
AXI4MLIR: User-Driven Automatic Host Code
Generation for Custom AXI-Based Accelerators

Nicolas Bohm Agostini†¶, Jude Haris‡,
Perry Gibson‡, Malith Jayaweera†, Norm Rubin†,

Antonino Tumeo¶, José L. Abellán§, José Cano‡, David Kaeli†
†Northeastern University, Boston, MA, USA ‡University of Glasgow, Glasgow, Scotland, UK

§University of Murcia, Murcia, Spain ¶Pacific Northwest National Laboratory, Richland, WA, USA

Abstract—This paper addresses the need for automatic and
efficient generation of host driver code for arbitrary custom
AXI-based accelerators targeting linear algebra algorithms, an
important workload in various applications, including machine
learning and scientific computing. While existing tools have focused
on automating accelerator prototyping, little attention has been
paid to the host-accelerator interaction. This paper introduces
AXI4MLIR, an extension of the MLIR compiler framework
designed to facilitate the automated generation of host-accelerator
driver code. With new MLIR attributes and transformations,
AXI4MLIR empowers users to specify accelerator features
(including their instructions) and communication patterns and
exploit the host memory hierarchy. We demonstrate AXI4MLIR’s
versatility across different types of accelerators and problems,
showcasing significant CPU cache reference reductions (up to
56%) and up to a 1.65× speedup compared to manually optimized
driver code implementations. AXI4MLIR implementation is open-
source and available at: https://github.com/AXI4MLIR/axi4mlir.

Index Terms—MLIR, AXI, Compilers, Codegen

I. INTRODUCTION

Given the diminishing performance gains provided by today’s
general-purpose computing [1], there has been renewed interest
in exploring custom hardware accelerators. Accelerators can
support architecture-level optimizations that can increase the
performance and efficiency of key applications [2], [3], [4], [5],
[6], [7]. One important class of applications that can benefit
from accelerators is tensor algebra processing, which is widely
used in the domains of machine learning, scientific computing,
and data analytics [8], [9], [10]. Tensor operations tend to be
computationally intensive and require high memory bandwidth,
making them suitable for specialized hardware implementations.
Automated tools have been proposed [11], [12], [13], [14] to
help explore new classes of custom domain-specific accelerators
targeting tensor computations, and are currently the best path
available to obtain performance gains in scientific workloads
and machine learning applications.

However, designing and fully exploiting custom hardware
accelerators for tensor operations is not a trivial task [15].
When co-designing these devices, we need to generate efficient
architectures, and we must optimize the communication be-
tween the host CPU and the accelerator. In particular, the host-
accelerator interaction involves several aspects, including data
transfers, synchronization, and the accelerator’s control flow.

A
cc

el
er

at
or

Host CPU- Memory capacity
- Tile sizes
- Supported
 operations
- Opcodes

M
ain M

em
.

DMA
EngineAXI

FIFO/
Buffer

Mem.
Ctrl.

- Memory hierarchy
- Cache sizes

- DMA regions’
 sizes and locations

- Protocol

- Operations/algorithms
- Problem dimensions

Application

AXI Interconnect

Fig. 1: Typical host-accelerator system design, highlighting (blue color) relevant
parameters that should be considered for efficient generation of host-accelerator
communication code.

These aspects depend on the characteristics of the host CPU
microarchitecture, the host-accelerator interface, the accelerator
design, and the application code. Manually rewriting the host
driver code for each accelerator and application scenario
can be very tedious and error-prone. Furthermore, most of
the prior work proposing new accelerators [16], [17], [18],
[19], [20] only considers a simple offload model or assumes
that the required data is already placed in the accelerator’s
internal buffers, falling short in providing insights into how
host-to-accelerator transfers should be performed or generated.
Additionally, complex accelerators, exemplified by Google’s
TPUs and Nvidia’s GPUs, benefit from large teams that can
collaboratively engineer dedicated compilers to address some
of these issues. However, smaller development teams may lack
expertise or available time resources to invest in compilers.
Consequently, custom accelerator designers typically implement
driver code and instruction streams manually to validate and
deploy their designs for a subset of synthetic workloads.

