS provides a rich expressiv-
ity on schedule strategies specification via an easy-to-
use interface. All aspects of an iterative scheduling
mechanism can be configured, e.g., parallelism control,
vectorization, temporal and spatial locality, fine-grained
controlling of statements loop fusion and fission, as
well as partial schedule specifications. Moreover, the
behaviour of PolyTOPS can be elegantly changed into
a well-defined approach, e.g., Pluto-style, Feautrier-style,
isl-style, Tensor-scheduler-style or extended to define
novel strategies, e.g., scenario-specific, kernel-specific,
extending the idea presented in [13].

• Flexibility: Instead of a single “one-size-fits-all” method,
PolyTOPS exhibits a versatile design that can address
scenario-specific optimizations. It is possible to start
from a given generic strategy with little effort and then
incrementally adjust this strategy for some particular loops
of the kernel or for some particular architecture. PolyTOPS
provides an extendable infrastructure for an iterative
scheduler where constraints can be finely tuned – from
predefined strategies down to dedicated transformation
heuristics – for each statement and loop. We show how
our approach can target multiple architectures (different
types of CPU and Ascend NPU) and compare speedups
with state-of-the-art schedulers.

We briefly introduce background notions for polyhedral
schedulers in Section II. PolyTOPS design and implementation
are detailed in Section III, and benchmark results on CPU and
NPU are presented in Section IV.

II. BACKGROUND

Polyhedral optimization of kernels can roughly be decom-
posed into three stages. First, the input code and loop nests are
represented as polyhedra. Then, algebraic transformations are
applied to them, finally, a new optimized code that scans the
transformed polyhedra is generated. In this section, we provide
an overview of the techniques used in the first two stages and
describe state-of-the-art methods.

A. Polyhedral Model

1) Iteration Domain: For each statement of the code, the
iteration domain represents the range of values taken by the loop
iterators surrounding this statement. The vector i⃗t composed by
these iterators is called the iteration vector. Iteration domains

are assumed to be polyhedra of iteration vectors and can depend
on parameters. The vector of parameters N⃗ is composed of
variables that are constant during the execution of the code.
The domain D of a statement S is defined as:

DS =

 i⃗t

∣∣∣∣∣∣ MS ·

 i⃗t

N⃗
1

 ≥ 0

where MS is a matrix defining the domain polyhedron.

2) Dependencies and Legality: A dependency δS→R from
statement S to statement R means that statement S needs to
be executed before statement R to preserve the semantics of
the program. This dependency is defined on a set of iteration
vector values for S and R, with the following constraints: S
and R access to the same memory location (either S or R is a
write) and S is executed before R. These constraints, similarly
to the domain of statements, define a polyhedron:

δS→R =

(

i⃗tS
i⃗tR

) ∣∣∣∣∣∣∣∣ MS→R ·

i⃗tS
i⃗tR
N⃗
1

 ≥ 0

3) Scheduling Function: A scheduling function Θ maps

each statement and iteration vector of its domain to a unique
multi-dimensional date. Dates are totally ordered with the lexi-
cographic order. Given a statement S, ΘS is a multidimensional
function defined dimension-wise by affine forms ϕS,i. These
affine forms depend on iterators i⃗t and parameters N⃗ . ΘS can
be defined as follows:

ΘS :
DS(N⃗)

i⃗t

→ Nm

7→ (ϕS,0(i⃗t) ... ϕS,m−1(i⃗t))

where m is the number of scheduling dimensions, and ϕS,i are
defined by:

ϕS,i(i⃗t) = TS,i ·

 i⃗t

N⃗
1

 (1)

where TS,i is the transformation vector.
For a statement S surrounded by k nested loops, at most

2k + 1 dimensions [14] are necessary to express all possible
scheduling transformations (strip mining is not expressed
through the scheduler), but in practice, there is no upper limit
on the number of dimensions.

B. Scheduler

The polyhedral scheduler is an algorithm that computes the
scheduling function Θ. Two types of constraints govern the
computation of this function. It has to preserve the semantics
of the initial code and optimize some cost functions. Both
types of constraints are integer affine constraints.

We now give an overview of the main components necessary
to build the ILP problem, with the proximity cost function
representing the most used cost function defined in the state-
of-the-art:

1) Scheduling Problem Formalization: PolyTOPS is an
iterative scheduler: The algorithm will find the full scheduling
transformations Θ step by step, building an ILP problem to find
each scheduling dimension ϕS,i, starting from the outermost
dimension until the innermost dimension. The algorithm makes
sure to terminate when enough scheduling dimensions are
found. The scheduler aims to find the optimal vector of
coefficients TS,i for all S.

2) Validity/Legality Constraint: The validity constraint has
been introduced by Feautrier [6]. This is the core of the
polyhedral scheduler because it constrains the transforma-
tion vectors TS,i to have values that preserve the program
semantic (ensuring the legality of the schedule). For each
dependency δS→R, S has to be executed before R:

(i⃗t, i⃗t
′
) ∈ δS→R ⇒ ΘR(i⃗t

′
) ≻ ΘS(i⃗t)

where the symbol ≻ stands for lexicographically greater.
Considering that for an iterative scheduler, each dimen-

sion ϕS,i is computed from the outermost to the innermost,
the definition of validity becomes:

(i⃗t, i⃗t
′
) ∈ δS→R ⇒ ϕR,i(i⃗t

′
) ≥ ϕS,i(i⃗t) (2)

until the dependency δS→R is satisfied. This implication can
be linearized using the Farkas Lemma [15][6]: constraints are
then expressed only on the space of variables composed by
the vectors TS,i and TR,i.

3) Progression Constraint: The progression constraint is
added at each scheduling iteration to ensure the progression
of the algorithm. Its role is to ensure that the schedule defines
a complete order for the iteration space and to make sure that
the trivial zero solution is avoided. The constraint definition
forces the next scheduling solution to be linearly independent
of previous solutions in the iteration space.

We define the matrix HS as the concatenation (row by row)
of previous scheduling dimension solutions TS,i. We define
the orthogonal complement H⊥

S as follows:

H⊥
S = I −HT

S (HSH
T
S)

−1HS

where I is the identity and HT
S is the transposition of HS .

The progression constraint, considering that we limit our
scheduling search space in the positive orthant, is defined as
the sum (row by row) of the orthogonal complement matrix
as follows,

∀i,H⊥
S,i · h∗

S ≥ 0 ∧
∑
i

H⊥
S,i · h∗

S ≥ 1 (3)

with H⊥
S,i a row of H⊥

S , and h∗
S the next solution to be

computed.

4) Proximity Cost Function: The Proximity cost function
was defined by Bondhugula et al. [7] in order to find among
legal solutions the ones that optimize temporal locality.

The idea is to minimize the distance (in scheduling time)
between multiple accesses to the same memory position. Data
dependences describe multiple accesses to the same memory

position, then the Proximity objective is to minimize the
dependency distance. For a dependency δS→R, the constraint
is defined by:

(i⃗t, i⃗t
′
) ∈ δS→R ⇒ ϕi,R(i⃗t

′
)− ϕi,S(i⃗t) ≤ u⃗N⃗ + w (4)

where u⃗ and w are the cost functions to minimize.
Proximity accurately represents a useful transformation

characteristic and, indirectly, favours the first dimensions to be
parallel, with a dependency distance of 0.

C. State of the Art

In the polyhedral framework defined before, we briefly
describe various state-of-the-art schedulers.

Feautrier’s [6] scheduler is the first iterative polyhedral
scheduler. The target is to optimize for single-core SIMD
CPUs. The Validity constraint is combined with the Feautrier
cost function. This cost function aims to find sequential outer
dimensions that could carry as many dependencies as possible.
This can lead to inner loop parallelism for SIMD vectorization
exploitation.

Pluto [7] iterative scheduler introduces the Proximity cost
function previously described. The aim is to exploit high
parallelism in architectures like multi-core CPUs. A more
recent version, Pluto+ [16], extends features to support loop
reversal and negative skewing and finds the solutions for some
corner case problems that could not be solved by Pluto. Pluto-
lp-dfp [17] is an extension resorting to linear programming
instead of ILP. This relaxation decomposes the scheduling
algorithm into a sequence of transformations, showing the
potential benefits in terms of compilation time.

isl [8][9] iterative scheduler uses both the re-implementations
of Pluto and Feautrier schedulers to maximize parallelism. If
no external parallelism is found, the Feautrier cost function is
applied to remove as many dependencies as possible and to
find parallelism in subsequent dimensions.