To implement or generate efficient host-to-accelerator com-
munication, we argue that it is necessary to consider all major
features of a System-on-Chip (SoC). Figure 1 highlights a
typical system using an AXI [21] interconnection between the
CPU and a custom accelerator, which is a common choice
in many designs [22]. To drive the accelerator effectively, the
host-code implementation should exploit features regarding the
CPU, the interconnect, and the accelerator (see Figure 1).

To effectively consider each of the key system features
described in Figure 1 while also delivering efficient andNicolas Bohm Agostini and Jude Haris are co-first authors

ar
X

iv
:2

31
2.

14
82

1v
1

 [
cs

.P
L

]
 2

2
D

ec
 2

02
3

https://github.com/AXI4MLIR/axi4mlir

automated CPU-accelerator driver code generation, we propose
AXI4MLIR, an extension to the MLIR compiler frame-
work [23] that enables efficient and automated CPU-accelerator
driver code generation for accelerators targeting linear algebra
applications. AXI4MLIR takes a high-level application descrip-
tion in the MLIR’s linear algebra (linalg) abstraction [24]
as input and introduces custom MLIR attributes to describe
the target accelerator capabilities. These attributes provide
accelerator-specific information to custom transformation
passes that can effectively specialize and generate accelerator-
aware host driver code. Our extensions facilitate hardware-
software co-design by allowing developers to automatically
generate driver code with varying configurations, more easily
explore their design space, and use the designed accelerator in
applications that can be compiled with the MLIR framework.
The contributions of this work include the following:

• New MLIR attributes that provide a standardized and
extensible approach to represent accelerators that can
implement a range of linear algebra algorithms supported
by the MLIR linalg abstraction.

• Automated generation of efficient driver code for custom
accelerators leveraging AXI-based interfaces in host-to-
accelerator communication.

• The ability to describe and explore accelerator-specific
tiling and dataflow strategies for the target linear algebra
operation, which can improve computation efficiency
within the accelerator and reduce data movement over-
heads between the accelerator and CPU.

• An analysis of our compiler optimizations on a suite
of benchmarks representing key linear algebra applica-
tions, demonstrating the effectiveness of our approach
in achieving significant performance gains (up to 1.65×
speedup and 56% fewer cache references) when compared
to optimized manual driver code implementations.

While leveraging the new attributes of AXI4MLIR, our user-
directed host code generation is entirely automated by the
compiler. This provides a significant advantage in terms of
productivity and maintainability.

II. BACKGROUND

A. MLIR
MLIR is a compiler infrastructure framework that facilitates

the creation of domain-specific compilers by providing code
generators, translators, optimizers, and the infrastructure to
define subsets of operations that expose well-defined language
abstractions [23], [25]. Notably, MLIR offers support for
compilation from various frontends into its infrastructure,
encompassing frameworks such as TensorFlow, PyTorch, and
ONNX, as well as languages like Fortran, C, and Mojo.
In MLIR, a group of operations modeling an abstraction
is called a dialect. Dialects are self-contained intermediate
representations (IRs) and follow the language rules of MLIR’s
meta-IR, enabling the framework to have multiple dialects
coexisting in the same MLIR file. This approach promotes
the reuse of already defined abstractions and associated tools,
enabling intra- and inter-dialect transformations.

1 #matmul_trait = {
2 indexing_maps = [
3 affine_map<(m, n, k) -> (m, k)>, // A
4 affine_map<(m, n, k) -> (k, n)>, // B
5 affine_map<(m, n, k) -> (m, n)> // C
6]
7 iterator_types = [
8 "parallel", "parallel", "reduction"],
9 }

10 func.func @matmul_call(...) {
11 linalg.generic #matmul_trait
12 ins (%A, %B : memref<60x80xf32>, memref<80x72xf32>)
13 outs(%C : memref<60x72xf32>) {
14 ˆbb0(%a: f32, %b: f32, %c: f32):
15 %0 = arith.mulf %a, %b : f32
16 %1 = arith.addf %c, %0 : f32
17 linalg.yield %1 : f32 }
18 return }

(a) Linalg Abstraction with generic operation.

1 func.func @matmul_call(...) {
2 // Declare constants %c0 %c1 %c4 %c60 %c72 %c80 ...
3 scf.for %m = %c0 to %c60 step %c4 { // Tiling by 4,4,4
4 scf.for %n = %c0 to %c72 step %c4 {
5 scf.for %k = %c0 to %c80 step %c4 {
6 // Grab handle for the sub-tiles:
7 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1] : ...
8 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1] : ...
9 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1] : ...

10 // Matmul computation of a 4x4x4 tile:
11 scf.for %mm = %c0 to %c4 step %c1 {
12 scf.for %nn = %c0 to %c4 step %c1 {
13 scf.for %kk = %c0 to %c4 step %c1 {
14 %3 = memref.load %sA[%mm, %kk] : !mr4x4_0
15 %4 = memref.load %sB[%kk, %nn] : !mr4x4_1
16 %5 = memref.load %sC[%mm, %nn] : !mr4x4_1
17 %6 = arith.mulf %3, %4 : f32
18 %7 = arith.addf %5, %6 : f32
19 memref.store %7, %sC[%mm, %nn] : !mr4x4_1
20 } } } } } }
21 return }

(b) Structured Control Flow (SCF) Abstraction with tiling.
Fig. 2: MLIR representations of a Matrix-Matrix Multiplication Operation in
different abstractions.1

In support of the underlying algorithms and kernels used
by many machine learning frameworks (e.g., TensorFlow
and PyTorch), MLIR offers a linear algebra dialect called
linalg that exposes (named) operations such as convolu-
tions, matrix multiplications, and others. Operations expressed
in higher-level dialects can target linalg operations and
leverage all subsequent transformations supported by linalg

and lower-level abstractions. Figure 2 presents an MLIR
matrix-multiplication (MatMul) implementation in different
abstractions.1 The operation is initially represented using
a linalg.matmul and subsequently undergoes conversion,
transformation, and lowering by the compiler. In Figure 2a-
L11 and L17, the linalg.matmul is converted into a
linalg.generic. The linalg.generic is a core MLIR
operation that can represent most of the linalg named ops, by
careful selection of its operation trait2 - indexing_maps (L2),
iterator_types (L7) -, and kernel (L24 to L27). Finally,
the generic operation can be converted into a tiled (4×4×4)
implementation of the MatMul (Figure 2b) using the structured
control flow (scf) dialect. When supporting an accelerator that
can process a MatMul4x4x4 operation 3, the code in Figure 2b-
L11 to L19, has to be replaced by the runtime library calls

1We intentionally omit some MLIR code, such as constant declarations in
the form of %cX=arith.constant X:i32, for the sake of brevity.

2See linalg.generic in https://mlir.llvm.org/docs/Dialects/Linalg
3A 2D MatMul operation is MatMulMxNxK : C(M,N) = A(M,K) x B(K,N)

that drive the accelerator.
1) MLIR Memory References: Within MLIR, memory

buffers exist as N-dimensional (rank=N) memory references, or
memrefs. Our proposed AXI4MLIR DMA runtime library, pre-
sented in Section III-A, supports bidirectional data movements
between memrefs and memory-mapped buffers (raw pointers),
while respecting strides, sizes, and dimensions. Accessing
the elements of an MLIR memref requires accessing the
values in the equivalent C struct of Figure 3. Specializing
the code for specific sizes and strides is an important proposed
optimization to leverage spatial locality and minimize control-
flow instructions, as we will observe in Section IV.

1 typedef struct {
2 float *allocated; // For deallocation
3 float *aligned; // Base address
4 size_t offset; // Offset in # of elements
5 size_t size[N]; // One size per dim
6 size_t stride[N]; // One stride per dim
7 }

Fig. 3: The underlying data structure of a rank==N MLIR memref buffer.

B. AXI Interface

Efficiently using the interconnect between the CPU and
the accelerator can significantly impact the overall system
performance. As part of our framework, we consider a
widely adopted bus interface in digital electronics design
deployed on SoC and Field-Programmable Gate Array (FPGA)
designs, namely Advanced eXtensible Interface (AXI) [21].
AXI provides a flexible and scalable solution for integrating
custom accelerators into a system.