Tensor [10] iterative scheduler is applied to tensor-based
applications, such as AI, typically characterized by high
parallelism and few dependencies. Their focus is the definition
of the Contiguity cost function for cache spatial locality. It
tries to find loop permutations that optimize memory access
patterns. It achieves good results but is domain-specific, limiting
scheduling transformations to loop interchanges only.

One-shot [14] is a scheduler that is not iterative and
is computed by representing the whole multidimensional
transformation Θ(S) as a single ILP problem. This formulation
of the problem makes it easier to represent global constraints
and cost functions over the full schedule Θ as opposed to
iterative schedulers where constraints and cost functions are
usually local to a single scheduling dimension ϕi. However, the
large number of variables and constraints leads to scalability
issues and extended compilation times. Extensions to the One-
shot scheduler [18][19] propose addressing the complexity
issue via a dictionary of cost functions and a cache mechanism
of previously found optimal solutions.

Current research suggests that existing schedulers are tailored
to a specific objective function, targeting some architecture.

Their behaviours are predetermined, and the available options
do not provide the flexibility needed to achieve good results in
different areas, for different architectures, and within different
compilers. In AKG, for instance, the optimization target
architectures are diverse, so any of the existing schedulers
may be successful in some scenarios but not in others. The
state-of-the-art still lacks configurability and flexibility.

Several recent works have explored more configurable
approaches: PolyLingual [20] is a work-in-progress domain-
specific language (DSL) for polyhedral schedulers. This DSL
offers building block functions and types that ease the design
of polyhedral schedulers. Expert knowledge is still required to
fully design the scheduler logic, a new scheduler or any of the
previously cited schedulers, but the set of scheduling strategies
it offers should be very wide. However, the designer has to
consider all potential edge cases and guarantee the algorithm’s
completeness.

A lower-level approach is to directly define the set of polyhe-
dral transformations for a code, as proposed by Tiramisu [21].
In this case, the scheduler is replaced by an AI-guided search
strategy among the combination of loop transformations given
by the expert. In Clint [22] instead, a graphic interface allows
the application of manual transformations directly to the
polyhedron. Chlore [23] tackles the explainability problem
and, given an input kernel and its transformed version, tries
to recover the set of polyhedral transformations necessary
to obtain the same transformed version. Finally “Constraint
Injection” [13] proposes a way to inject simple constraints in
the polyhedral scheduler, but it is essentially designed to target
kernel-specific optimizations.

III. POLYTOPS

PolyTOPS is a configurable iterative polyhedral scheduler.
The objective is to propose a flexible, easy-to-adjust tool
to ensure that existing strategies, or a mix between existing
strategies (generalizing what isl proposes), can be described
with very little effort while still allowing the expert to guide
the scheduler more precisely if needed be. To achieve this,
PolyTOPS provides a general iterative scheduler scheme, where
the strategy can be defined through a configuration file.

The workflow of PolyTOPS is described in Fig. 1. The main
blocks are similar to schedulers such as isl [8] or Pluto [7].
Both the input and the output of PolyTOPS are polyhedral
representations of the code. The main parts of the input are the
initial schedule and the dependencies. They can be expressed
as isl objects or in OpenScop format. The result of the core
ILP-based scheduling algorithm may be further post-processed:
this phase handles tiling, intra-tile optimization and skewing
for wavefront parallelism (see [7, Section 5.3]). It is important
to highlight that no tile-size decision is implemented in the
core scheduler. Tile sizes must be externally provided for tiling
to be applied. Finally, as PolyTOPS can output isl objects or
an OpenScop representation, the code generation can then be
done with tools or libraries such as isl or CLooG [24].

The significant contribution of PolyTOPS is in the config-
uration block, which supports two kinds of interfaces, JSON

Fig. 1: PolyTOPS workflow representation, showing the major blocks,
including the post-processing and the configuration. We support both

Openscop and isl-representation as Polyhedral Representation

and C++. This feature allows the specification of high-level
optimization strategies. Predefined or new strategies can be
composed or extended through simple keywords. Further
customization, down to kernel-specific strategies such as
statement fusion or partial schedule specification, is also
possible.

The configuration of PolyTOPS controls the scheduler for
each specific scheduling dimension. For example, we could
add cost functions for a specific dimension, distribute some
statements in another dimension or add constraints to another
one. The configurable features can be divided into two main
types:

• Local configurations: They directly control the ILP cre-
ation. Predefined cost functions can be selected, and
their priority order can be specified. New variables,
ILP constraints or cost functions can be defined. Last
but not least, it is possible to define the statement
distribution/fusion for each dimension. It will be translated
internally into specific constraints that will force the
distribution specification.

• Global Configurations: These are higher-level features
that do not only impact the definition of the ILP for
a specific scheduling dimension. These features require
several logic steps in the scheduling algorithm to be
satisfied. For example, the directives are suggestions to
the scheduler to attempt to vectorize or parallelize a
specific loop. Another example is AutoVectorization, used
to automatically detect (based on the memory stride and
access pattern) what loops should be scheduled innermost
for possible vectorization.

Let us now describe all possible configurations, starting from
the locals and going on with the global ones.

A. Local Configurations

1) Cost functions control: A specific combination of pre-
defined or new cost functions and their priorities (given by
the textual order, from leftmost to rightmost) can be defined
or omitted for each scheduling dimension (Listing 2 line 7).
The objective function is the vector of variables. The order
of the variables is important because they are minimized in
lexicographic order.

1{
2 "scheduling_strategy" : {
3 "new_variables" : ["x"],
4 "ILP_construction" : [
5 {
6 "scheduling_dimension" : "default",
7 "cost_functions" : ["contiguity", "proximity", "x"]
8 }
9],
10 "custom_constraints" : [
11 {
12 "scheduling_dimension" : "default",
13 "constraints" : ["x - Si_it_i >= 0"]
14 }
15],
16 "fusion" : [
17 {
18 "scheduling_dimension" : 0,
19 "total_distribution" : false,
20 "stmts_fusion" : [["0", "1"], ["2"]]
21 }
22],
23 "directives" : [
24 {
25 "type" : "vectorize",
26 "stmts" : "0",
27 "iterator" : "1"
28 }
29]
30 }
31}

Listing 2: JSON example showing most of the configurable features of
PolyTOPS, including cost function control and definition, constraints

definition, fusion control and directives

New variables can be introduced, as shown in Listing 2 line
3, used in custom constraint definitions and as cost functions.

The predefined cost functions are proximity from
Pluto [7], feautrier [6], contiguity inspired from the
cost function defined in Tensor scheduler [10], and a new
simple one named bigLoopsFirst that tries to schedule
first (outermost) the loops with the largest iteration space.

The contiguity cost function is designed to schedule
the iterators in the order that offers a better spatial locality.
For each statement S, given the set of iterators i⃗tS , we define
a cost function named contiguity as follows:

contiguity(S) =

|T it
S |∑

i=0

T i⃗t
S,i × cS,i (5)

contiguity(S) ≥ 0

where cS,i is a support coefficient that describes a priority order
optimizing the memory access pattern. For instance, focusing
on the kernel in Listing 1(left), the two vectors of support
coefficient c⃗S0 and c⃗S1 would be respectively:

c⃗S0 = (10 1)
c⃗S1 = (1 10)

with i⃗tS0 = i⃗tS1 =

(
i
j

)
to force the scheduler to select the outermost loops with the
smallest contiguity coefficients.

The bigLoopsFirst (BLF) cost function is designed to
schedule the loops with the largest domains outermost. The
design is the same as the contiguity cost function, but
the coefficients ci used in Formula 5 are based on prioritizing
the dimensions with the highest bounds first. BLF can be

useful in scenarios where kernels have a lot of parallelism,
in which only one level or a few levels of outer parallelism
are exploitable by the architecture. We try then to maximize
the number of parallel iterations. For instance, focusing on
the kernel in Listing 1, the two vectors c⃗S0 and c⃗S1 would be
respectively:

c⃗S0 = (1 10)
c⃗S1 = (1 10)

with i⃗tS0 = i⃗tS1 =

(
i
j

)
.