The AXI interface provides a simple mechanism to enable
data transfers between the CPU cores and other devices. Using
AXI, the AXI-Stream (AXI-S) interface allows the developer
to quickly transfer [26] a variable-size burst of data to and
from the accelerator in a FIFO-like manner, enabling the
accelerator to consume/store the data as needed, in a streaming
manner. Within SoCs, the CPU host code controls either a
single or multiple Direct Memory Access (DMA) engines (see
Figure 1). These engines are responsible for initiating and
handling data movement requests between the main memory
and the accelerator. Additionally, the data regions in the main
memory need to be accessible to the accelerator via the AXI-S
interface. Therefore, the host code needs to allocate input
and output memory buffers using the mmap function, which
guarantees that only the current process has access to the
specific regions of memory. The host code is also required
to prepare/pack the input data into the data format that the
accelerator requires (e.g., row-major, interleaved data elements,
etc.). Our approach within AXI4MLIR is to use MLIR - the
compiler - to generate the host code to interface with the
accelerator, while taking advantage of the full capabilities of
the target accelerator.

III. AXI4MLIR

To support efficient host code generation for AXI-based
custom accelerators, we extended the MLIR framework with
the added capabilities presented in Figure 4. After the custom

Translate App to MLIR Code

Lower to linalg dialect

Convert named ops to linalg.generic

Match and Annotate operations for Runtime Replacement

Parse accelerator and
host CPU description

Perform tiling for CPU and Accelerator

Perform host code transformations and Runtime Replacement

Translate host code to LLVM IR, compile to binary file

Accel. and Host information

DMA Library

HL application (TensorFlow, others)

1

3

6

5

4

2

From MLIR New Features

Legend

Fig. 4: AXI4MLIR Compiler Flow. The numbered elements are the contribu-
tions of this work.

accelerator is designed and the host CPU system is selected,
the user creates a configuration file with the host CPU system
details (e.g., number and size of the caches), and with a high-
level description of the accelerator capabilities (i.e., supported
operations and dimensions), the available opcodes, and possible
opcode flows 1 . This information is parsed 2 by the compiler,
and used to find 3 suitable linalg.generic operations with
the desired operation traits (algorithm implemented, previously
shown in Figure 2a-L1 to L9), that can be executed on the
accelerator. These operations will require host-accelerator driver
code generation. Subsequently, with user-provided information
on the total size of the CPU caches, the compiler transforms
the code to efficiently exploit the CPU memory hierarchy and
the accelerator size 4 , performing the appropriate set of tiling
transformations to leverage temporal locality in the CPU caches
and to map the problem on the accelerator. In the final step,
the compiler generates the runtime calls 5 that leverage the
accelerator features based on user-directed dataflow description
(e.g., avoiding redundant host-accelerator data transfers when
the algorithm and accelerator functionality allows).

The following sections discuss the class of supported
accelerators and the key features of our AXI4MLIR DMA
library. We provide details on how to describe new accelerators,
introducing linalg.generic trait extensions, a new MLIR
dialect that provides support for runtime call replacement of
opcodes and data transfers, and some key optimizations that
can be performed (depending on the available features of the
host system and the custom accelerator).

A. The Custom AXI DMA Library

The AXI4MLIR DMA library 6 (Figure 4) exposes low-
level DMA calls working at privileged level to enable data
movement between the main memory and the accelerator.
We designed this library to be lightweight (55 bytes in size
for our target ARM SoC), so that it can be deployed on
both resource-constrained and non-constrained systems. It
can also be executed by bare-metal systems. During the

compilation process, the AXI runtime issues calls to initialize
the DMA engine(s) before entering the computation kernel of
the workload. First, a library call initializes the DMA engine,
mapping memory for the input and output buffers which act as
temporary staging buffers between the CPU and the accelerator.

After DMA initialization, the accelerator is accessible via
AXI-based data transfers. Any data that needs to be transferred
to the accelerator during workload execution is first copied
to a DMA input buffer. This staging copy acts as a packing
optimization (similar to [27]), contributing to an increased
cache-hit ratio during communication. Then, the AXI “send”
function call requests the DMA engine to start the data transfer
and waits for it to finish. Note that the data that is sent to the
accelerator can be either accelerator instructions or raw input
data that needs to be processed. Similarly, AXI4MLIR generates
“recv” function calls to wait for computation completion and
to obtain output data from the DMA output buffer.

In Section III-C, Figure 9 presents the lowering of dif-
ferent high-level operations into our DMA library calls.
copy_to_dma_region(...) implements data movement
from a memref to the DMA-accessible memory region intended
for transmission to the accelerator. The offset argument
allows for efficient batching of different data transfers after
computing the total length and executing a single “send” oper-
ation. Appropriate offset values prevent overwriting existing
data in the DMA region. dma_start_send(...) instructs the
DMA engine to transmit a size of X bytes to the connected
accelerator, commencing from a specified offset within the
DMA space allocated. dma_wait_send_completion(...)
instructs the CPU to wait for the DMA’s signal informing
the transaction’s completion. When receiving data from the
accelerator, we first have to wait for the data to be placed in
the DMA-accessible memory so it can be copied back into a
memref.

B. Supported Accelerators

In matrix-multiplication and similar algorithms, the term
stationary refers to a slice of data that can be reused across
many iterations of an algorithm’s computation. A stationary
strategy attempts to maximize data reuse and minimize data
movement, which can greatly benefit accelerators that require
efficient memory accesses. We want to enable the programmer
to easily control accelerators that support stationary flows.

Next, we discuss the types of accelerators that AXI4MLIR
can support. Then we propose a standardized approach to
concisely define the class of supported accelerators in a
configuration file. Finally, we show how the AXI4MLIR
parser is able to take user-defined configurations, extract
essential attributes of the target accelerator, and populate a trait
specification to guide our MLIR compiler transformations.

1) Accelerator Designs: The AXI4MLIR compiler trans-
formations support linear algebra kernels implemented as
accelerators using the AXI interconnect. In addition, the
AXI-S data transfers within AXI4MLIR facilitate support for
accelerators that use a micro-ISA (Instruction Set Architecture)

with opcodes, which consist of instructions that the host-
CPU sends to the accelerator. Generally, the following three
actions are used to categorize the actions within an instruction:
send, compute, and receive. Any accelerator’s instructions
that require external communication (i.e., data transfers or
activation/reset/configuration of accelerator compute modules)
can be completed by issuing a combination of these three
actions. In addition, each action can have additional meta-data
(e.g., opcode literal, data, length, dimensions, and indexes),
which is used to guide compiler transformations during
accelerator host code generation. Further, specific traits of
the accelerator - such as internal buffer space (or accelerator
tile sizes), and data types - are supported and must be defined
within the accelerator configuration file.

1 {"cpu" = { "cache-levels": [32K,512K],
2 "cache-types": [data,shared] }
3 "accelerators" = [
4 { "name": ..., "version": x.x, "description": ...,
5 "dma_config" : {...}, "kernel": "linalg.matmul",
6 "accel_size": [4,4,4], "data_type": int32,
7 "dims": ["m", "n", "k"],
8 "data": { "A": [m,k], "B": [k,n], "C": [m,n]},
9 "opcode_map" : "<opcode_map string - see IV-D>",

10 "opcode_flow_map" : { "flowID01" :
11 "<opcode_flow string - see IV-D>", ...},
12 "selected_flow" : "flowID01" }]}

Fig. 5: Accelerator and CPU configuration file.