2) Custom Constraints: Using a simple interface, custom
constraints are affine inequalities or equations. They can
constraint the scheduling functions ϕS,i(i⃗t) defined by Eq. (1),
for any statement S and dimension i through their vector of
coefficients, TS,i. We can separate this vector into subvectors
(T i⃗t

S,i T
N⃗
S,i T

1
S,i). A constraint can involve any of the coefficient

of TS,i using the notation:

S[stmt] [var type] [idx var],

where i is implicitly defined as the current dimension consid-
ered (iterative scheduler) and:

• stmt is a statement number from 0 to M − 1 (where M
is the number of statements), following the initial textual
order. It identifies a unique statement S.

• var type can be one of the following keywords: it refers
to the subvector T i⃗t

S,i, par refers to the subvector T N⃗
S,i and

cst refers to the constant term T 1
S,i.

• idx var is the index of the variable. The outermost iterator
of a statement is considered iterator 0. The order of the
parameters is the textual order in the input program.

Additionally, any user-defined variable can be used in the
constraints. Notice that replacing stmt or idx var with the
keyword ‘i’ represents the sum of all the variables of that
type.

For example, a constraint that disables skewing for Statement
3 would be expressed by:

S3 it i ≤ 1.

This is equivalent to: ∑
k

T i⃗t
S3,k ≤ 1.

Custom constraints can be defined either for specific scheduling
dimensions or for all of them using the fusion keyword (see
the example in Listing 2 lines 10-15).

The constraints that are accepted must be affine. This means
that given the vector of variables V⃗ just described, it is possible
to define all the constraints in the form:

constraint = AV⃗ + c
≥
=

0

where A is a matrix of integer coefficients, and c is an integer.

S t r a t e g y I n f o s t r a t e g y (l a s t s o l u t i o n , s t m t s , o l d s t r a t e g y){
S t r a t e g y I n f o n e w s t r a t e g y ;
i f (! l a s t s o l u t i o n . p a r a l l e l &&

! o l d s t r a t e g y . r e c o m p u t e l a s t s o l u t i o n) {
n e w s t r a t e g y . r e c o m p u t e l a s t s o l u t i o n = t r u e ;
n e w s t r a t e g y . c o s t f u n c t i o n s = {” f e a u t r i e r ”}

} e l s e {
n e w s t r a t e g y . c o s t f u n c t i o n s = {” p r o x i m i t y ” } ;

}
re turn n e w s t r a t e g y ;

}

Listing 3: An isl style configuration described using the C++ configuration.
Feautrier is used as the fallback case when the Proximity fails to extract

parallelism

3) Fusion/Distribution control: Custom loop-fusion deci-
sions can be specified for a specific kernel. We give the ability
to control the fusion, selecting which statements to fuse and
which ones to distribute for each level. Listing 2, lines 16-22,
shows a configuration example specifying that statements 0 and
1 are to be fused and statement 2 distributed at the scheduling
dimension 0.

B. Global Configurations

1) Directives: Directives, Listing 2 lines 23-29, specify
that certain loops should be parallel, or vectorized
(scheduled innermost and not fused) or sequential. This
can be used to suggest partial code transformations while
the remaining scheduling transformation decisions are left to
the scheduler. The scheduler will try to satisfy the directives
unless scheduling legality can not be guaranteed. Directives
that prevent legality preservation are discarded.

2) Auto Vectorization: This option instructs the scheduler
to use a simple heuristic to detect dimensions that could
be vectorized for each statement. The heuristic looks for
dimensions that move contiguously in memory. The scheduler
then computes a scheduling transformation where: (1) the
vectorizable dimensions are scheduled as innermost and (2) the
corresponding statements are unfused for this scheduling dimen-
sion. For architectures such as CPUs or NPUs, vectorization
is critical for performance.

C. Configurations Strategy

The configurations can be specified using two different
interfaces, each of them more suitable to different configuration
scenarios:

1) JSON interface: The JSON interface, as seen in List-
ing 2, allows to tailor strategies for the input kernel. Local
configurations are statically defined and mapped to scheduling
dimensions. The configurations specify cost functions, extra
constraints and possible loop distributions. However, this
interface does not offer the freedom to define complex strategies
that take outermost partial schedules into account.

2) C++ interface: In this configuration, the strategy is
defined in a dynamic library that is loaded by PolyTOPS
and called before each scheduling iteration. This enables a
dynamic specification of each scheduling strategy, generalizing

isl [8] strategy, which calls a Pluto-style scheduler as default
and a Feautrier-style scheduler as fallback. This example is
shown in Listing 3. Furthermore, the strategy definition has
access to many details concerning the statements and the partial
schedule computed until the present iteration. This gives the
opportunity to create more complex strategies.

The configuration is expressive enough to allow switching
between different strategies like Pluto-style, Feautrier-style,
isl-style, and TensorScheduler-style and define new ones. The
only limit is that the configuration can only influence the core
“Scheduler” block of Fig. 1. For instance, the main Pluto ILP
strategy can be easily replicated using the configuration, but
the post-processing and internal fusion heuristics cannot.

D. Common Algorithmic Structure

PolyTOPS relies on an algorithmic structure shown in
Algorithm 1 that is common to the iterative schedulers, such
as Feautrier’s [6], Pluto [7], isl-scheduler [8] and Tensor
Scheduler [10]). This is a generalization of Pluto algorithm,
using the configuration strategy to drive the scheduler.

The termination criteria of the algorithm are to check if the
iteration space is completely covered and if all the dependencies
are fulfilled (line 42). The algorithm iterates to find a new
scheduling dimension until the termination criteria are met
(from line 4 to line 42). To compute the next dimension ϕ, the
scheduler firstly verifies if the fusion heuristic (or the interface
for PolyTOPS) imposes a loop distribution for this scheduling
dimension (lines 8-14). If not, the algorithm continues with
the standard step (lines 16-21), constructing the ILP system
composed of the cost functions and constraints defined for
the dependencies that are not yet completely satisfied. If
no solution is found, the algorithm attempts to remove the
dependencies satisfied by the previous scheduling dimension,
and it continues building the ILP problem and trying to
find a solution (lines 23-30). If all preceding steps fail, loop
distribution is enforced by analyzing the strongly connected
components (SCC) of the dependency graph and distributing the
loop of different SCC (lines 32-36). Once the solution is found,
it updates the progression constraint, ensuring that the next
computed dimension of ϕ will be linearly independent from the
previous ones and that the schedule is a bijective transformation.
The algorithm computes Bands and ParallelDimension.
Bands are used in post-processing tiling to determine which
dimensions can be tiled. ParallelDimension indicate which
scheduling dimensions are parallel.

This algorithmic scheme covers all iterative schedulers of
the literature just by defining the appropriate configurations.
PolyTOPS extends them with the ability to select and define
the cost functions and constraints (lines 16, 26). The JSON
interface is expressed statically, so it is parsed once at the
beginning of the scheduling algorithm, while the C++ interface
allows for a logic-based decision using the information from
the schedule Θ found so far (line 6), so it is updated for each
scheduling iteration. For both cases, the configuration impacts
loop fusion/distribution decision (line 9).