2) Accelerator Configuration File: Once an AXI-based ac-
celerator is fully designed, the accelerator developer can quickly
integrate it with our AXI4MLIR compiler transformations by
providing Accelerator and Host information 1 (Figure 4)
through a configuration file for the new accelerator and the
target host system. Figure 5 shows a sample configuration file
defined in the standard JSON format. For the accelerator, the
developer must specify the accelerator’s architectural features,
e.g., supported tile sizes, data type, and input and output
data with related dimensions. Additionally, the developer
should describe any micro-ISA that the accelerator can execute.
The developer should define “opcode IDs”, captured by the
“opcode map string”, which are comprised of actions to
describe the memory operations and related data transfers.
Finally the developer should define the possible “opcode flow
IDs” and select the desired flow for the particular operation.
The configuration file does not capture the internal behavior of
the accelerator, which has been the focus of other works [12],
[16]; instead, we seek to optimize the communication with the
accelerator. Thus the configuration file contains information
about the I/O interface for sending data and instructions to the
accelerator. Similar to the accelerator information, the CPU
information, shown in Figure 5-L1 to L2, needs to contain basic
architectural details such as the number and size of caches.

3) Configuration Parsing: The parser implemented in 2
(Figure 4) is responsible for providing the information from
the configuration file to the MLIR IR and the AXI4MLIR
transformation passes. To this end, the kernel and cache
information, paired with a simple heuristic that identifies
the dimensions of the target MLIR operation, are used to
schedule tiling transformations (Figure 4 - 4) that leverage

1 #matmul_accel_trait = {
2 dma_init_config = { id = 0x0,
3 inputAddress = 0x42, inputBufferSize = 0xFF00,
4 outputAddress = 0xFF42, outputBufferSize = 0xFF00 },
5

6 // Opcodes sent once. Tokens defined in opcode_map.
7 init_opcodes = init_opcodes < (reset) >,
8

9 accel_dim = map<(m, n, k) -> (4, 4, 4)>, // Tiling
10

11 // Permutation and who can be stationary.
12 permutation_map = affine_map<(m, n, k) -> (m, k, n)>,
13

14 opcode_map = opcode_map < // Valid Opcodes
15 sA = [send_literal(0x22), send(0)],
16 sB = [send_literal(0x23), send(1)],
17 cC = [send_literal(0xF0)],
18 rC = [send_literal(0x24), recv(2)],
19 sBcCrC = [send_literal(0x25), send(1), recv(2)],
20 reset = [send_literal(0xFF)] >,
21

22 // Flow to implement. Tokens defined in opcode_map.
23 opcode_flow = opcode_flow < (sA (sBcCrC)) > // As
24 // Example of other < ((sA sB cC) rC) > // Cs
25 // valid flows < (sB sA cC rC) > // Ns
26 }

(a) New Attributes for Accelerator Description.

1 func.func @matmul_call(...) {
2 // Declare constants (loop bounds and literals): %cX, ...
3 accel.dma_init(%c0,%c66,%c65280,%c65346,%c65280) : ...
4 accel.sendLiteral(%c0xFF, %c0) : i32,i32->i32 // reset
5 // Tiling by 4,4,4
6 scf.for %m = %c0 to %c60 step %c4 { // first loop
7 scf.for %k = %c0 to %c80 step %c4 { // second loop
8 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1] : ...
9 %offset0 = accel.sendLiteral(%c0x22,%c0):i32,i32->i32

10 accel.send(%sA, %offset0) : !mr4x4_0, i32 -> i32
11 scf.for %n = %c0 to %c72 step %c4 { // innermost
12 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1] :
13 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1] :
14 %offset1 = accel.sendLiteral(%0x25,%c0): ...
15 %offset2 = accel.send(%sB, %offset1) :
16 !mr4x4_0, i32 -> i32
17 accel.recv {mode="accumulate"}(%sC, %c0) :
18 !mr4x4_0, i32 -> i32
19 } } } } } }
20 return }

(b) IR to drive the MatMul accelerator with an A-stationary flow.
Fig. 6: Information added to the linalg.generic traits to capture accelerator
behavior in MLIR and IR with accel operations.

the CPU memory hierarchy sizes and increase temporal
locality of the memory accesses. Additionally, the parser
validates the opcode_map and the user selected opcode_flow,
which are then translated into new MLIR attributes to the
target linalg.generic operation trait. Their syntax and
functionality are described in Section III-C.