Algorithm 1: PolyTOPS Scheduler

Data: Input Dependencies deps, Statements S, Scheduling
Configuration config

Result: Scheduling Θ ∀S, Tilability: Bands, Parallelism info
for each level: ParallelDimension

1 constraints ← CreateConstraints(config , deps);
2 dimension ← 0;
3 band← 0;
4 repeat
5 if config .type = C++ then
6 config ← UpdateConfiguration(Θ);
7 end
8 if config .Distribute(dimension) then
9 ϕ← Distribute(dimension, config);

10 Θ.Append(ϕ);
11 Bands.Append(band);
12 RemoveSatisfiedDependencies(deps);
13 /* Ends the current band */
14 band← band+ 1;
15 else
16 ILP ← constraints(dimension);
17 ϕ← Solve(ILP);
18 if ϕ ̸= ∅ then
19 Θ.Append(ϕ);
20 /* Same band as before */
21 Bands.Append(band);
22 else
23 /* Change band and retry! */
24 RemoveSatisfiedDependencies(deps);
25 band ← band+ 1;
26 ILP ← constraints(dimension);
27 ϕ← Solve(ILP);
28 if ϕ ̸= ∅ then
29 Θ.Append(ϕ);
30 Bands.Append(band);
31 else
32 ϕ← UnfuseSCCs(deps);
33 Θ.Append(ϕ);
34 Bands.Append(band);
35 RemoveSatisfiedDependencies(deps);
36 band← band+ 1;
37 end
38 end
39 end
40 ParallelDimension.Append(ϕ.isParallel());
41 P ← ProgressionConstraint(Θ);
42 until P = ∅ && deps = ∅;
43 return Θ;

Legality constraints (Eq. (2)) and progression constraints
(Eq. (3)) are always included when computing a solution,
whatever the configuration provided. This implies that the
scheduler always terminates (similar proof as the one for Pluto
[7]). Moreover, the scheduler is guaranteed to find a valid
schedule if no custom constraints and no fusion/distribution
control are defined in the configuration. Indeed, strategies do
not prevent finding a legal schedule, and directives are ignored
when they conflict with the legality. Only the custom constraints
and fusion/distribution may lead to an empty solution. This
is different from approaches such as Tiramisu [21] or other
approaches that do not use a scheduler since, in this case, each
scheduling function obtained by composing transformations

TABLE I: (Ascend 910 NPU) Custom Operator results, showing the number
of cycles for each case and the speedup obtained by PolyTOPS results over

the isl ones

Case Input/Output isl
(cycles)

PolyTOPS
(cycles) Speedup

LU
decomp 16x16 27943 18333 1.52

trsmL
off diag

16x16x16 15375 704 21.84
16x16x32 31126 1122 27.74
16x16x48 45172 1518 29.76
16x16x64 62414 1938 32.21
16x16x80 75611 2324 32.53
16x16x96 93387 2724 34.28

16x16x112 108384 3223 33.63

trsmU
transpose

16x16x16 55370 22100 2.51
16x32x16 107159 44298 2.42
16x48x16 160547 64281 2.50
16x64x16 212907 87914 2.42
16x80x16 267627 106479 2.51
16x96x16 317589 130221 2.44

16x112x16 370941 151204 2.45

has to be proved valid.

IV. EXPERIMENTAL RESULTS

Our experiments focus on demonstrating the flexibility of
PolyTOPS, capable of adapting to the different scenarios
shown in the following session, and the expressiveness of
the configurability, capable of changing the behaviour of the
scheduler.

A. MindSpore Hybrid Custom Operators

In the first scenario, PolyTOPS is used in the context of
MindSpore [3] for the generation of custom operators on
NPU hybrid custom operators [25] for AI applications. The
experiments are run on an Atlas 800 (model 9010) server
featuring 8 Ascend 910 NPU accelerators [26][27]. The goal
is to define custom operators differently from the default AI
operators that are already predefined. When creating these
operators, it is possible to express some directives passed
through the AKG [2] compiler to PolyTOPS as part of the
internal configuration. PolyTOPS schedules the operator and
tries to comply with the provided directives. Table I shows
the speedups obtained with such directives compared to isl
(the default scheduler previously used in AKG [2]), both cases
implemented in MindSpore and isl is used for code generation.
The speedups are significant for all the 3 operators with all
the different sizes, with a geomean speedup of 7.66x.

These results come from a manual specification, mostly
focusing on vectorization directives that will end up applying
interchanges and vectorizing innermost. We can see an example
of one of the operators in Fig. 2a. In this case, the directives
hint to vectorize the loop k. The result obtained is shown in
Fig. 2b. The speedup obtained is because isl would detect k
as parallel and schedules it as the outermost loop, thus losing
the vectorization opportunity.

Although these results are achieved through manual directive
specifications, we discovered that the same configuration
file, enabling auto-vectorization and using the proximity cost

def t r s m L o f f d i a g (a , b) :
i n v e r s e 0 = a l l o c a t e (b . shape , b . d t y p e)
row = b . shape [0]
c o l = b . shape [1]
f o r i in r a n g e (row) :

f o r j in r a n g e (i) :
f o r l in p a r a l l e l (c o l / / 1 6) :

f o r k in v e c t o r i z e (1 6) :
i n v e r s e 0 [i , l *16+k] = a [i , j] * b [j , l *16+k]
b [i , l *16+k] = b [i , l *16+k] − i n v e r s e 0 [i , l *16+k]

re turn b

(a) Input code. Directives are displayed in red.

def t r s m L o f f d i a g (a , b) :
i n v e r s e 0 = a l l o c a t e (b . shape , b . d t y p e)
row = b . shape [0]
c o l = b . shape [1]
f o r l in p a r a l l e l (c o l / / 1 6) :

f o r i in r a n g e (row) :
f o r j in r a n g e (i) :

f o r k in v e c t o r i z e (1 6) :
i n v e r s e 0 [i , l *16+k] = a [i , j] * b [j , l *16+k]

f o r k in v e c t o r i z e (1 6) :
b [i , l *16+k] = b [i , l *16+k] − i n v e r s e 0 [i , l *16+k]

re turn b

(b) Optimized code (before tiling) thanks to PolyTOPS

Listing 4: Custom Operator example.

function, could systematically be used for all kernels for all
sizes. This suggests that the ability, through configurations, has
the potential not only to obtain kernel-specific optimizations
but also to generate effective heuristics for groups of use cases
or specific scenarios.

B. Comparing scheduling strategies on Polybench

The second part of our experiments is focused on the
Polybench [28] benchmark. In this experimental section, we
chose to compare PolyTOPS results against Pluto. This section
uses CLooG [24] for code generation for all schedulers.

We repeated the tests in three different system configurations:
• AMD: AMD EPYC 7452, with 32 cores (2 threads for

each core), 2 sockets. 256 MiB of L3 cache. The compiler
version is gcc-11.3.

• Intel1: Intel Xeon E5-2683 CPU (x86 64), with 2 sockets
with 16 cores each (2 threads for each core). 80 MiB of
L3 cache. The compiler is gcc-10.5.

• Intel2: Intel Xeon Silver 4215 CPU (x86 64), with 2
sockets with 8 cores each (2 threads for each core). 22
MiB of L3 cache. The compiler is gcc-10.5.

Polybench contains heterogeneous kernels coming from dif-
ferent domains, such as linear algebra, data mining and stencil
computation, and it represents a reference for the polyhedral
optimization benchmarks. In our experiments, the performance
obtained by PolyTOPS (using different configurations) is
compared to Pluto, using the last development version (commit
eddc385). For Pluto, the options --parallel --tile
--nounrolljam --no-diamond-tiling are used. The
last two are disabled because their post-processing is not
available in PolyTOPS so far.

Our study of PolyTOPS showcases three general strategies
for each kernel: The proximity cost function is used in the pluto-
style strategy (Listing 5 left), while contiguity cost function is

{
” s c h e d u l i n g s t r a t e g y ” : {

” I L P c o n s t r u c t i o n ” : [
{

” s c h e d u l i n g d i m e n s i o n ” : ” d e f a u l t ” ,
” c o s t f u n c t i o n s ” : [p r o x i m i t y ”]

}
] ,

}
}

{
” s c h e d u l i n g s t r a t e g y ” : {

” I L P c o n s t r u c t i o n ” : [
{

” s c h e d u l i n g d i m e n s i o n ” : ” d e f a u l t ” ,
” c o s t f u n c t i o n s ” : [” c o n t i g u i t y ” ,

” p r o x i m i t y ”] ,
” c o n s t r a i n t s ” : [” no− skewing ”]

}
] ,

}
}

Listing 5: JSON configurations showing pluto-style (on the left) and
tensor-scheduler-style (on the right)

used in the tensor-scheduler-style strategy (with proximity as
secondary). The no-skewing constraint is also applied (Listing 5
right). The isl-style strategy (Listing 3) defaults to proximity,
and if no parallelism is found, it recomputes the scheduling
dimension, resorting to Feautrier’s strategy. These strategies
are the same as their state-of-the-art counterparts regarding
ILP construction and the primary objective. Our heuristic
for the fusion strategy distributes statements with a different
loop dimensionality (number of surrounding loops), similar to
Pluto’s smartfuse heuristic.

Last but not least, we show the result obtained using a kernel-
specific configuration for each kernel. These configurations are
obtained by playing with the cost functions, fusion decisions
and vectorization directives, and they can change between
different architectures and kernels.

Out of clarity, in Fig. 2, we removed the kernels nussinov,
adi, deriche, ludcmp and floyd-warshall where the results are
identical between Pluto and PolyTOPS. For the first 4 cases,
both Pluto and PolyTOPS fall back to the initial schedule.
Performance can be improved but it requires support for the
negative scheduling coefficients. Floyd-warshall is too simple
to obtain speedups applying loop transformations.

1) Results Analysis: Focusing on the charts in Fig. 2, we
can see those heuristics like pluto-style, tensor-scheduler-style,
and isl-style perform differently depending on the kernel. For
example, isl-style performs well for stencil applications with
complex dependencies like jacobi-2d, jacobi-1d, and heat-
3d, where the Feautrier’s fallback is crucial for parallelism.
However, in other cases like correlation, covariance, durbin,
lu, and trmm, isl-style performs poorly. Pluto-style and tensor-
scheduler-style differ mainly in the no-skewing constraint.
Pluto-style finds a complex skewing that enables parallelism
in jacobi-1d, but the generated code is complex, degrading
the overall performance compared to the tensor-scheduler-style
solution. On the other hand, pluto-style outperforms tensor-
scheduler-style in fdtd-2d because parallelism (that requires
skewing) is crucial for performance improvements in this case.
In some cases, tensor-scheduler-style performs better because
of contiguity interchange.

As expected, the kernel-specific configuration outperforms
or at least obtains the same speedup as the other strategies,
obtaining an overall geomean speedup of 1.82 for AMD, 1.71
for Intel1 and 1.76 for Intel2.

For gramschmidt (Intel1 and Intel2), in the kernel-specific
configuration, thanks to a fusion decision based on maximizing
the data reuse, we can find a better speedup compared to Pluto.

2−5
2−4
2−3
2−2
2−1
20
21
22
23
24

Sp
ee

du
p

A
M

D
pluto-style tensor-scheduler-style isl-style kernel-spec

2−4
2−3
2−2
2−1
20
21
22
23
24

Sp
ee

du
p

In
te

l1

pluto-style tensor-scheduler-style isl-style kernel-spec

ja
co

bi
-1

d
tri

so
lv

sy
m

m
gr

am
sc

hm
id

t
fd

td
-2

d

at
ax

ja
co

bi
-2

d
do

itg
en

ge
su

m
m

v

bi
cg

he
at

-3
d

sy
rk

ch
ol

es
ky

ge
m

ve
r

m
vt

co
rre

la
tio

n
2m

m lu
sy

r2
k

3m
m

trm
m

co
va

ria
nc

e
ge

m
m

du
rb

in
se

id
el

-2
d

ge
om

ea
n

2−4
2−3
2−2
2−1
20
21
22
23
24

Sp
ee

du
p

In
te

l2

pluto-style tensor-scheduler-style isl-style kernel-spec

Fig. 2: Speedups (in log scale) of PolyTOPS (using 4 different configurations, pluto-style, tensor-scheduler-style, isl-style and kernel-specific) compared to
Pluto. The kernel-specific configuration is at least as good as the three previous ones. The results are sorted by decreasing kernel-specific speedups in Intel2

machine. Tests done on AMD (top), Intel1(middle) and Intel2(bottom)

A hardware counter analysis shows indeed a smaller number
of L3-cache-misses (around 5 times less) for our configuration
compared to Pluto’s.

Another case where fusion is important is showcased in
symm: Our fusion heuristic decides to distribute one statement
from the beginning, enabling parallelism. The result produced
by Pluto is, instead, fully sequential (a complete fusion is
applied).

Another factor to highlight is the fact that, for a few cases,
we need to change the kernel-specific configuration between
different architectures. This can be explained by several factors,
such as different cache sizes, different numbers of cores and
threads and different environments (compiler, architecture,
operating system). Among these cases, we can find jacobi-
2d, heat-3d and fdtd-2d, where for the Intel machines isl-style
is the most performant configuration, while for AMD a simple
loop distribution performs better.

In some cases, our pluto-style strategy can outperform the
Pluto scheduler, and in some other cases, the reverse situation
applies. This is mostly given by different fusion heuristics
implemented in the two schedulers. This gives an idea of the
impact of the fusion heuristic on the optimization problem and
the limits of the existing heuristics.

These experiments show that kernel-specific configurations
can be really useful to explore transformations with minimal
effort. However, the results also show that the generic strategies

la
rg

e
2x

la
rg

e

4x
la

rg
e

6x
la

rg
e

8x
la

rg
e

10
xl

ar
ge

12
xl

ar
ge

14
xl

ar
ge

16
xl

ar
ge

2−2

2−1

20
21
22
23
24

Dataset Size

Sp
ee

du
p

In
te

l1
(l

og
sc

al
e)

Large-size-dedicated Pluto-style

Fig. 3: Speedups of PolyTOPS compared to Pluto for Jacobi-1d using two
different configurations and multiple data set sizes. The blue one is (best)

dedicated configuration considered for large size. The red one is the
configuration Pluto-style.

defined so far have room for improvement because they ignore
many scenario factors (architecture, use case characteristics).
PolyTOPS can help to design generic configurations that can
work better than the state-of-the-art.

2) Dataset Size Analysis: In the context of kernel size
and scheduling choices, Jacobi-1d (similarly to trisolv) is
an example that highlights the impact of kernel size on
performance. The charts in Fig. 2 show that our solution
outperforms Pluto for all machines. Upon closer inspection, our
solution generates a simple and fully sequential code, while

ja
co

bi
-1

d
tri

so
lv

sy
m

m
gr

am
sc

hm
id

t
fd

td
-2

d
at

ax
ja

co
bi

-2
d

do
itg

en
ge

su
m

m
v

bi
cg

he
at

-3
d

sy
rk

ch
ol

es
ky

*g
em

ve
r

m
vt

*n
us

sin
ov

*c
or

re
la

tio
n

2m
m lu

sy
r2

k
3m

m
trm

m
*c

ov
ar

ia
nc

e
ge

m
m

du
rb

in
*d

er
ic

he
se

id
el

-2
d

ge
om

ea
n

2−4
2−3
2−2
2−1
20
21
22
23
24

2−7 2−8 2−12 2−7 2−8 2−8 2−4

Sp
ee

du
p

In
te

l1

Pluto-lp-dfp Pluto+ isl-PPCG PolyTOPS

Fig. 4: Speedups (log-scale) of PolyTOPS using the kernel-specific configuration, Pluto-lp-dfp (best fusion heuristic) and Pluto+ compared to Pluto (last dev
version). For the cases marked with the symbol *, no solution was found by any of the fusion heuristics of Pluto-lp presented in [29].

Pluto generates a more complex code with several conditions
and complex data accesses, enabling parallelism for the inner
loop through initial skewing.

The graph in Fig. 3 demonstrates how the speedup of large-
size dedicated configuration (in blue) changes with different
Polybench dataset sizes. We also present the results of our
pluto-style configuration (in red), which is more consistent
when the size changes. It is noticeable that the parallelism
achieved by Pluto (and our pluto-style version) has a greater
impact when the size increases. This indicates that the size of
the kernel is an important factor that the scheduler should take
into account, which points to a possible direction for future
research. Furthermore, we want to highlight the flexibility of
PolyTOPS, which can be reconfigured for all sizes, ensuring
it is at least as good as Pluto, and demonstrating the power of
our reconfigurability.

C. Comparing scheduling tools on Polybench

We compare PolyTOPS with Pluto+ [16], Pluto-lp-dfp [17]
and isl-PPCG [9]. The first two works extend Pluto in several
ways, while isl-PPCG is a specific version of isl-scheduler used
in PPCG project. The differences relevant to the scope of our
experiments are that Pluto+ allows negative coefficients and that
several fusion heuristics are available in Pluto-lp-dfp. isl-PPCG
instead uses a combination of Pluto and Feautrier scheduling
algorithms, and it also uses different fusion heuristics. Speedups
over Pluto are reported in Fig. 4. For Pluto-lp-dfp, only the
highest speedup obtained from the three fusion heuristics
for each code is shown [29] (except for some cases where
some of the fusion heuristics did not produce a result). The
speedup shown for PolyTOPS corresponds to kernel-specific
configurations. As for PolyBench, CLooG is the code generator
used for all schedulers.