4) Supported Systems: Our work is focused on SoCs with ac-
celerators connected to ARM CPUs via an AXI-S interconnect.
AXI4MLIR seamlessly integrates with a diverse set of Xilinx
platforms, though we also anticipate similar applicability to
other FPGA-SoC devices. Changing the cross-compiler would
allow support for other processors. Adapting our DMA library
implementation to other standards would be required to support
other types of interconnects. AXI4MLIR currently supports
AXI-Stream accelerators, which do not communicate via direct
memory requests. Thus, AXI4MLIR does not require support
for host-accelerator coherence protocols, since the host manages
the DMA engine transfers.

C. MLIR extensions and optimizations

To implement match and annotate operations for runtime
replacement 3 (Figure 4), and to offload the computation

1 opcode_dict ::=
2 `opcode_map` `<` opcode_entry (`,` opcode_entry)* `>`
3 opcode_entry ::= (bare_id | string_literal) `=` opcode_list
4 opcode_list ::= `[` opcode_expr (`,` opcode_expr)* `]`
5 opcode_expr ::= `send` `(` bare_id `)`
6 | `send_literal` `(` integer_literal `)`
7 | `send_dim` `(` bare_id `)`
8 | `send_idx` `(` bare_id `)`
9 | `recv` `(` bare_id `)`

Fig. 7: Opcode Map Syntax. A dictionary for accelerator opcodes and actions.

1 opcode_flow_entry ::= `opcode_flow` `<` flow_expr >
2 flow_expr ::= `(` flow_expr `)` | bare_id (` ` bare_id)*

Fig. 8: Opcode Flow Syntax. The sequence of opcodes to implement a specific
dataflow of host-accelerator communication.

onto the accelerator, we implemented passes to identify the
target algorithms supported by the accelerator and extended
the linalg.generic operation trait with additional infor-
mation, as shown in Figure 6a. In particular, we introduced
two new types of attributes to MLIR, opcode_map and
opcode_flow, which follow the syntax described in Figure 7
and Figure 8, respectively. We elaborate more on each attribute
in the operation trait below.
Extensions to linalg.generic traits:
- dma_init_config: defines the parameter values used to
configure a DMA engine associated with a specific accelerator.
If multiple or different accelerators are present, they would
have different values in this field. Figure 6a-L2 to L4 show
the available parameters. The code generated for the DMA
initialization is executed by the CPU only once per application.
- init_opcodes: defines a flow of opcodes that should be
sent to initialize or reset the accelerator for a new kernel
execution. During application runtime, these opcodes are sent
N times, where N is the number of kernels in an application
that can be mapped onto the custom accelerator. In Figure 6a-
L7, we define that the reset opcode must be included to support
the described accelerator. The opcode’s functionality is derived
from the opcode_map parameter below.
- accel_dim: defines the size of the accelerator for each
dimension of the implemented algorithm. Figure 6a-L9 shows
an example, specifying that the accelerator supports a tiled
MatMul4x4x4 version of the implemented algorithm.
- permutation_map: defines the order in which nested loops
execute. In Figure 6a-L12, we switch the order of the two
innermost loops, potentially enabling the data structure that
uses [m,k] indices to be stationary, as the other data structures
are streamed in/out of the accelerator. In our MatMul example
(Figure 2b), this enables an A stationary dataflow (Figure 6b).
- opcode_map: describes accelerator opcodes as key-value
pairs. Following the syntax scheme shown in Figure 7, the key,
or opcode entry, is an identifier that maps to a list of actions,
or opcode list, which represents sequential memory operations
that have to be performed to drive the accelerator. Each
action, or opcode expr (send, send_literal, send_dim,
send_idx, recv), implements different types of copies to/from
the DMA memory-mapped region. The send and recv actions
take an input. The input is a number that is used to represent
one of the arguments to the linalg.generic operation, e.g.,