In the case of doitgen, Pluto+ outperforms PolyTOPS by
enabling parametric shifting. This is a transformation by default
in Pluto+, with no option to disable it. The same solution can
be obtained with PolyTOPS by enabling parametric shifting.
However, we consider it unfair to compare with Pluto, which
does not allow it.

Negative coefficient support is required to find transforma-
tions for nussinov and deriche. It is currently only supported
in Pluto+. Pluto, Pluto-lp-dfp and PolyTOPS only post-process

the initial schedule, whereas for deriche Pluto+ can compute a
slightly better schedule.

Pluto-lp-dfp achieves a slight speedup over PolyTOPS for
trmm and 3mm due to different intra-tile optimization (post-
processing).

In all other cases, PolyTOPS performs better (or similarly)
than all the other versions for two reasons. Firstly, allowing
negative coefficients in Pluto+ is not beneficial for most of the
Polybench cases. Secondly, fusion heuristics Pluto-lp-dfp focus
on generic high-level fusion heuristics that cannot compete
(except for some cases like trisolv and symm) with the kernel-
specific fusion decisions from our configurations.

Regarding isl-PPCG results, cases like trisolv, gramschmidt,
jacobi-2d, heat-3d, cholesky, nussinov, lu, and seidel-2d show
big slowdowns, mainly because of fusion choices, complex
skewing (caused by Feautrier cost function) that generate a
complex final code. A part from that, we can see that in
some other cases like jacobi-1d, symm, gesummv, and bicg
isl is capable of finding transformations that are really close
(or equal) to the ones found with the best configuration of
PolyTOPS.

D. Comparing scheduling tools on PolyMage

We finally compare PolyTOPS performances on the Poly-
MAGE [30] benchmark suite on Intel1. It contains 7 use
cases coming from image processing. Loop-based computations
and stencils characterize these codes, making them interesting
scenarios for polyhedral optimizations. For our experiments,
we started from the naive version of the codes provided in
the benchmark and adapted them to our pipeline with several
pre-processing steps. Clan [31] was used to transform the C++
codes into OpenScop format, and it has been adapted to support
the division operation in the array indices.

From the results in Table II, notice that many results
are not available: For camera-pipe, interpolate and pyramid-
blending Pluto (in all the different versions) does not support
local variables in the polyhedral representation. These are
necessary to represent if statements using modulo and division
operations, and they are also necessary for some complex
accesses. isl-PPCG can handle all the cases except pyramid-
blending, where the transformation generated is empty due to
some internal error.

TABLE II: PolyMage benchmark: Timing (milliseconds) and relative speedups among PolyTOPS and the state-of-the-art schedulers (isl-PPCG, Pluto,
Pluto-lp-dfp, Pluto+). For some cases and schedulers, the results are unavailable (n.a.) because of technical limitations.

Benchmark PolyTOPS
(ms)

isl-PPCG
(ms)

Pluto
(ms)

Pluto-lp-dfp
(ms)

Pluto+
(ms)

Speedup
(isl-PPCG)

Speedup
(Pluto-dev)

Speedup
(Pluto-lp-dfp)

Speedup
(Pluto+)

harris 47 108 57 47 57 2.28 1.19 1 1.19
unsharp-mask 120 120 134 120 132 1 1.10 1 1.10
camera-pipe 88 177 n.a n.a. n.a 2.01 n.a n.a n.a
interpolate 89 71 n.a n.a n.a 0.79 n.a n.a n.a
pyramid-blending 74 n.a n.a n.a n.a n.a n.a n.a n.a

The available results show that PolyTOPS outperforms or is
on par with state-of-the-art schedulers. The codes camera-pipe,
interpolate, and pyramid-blending contain many statements
while having a low loop dimensionality. Thus the major
difficulty when optimizing them is selecting a good fusion
heuristic that may enable better parallelism while remaining
cache-friendly. For interpolate, the performance obtained is
lower than isl-PPCG because PPCG uses a more precise code
generation. In our case, Cloog [24] often does not take into
account all directives specifying parallel dimensions for code
generation, losing several parallelization opportunities. For
pyramid-blending, no code is generated by isl.

V. CONCLUSION

PolyTOPS is a novel polyhedral scheduler tool that improves
upon the state-of-the-art black-box polyhedral schedulers
by offering an easy way to configure and tune polyhedral
scheduling. It can adapt to various application scenarios where
polyhedral optimization was previously dismissed due to the
poor results of black-box schedulers. Inputs and outputs can
be expressed either as isl objects or in OpenScop format. Thus,
the output of PolyTOPS can be fed into code generation
tools such as isl [8] or CLooG [24]. PolyTOPS has been
integrated into MindSpore AKG compiler [2]. The performance
of PolyTOPS has been evaluated on one application scenario
and on two benchmark suites. On the application scenario of
hybrid custom operators [25] for an Ascend NPU, a feature of
MindSpore [3], the configurability and flexibility of PolyTOPS
led to better performance than with the isl scheduler (up
to x34 speedup). On Polybench [28] benchmark suite, we
showed that simple configurations can mimic the behaviours
of state-of-the-art scheduling strategies (isl, Tensor Scheduler,
Pluto) and that completely new general configurations can be
created with little effort, outperforming Pluto scheduler [7]
(x1.8 geomean speedup) using kernel-specific configurations in
different CPUs. On the Polymage benchmark suite, we have
shown that PolyTOPS outperforms or is on par with other
schedulers.

This work paves the way for further research. The design
of fusion heuristics is crucial for high performance and could
be an extension for PolyTOPS configurations. Extending the
currently proposed rules for fusion and defining pattern-guided
fusion heuristics would be a way to enrich the existing
scheduling heuristics. Finally, more software and hardware-
specific configuration extensions could prove useful: Internal
heuristics for fusion, tiling adapted to the input hardware

configuration and scheduling decisions based on the kernel
size.

APPENDIX A
ARTIFACT APPENDIX

A. Abstract

This artifact provides a docker image that contains programs
and scripts to generate results for Fig. 2, Fig. 3, Fig. 4 and
Table II. Results may differ depending on the target architecture
or system.

The image contains PolyTOPS, Pluto, Pluto+, Pluto-lp, and
PPCG. Additional software such as clan, Candl, Cloog, isl and
FPL are also available.

In this artifact, you will be able to replicate the results shown
in the paper and test PolyTOPS and its functionalities.

B. Artifact check-list (meta-information)

• Goal: Reproduce results for Fig. 2, Fig. 3, Fig. 4 and
Table II

• Compilation: private
• Hardware: see Section IV-B.
• Metrics: Time (Average time over the number of repe-

titions) in ms for PolyMage and cycles for PolyBench
tests.

• Output: CSV(comma separated values) files.
• How much disk space is required (approximately)?:

6GB.
• How much time is needed to prepare workflow

(approximately)?: 1 min.
• How much time is needed to complete experiments

(approximately)?: more than 12 hours for Intel1 (full
experiments are required, but the timing can be tremen-
dously reduced if excluding isl-PPCG results as described
in Section A-E3), while around 5 hours for AMD and
Intel2 (only Section A-E1 needs to be tested for these 2
machines.)

• Archived?: the artifact can be found in Zenodo https:
//doi.org/10.5281/zenodo.10203989.

C. Description

1) Delivery: a docker image can be found on Zenodo [32]
(https://doi.org/10.5281/zenodo.10203989)

2) Hardware dependencies: see Section IV-B, respectively
Intel1, Intel2, AMD.

3) Software dependencies: Docker v24
4) Data Sets: Polybench, PolyMage

 https://doi.org/10.5281/zenodo.10203989
 https://doi.org/10.5281/zenodo.10203989
 https://doi.org/10.5281/zenodo.10203989

D. Installation

The docker is published on Zenodo [32] and can be loaded
from file polytops.tar as follows:

$ do ck e r l o a d − i p o l y t o p s . t a r

Upon success, image polytops:cgo-2024 will be available.

E. Experiment workflow

A new polytops:cgo-2024 container can be run using
the following command:

$ do ck e r run − i t −−cap −add=SYS NICE p o l y t o p s : cgo −2024

The image is set up so the default command is ‘/bin/bash

--login‘.
Note that the internal configuration (see ‘/etc/profile.d‘)
requires a login shell for additional software to be found and
executed.

Once inside the container, you can run the following
commands:

$ cd $HOME/ t e s t
$ bash . / r u n c o m p l e t e a r t i f a c t . sh

To replicate our results, we strongly suggest to the users to
wrap test executions in the following command:

$ sudo −− l o g i n n i c e −n −20 bash −c ”{ cd $ (pwd) ; <t e s t >; }”

Password is polytops. This command allows us to prioritize
the execution of our experiments. For instance, the previous
command would become:

$ sudo −− l o g i n n i c e −n −20 bash −c ”{ cd $ (pwd) ;
bash . / r u n c o m p l e t e a r t i f a c t . sh ;} ”

For readability, we will not rewrite it for all the following
commands.

The script ”run complete artifact.sh“ will run all the scripts
and generate the output timings, representing the results shown
in:

• PolyTOPS-results (Fig. 2):
$HOME/test/test_fig2_and_4/fig_2.csv

• Data-Size (Fig. 3):
$HOME/test/test_fig3/fig_3.csv

• SOTA (Fig. 4):
$HOME/test/test_fig2_and_4/fig_4.csv

• PolyMage (Table II):
$HOME/test/test_polymage/times_polymage.csv

Notice that the complete script is configured for Intel1, while
for Intel2 and AMD you can refer to Section A-E1 that explains
how to run only the specific tests in Fig. 2.

The results can also be computed singularly for each test
case.

1) PolyTOPS-results: To obtain the results described in
Fig. 2, users can run these commands:

$ cd $HOME/ t e s t / t e s t f i g 2 a n d 4 /
$ bash t e s t f i g 2 . sh −c $HOME/ t e s t / p a p e r b e s t c o n f i g s I N T E L 1

−n 10

where the option -c specifies the root path of the PolyTOPS
configuration files that we used for PolyBench cases, and -n
specifies the number of executions we want to run for each
final transformation. For the -c option, you can select any of
the following paths, depending on which experiment of Fig. 2
you want to reproduce:

• For Fig. 2 Intel1 machine you can use:
$HOME/test/paper_best_configs_INTEL1/

• For Fig. 2 Intel2 machine you can use:
$HOME/test/paper_best_configs_INTEL2/

• For Fig. 2 AMD machine you can use:
$HOME/test/paper_best_configs_AMD/

2) Data-Size: To replicate these experiments, it is just
necessary to run the following commands:

$ cd $HOME/ t e s t / t e s t f i g 3 /
$ bash t e s t f i g 3 . sh −n 10

where -n is an option specifying the number of executions for
each program version. The output is generated automatically
in $HOME/test/test_fig3/fig_3.csv.

3) SOTA: To replicate Fig. 4, you can run the following
commands:

$ cd $HOME/ t e s t / t e s t f i g 2 a n d 4 /
$ bash t e s t f i g 4 . sh −n 10

where -n specifies the number of executions for each program
version. Notice that in this part of the experiments, a big portion
of time is taken by isl-PPCG results (see the tremendous slow-
downs in Fig. 4). If the user wants to exclude isl from the experi-
ment, the $HOME/test/test_fig2_and_4/test_fig4.sh

script can be edited at line 32, removing the isl keyword.

4) PolyMage: To replicate the PolyMage experiments in
Table II, you can run the following command:

$ cd $HOME/ t e s t / t e s t p o l y m a g e
$ bash t e s t p o l y m a g e . sh

The output will be available in the file
$HOME/test/test_polymage/times_polymage.csv.

F. Evaluation and expected result

The results produced (PolyTOPS-results, Data-Size, SOTA,
and PolyMage) are CSV files containing the average execution
time of the different versions of the test cases and the standard
deviation of the timing.

The results in the paper are equivalent for PolyMage
(Table II), while for the other charts, we calculated a speedup
(compared to Pluto results) in log scale (base 2) using the
following formula:

speedup = pluto time/variant time

where variant time represents any of the variants of PolyTOPS
or any other scheduler in the charts in Fig. 2, Fig. 4, and Fig. 3.

G. Experiment customization
If you want to use our tool for custom cases, you can use the

polytops command directly. PolyTOPS supports OpenScop as
input (produced by Clan) and the final code generation is done
by Cloog. Given an input C file input.c (that must contain the
proper PRAGMA), a simple pipeline to generate an optimized
version out.c is:
$ c l a n i n p u t . c | p o l y t o p s −− i n p u t − f o r m a t = openscop

−− t i l i n g = t rue −−compute − d e p e n d e n c i e s = t rue
−− o u t p u t − f o r m a t = openscop | c l o o g s t d i n − openscop −o
. / o u t . c

The option –help provides a list of all the available options.
Moreover, we also provide another script in

$HOME/test/scripts/single_case.sh

that can be used to run a similar pipeline but with some
extra PolyTOPS options. This script contains several extra
functionalities that can be displayed with the –help option.

REFERENCES

[1] Nicolas Vasilache et al. Tensor Comprehensions:
Framework-Agnostic High-Performance Machine Learn-
ing Abstractions. 2018. arXiv: 1802.04730.

[2] Jie Zhao et al. “AKG: Automatic Kernel Generation
for Neural Processing Units Using Polyhedral Transfor-
mations”. In: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language
Design and Implementation. PLDI 2021. Virtual, Canada:
Association for Computing Machinery, 2021, pp. 1233–
1248. DOI: 10.1145/3453483.3454106.

[3] Lei Chen. Deep Learning and Practice with MindSpore.
Springer, 2021. ISBN: 978-981-16-2232-8. DOI: 10.1007/
978-981-16-2233-5.

[4] Scott Cyphers et al. “Intel nGraph: An Intermediate Rep-
resentation, Compiler, and Executor for Deep Learning”.
In: CoRR abs/1801.08058 (2018). arXiv: 1801.08058.

[5] Chris Lattner et al. “MLIR: A Compiler Infrastructure
for the End of Moore’s Law”. In: CoRR abs/2002.11054
(2020). arXiv: 2002.11054.

[6] Paul Feautrier. “Some efficient solutions to the affine
scheduling problem. I. One-dimensional time”. In: In-
ternational Journal of Parallel Programming 21 (1992),
pp. 313–347. DOI: 10.1007/BF01407835.

[7] Uday Bondhugula et al. “A Practical Automatic Polyhe-
dral Parallelizer and Locality Optimizer”. In: Proceed-
ings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI’08
(Tucson, AZ, USA, June 7–13, 2008), pp. 101–113. DOI:
10.1145/1375581.1375595.

[8] Sven Verdoolaege. “Isl: An Integer Set Library for
the Polyhedral Model”. In: Proceedings of the Third
International Congress Conference on Mathematical
Software. ICMS’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 299–302. DOI: 10.1007/978-3-642-15582-
6 49.

[9] Sven Verdoolaege et al. “Polyhedral Parallel Code
Generation for CUDA”. In: ACM Trans. Archit. Code
Optim. 9.4 (Jan. 2013). ISSN: 1544-3566. DOI: 10.1145/
2400682.2400713.

[10] Benoı̂t Meister, Eric Papenhausen Akai Kaeru, and
Benoı̂t Pradelle Silexica. “Polyhedral Tensor Schedulers”.
In: 2019 International Conference on High Performance
Computing Simulation (HPCS). 2019, pp. 504–512. DOI:
10.1109/HPCS48598.2019.9188233.

[11] Heng Liao et al. “Ascend: a Scalable and Unified Archi-
tecture for Ubiquitous Deep Neural Network Computing
: Industry Track Paper”. In: 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA). 2021, pp. 789–801. DOI: 10.1109/HPCA51647.
2021.00071.

[12] Cedric Bastoul. “Keynote: Automatic operator generation
for deep learning frameworks in the all-scenario context:
MindSpore/AKG architecture, features and challenges.”
In: 12th International Workshop on Polyhedral Com-
pilation Techniques (IMPACT 22), 2022. URL: https:
//impact-workshop.org/impact2022/slides/keynote.pdf.

[13] Cedric Bastoul et al. “Optimizing GPU Deep Learning
Operators with Polyhedral Scheduling Constraint In-
jection”. In: 2022 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 2022,
pp. 313–324. DOI: 10.1109/CGO53902.2022.9741260.

[14] Louis-Noël Pouchet et al. “Loop Transformations: Con-
vexity, Pruning and Optimization”. In: ACM SIGPLAN
Notices 46 (May 2011), pp. 549–562. DOI: 10.1145/
1925844.1926449.

[15] A. Schrijver. Theory of Linear and Integer programming.
Wiley-Interscience, 1986. ISBN: 978-0-471-98232-6.

[16] Uday Bondhugula, Aravind Acharya, and Albert Cohen.
“The pluto+ algorithm: A practical approach for paral-
lelization and locality optimization of affine loop nests”.
In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 38.3 (2016), pp. 1–32. DOI: 10.1145/
2896389.

[17] Aravind Acharya, Uday Bondhugula, and Albert Cohen.
“Polyhedral Auto-Transformation with No Integer Linear
Programming”. In: SIGPLAN Not. 53.4 (June 2018),
pp. 529–542. ISSN: 0362-1340. DOI: 10.1145/3296979.
3192401. URL: https : / / doi . org / 10 . 1145 / 3296979 .
3192401.

[18] Martin Kong and Louis-Noël Pouchet. “Model-Driven
Transformations for Multi- and Many-Core CPUs”. In:
Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion. PLDI 2019. Phoenix, AZ, USA: Association
for Computing Machinery, 2019, pp. 469–484. ISBN:
9781450367127. URL: https://doi.org/10.1145/3314221.
3314653.

https://arxiv.org/abs/1802.04730
https://doi.org/10.1145/3453483.3454106
https://doi.org/10.1007/978-981-16-2233-5
https://doi.org/10.1007/978-981-16-2233-5
https://arxiv.org/abs/1801.08058
https://arxiv.org/abs/2002.11054
https://doi.org/10.1007/BF01407835
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1109/HPCS48598.2019.9188233
https://doi.org/10.1109/HPCA51647.2021.00071
https://doi.org/10.1109/HPCA51647.2021.00071
https://impact-workshop.org/impact2022/slides/keynote.pdf
https://impact-workshop.org/impact2022/slides/keynote.pdf
https://doi.org/10.1109/CGO53902.2022.9741260
https://doi.org/10.1145/1925844.1926449
https://doi.org/10.1145/1925844.1926449
https://doi.org/10.1145/2896389
https://doi.org/10.1145/2896389
https://doi.org/10.1145/3296979.3192401
https://doi.org/10.1145/3296979.3192401
https://doi.org/10.1145/3296979.3192401
https://doi.org/10.1145/3296979.3192401
https://doi.org/10.1145/3314221.3314653
https://doi.org/10.1145/3314221.3314653

[19] Lorenzo Chelini et al. “Automatic Generation of Multi-
Objective Polyhedral Compiler Transformations”. In:
Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques.
PACT ’20. Virtual Event, GA, USA: Association for
Computing Machinery, 2020, pp. 83–96. DOI: 10.1145/
3410463.3414635.

[20] Tom Hammer and Vincent Loechner. “PolyLingual: a
Programmable Polyhedral Scheduler”. In: (2023). URL:
https://impact-workshop.org/impact2023/papers/paper6.
pdf.

[21] Riyadh Baghdadi et al. “A Deep Learning Based Cost
Model for Automatic Code Optimization”. In: CoRR
abs/2104.04955 (2021). arXiv: 2104.04955.

[22] Oleksandr Zinenko, Stéphane Huot, and Cédric Bas-
toul. “Clint: A direct manipulation tool for paralleliz-
ing compute-intensive program parts”. In: 2014 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 2014, pp. 109–112. DOI: 10.1109/
VLHCC.2014.6883031.

[23] Lénaı̈c Bagnères et al. “Opening Polyhedral Compiler’s
Black Box”. In: Proceedings of the 2016 International
Symposium on Code Generation and Optimization.
CGO ’16. Barcelona, Spain: Association for Computing
Machinery, 2016, pp. 128–138. DOI: 10.1145/2854038.
2854048.

[24] Cedric Bastoul. “Code Generation in the Polyhedral
Model Is Easier Than You Think”. In: Proceedings of the
13th International Conference on Parallel Architectures
and Compilation Techniques. PACT ’04. USA: IEEE
Computer Society, 2004, pp. 7–16. DOI: 10.1109/PACT.
2004.1342537.

[25] 4.1 Unified Cross-Platform MindSpore Hybrid DSL
Expression. 2022. URL: https : / /mindspore . cn /news /
newschildren/en?id=1985.

[26] Xiaoyao Liang. “Chapter 3 - Hardware architecture”.
In: Ascend AI Processor Architecture and Programming.
Ed. by Xiaoyao Liang. Elsevier, 2020, pp. 75–100. ISBN:
9780128234891.

[27] Heng Liao et al. “Ascend: a Scalable and Unified Archi-
tecture for Ubiquitous Deep Neural Network Computing
: Industry Track Paper”. In: 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA). 2021, pp. 789–801. DOI: 10.1109/HPCA51647.
2021.00071.

[28] Louis-Noël Pouchet et al. Polybench: The polyhedral
benchmark suite. 2012. URL: https : / / web. cse . ohio -
state.edu/∼pouchet.2/software/polybench/.

[29] Aravind Acharya, Uday Bondhugula, and Albert Cohen.
“Effective Loop Fusion in Polyhedral Compilation Using
Fusion Conflict Graphs”. In: ACM Trans. Archit. Code
Optim. 17.4 (Sept. 2020). DOI: 10.1145/3416510.

[30] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bond-
hugula. “PolyMage: Automatic Optimization for Image
Processing Pipelines”. In: Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems. ASP-
LOS ’15. Istanbul, Turkey: Association for Computing
Machinery, 2015, pp. 429–443. ISBN: 9781450328357.
DOI: 10.1145/2694344.2694364. URL: https://doi.org/10.
1145/2694344.2694364.

[31] Cédric Bastoul et al. “Putting Polyhedral Loop Transfor-
mations to Work”. In: LCPC’16 International Workshop
on Languages and Compilers for Parallel Computers,
LNCS 2958. College Station, Texas, Oct. 2003, pp. 209–
225.

[32] Gianpietro Consolaro, Harenome Razanajato, and Nelson
Lossing. PolyTOPS artifact. Nov. 2023. DOI: 10.5281/
zenodo.10203989. URL: https://doi.org/10.5281/zenodo.
10203989.

https://doi.org/10.1145/3410463.3414635
https://doi.org/10.1145/3410463.3414635
https://impact-workshop.org/impact2023/papers/paper6.pdf
https://impact-workshop.org/impact2023/papers/paper6.pdf
https://arxiv.org/abs/2104.04955
https://doi.org/10.1109/VLHCC.2014.6883031
https://doi.org/10.1109/VLHCC.2014.6883031
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1109/PACT.2004.1342537
https://doi.org/10.1109/PACT.2004.1342537
https://mindspore.cn/news/newschildren/en?id=1985
https://mindspore.cn/news/newschildren/en?id=1985
https://doi.org/10.1109/HPCA51647.2021.00071
https://doi.org/10.1109/HPCA51647.2021.00071
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/3416510
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.5281/zenodo.10203989
https://doi.org/10.5281/zenodo.10203989
https://doi.org/10.5281/zenodo.10203989
https://doi.org/10.5281/zenodo.10203989

	Introduction
	BACKGROUND
	Polyhedral Model
	Iteration Domain
	Dependencies and Legality
	Scheduling Function

	Scheduler
	Scheduling Problem Formalization
	Validity/Legality Constraint
	Progression Constraint
	Proximity Cost Function

	State of the Art

	PolyTOPS
	Local Configurations
	Cost functions control
	Custom Constraints
	Fusion/Distribution control

	Global Configurations
	Directives
	Auto Vectorization

	Configurations Strategy
	JSON interface
	C++ interface

	Common Algorithmic Structure

	Experimental Results
	MindSpore Hybrid Custom Operators
	Comparing scheduling strategies on Polybench
	Results Analysis
	Dataset Size Analysis

	Comparing scheduling tools on Polybench
	Comparing scheduling tools on PolyMage

	Conclusion
	Appendix A: Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Delivery
	Hardware dependencies
	Software dependencies
	Data Sets

	Installation
	Experiment workflow
	PolyTOPS-results
	Data-Size
	SOTA
	PolyMage

	Evaluation and expected result
	Experiment customization