0, 1, or 2 would map to A, B, or C, respectively, in the
MatMul example (Figure 2a-L12-13). During code generation,
this information is used to copy the needed tile to the memory-
mapped region. For example, Figure 6a-L15 shows an opcode
with identifier “sA” that issues copies to the accelerator for
the literal value 0x22 and then for the data associated with
the tile of argument 0. Furthermore, send_dim and send_idx

can be used to send tile dimensions or tile indices, which could
be used to drive more complex accelerators. Subsequent text
will refer to an opcode entry, such as “sA”, simply as opcode.
- opcode_flow: represents valid opcode/data transfer flows
and respects the syntax scheme shown in Figure 8. Figure 6a-
L23 shows an example, which defines an input A stationary
(associated with argument 0) valid flow implemented with
two opcodes, using the identifiers defined in the opcode_map.
Additional valid examples for output C stationary and nothing
stationary flows are shown in lines 24 and 25 of Figure 6a.
The information in opcode_flow is parsed and the set of
parentheses is understood as a proxy to specify multiple scopes
for sequential or nested for loops in the algorithm. Following
this flow, logic related to “sA” would be transmitted inside of
the second loop (Figure 6b-L8 to L10), and logic related to

“sBcCrC” would appear in the innermost loop (Figure 6b-L12
to L18). Suppose the user decides to forego the opportunity
to specify input A as stationary, then the opcode flow could
become “(sA sB cC rC)”, and all communication driver logic
would be generated in the innermost loop.
The accel dialect: Before generating function calls for
runtime replacement to the DMA runtime library (described
in Section III-A), we perform host code transformations 5
(Figure 4) by lowering the linalg.generic operation, with
the proposed trait, to standard MLIR dialects (scf, arith,
memref) and a new dialect that we call accel. Operations
in the accel dialect abstract host-accelerator transactions,
such as initialization, memory transfers, and synchronization.
Figure 9 presents the core accel operations and their semantics,
providing examples of how these operations map onto our
custom AXI DMA library calls. Additionally, Figure 6b shows
how the accel operations are used in our MatMul example.

Note that it is easier to perform analysis and transformations
of operations when they are expressed in our accel dialect,
as opposed to using a lower-level abstraction. With lower-
level abstractions such as llvm, function calls and additional
logic have already been exposed: additional instructions must
be present in the IR to implement buffer slicing, size/offset
calculations, and function calls to copy data to/from the
DMA regions. Performing analysis and transformations in the
llvm abstraction is more challenging, as traversal of control
flow blocks and LLVM instructions are necessary. Instead,
operations in the intermediate accel dialect encode the relevant
information, and are easily relocated during transformation
passes, respecting dependencies without requiring complex
compiler analysis. This approach facilitates implementing
communication flows that consider one of the data structures
to be stationary by simply hoisting the accel operations
up to the right loop nest level, while considering the flow

Fig. 9: Semantics and lowering of accel operations.

patterns. Finally, the accel dialect provides an intermediate
step before runtime call replacement. In this work we target
our AXI DMA runtime library described in Section III-A,
but further extensions could implement the transformation
of accel operations into other runtime libraries such as
OpenCL [28] or SYCL [29], which are commonly used to
interface with SoC FPGA accelerators.

IV. EXPERIMENTS AND RESULTS

To evaluate AXI4MLIR, we use a PYNQ-Z2 board that
includes a Zynq-7000 SoC with a dual-core ARM Cortex-A9
CPU (650 MHz), and a library of tile-based accelerators derived
from SECDA-TFLite [30] implemented with AXI-S interface
and opcodes with a micro-ISA. For workloads, we target a suite
of kernels covering a range of dimensions, as well as an end-
to-end machine learning application. We leverage hand-written
baselines, which we discuss in Section IV-A. Section IV-B
evaluates accelerators implementing MatMul, comparing infer-
ence performance against a hand-written baseline, identifying
potential bottlenecks, and showcasing the benefits of our
optimized dataflows. Section IV-C highlights the value of
AXI4MLIR by demonstrating how to handle accelerators with
configurable parameters such as tile sizes and dataflows. We
showcase how to use AXI4MLIR with a convolution-based
accelerator in Section IV-D. Finally, Section IV-E shows how
AXI4MLIR can work in the context of a complete application,
evaluating the TinyBERT model [31].

A. Hand-written Baselines

The next experiments employ hand-written optimized driver
code derived from the SECDA-TFLite accelerator toolkit [30]
to establish performance baselines. SECDA-TFLite presents
a state-of-the-art toolchain and methodology for HW/SW co-
design of embedded machine learning accelerators targeting
FPGA SoC devices. With host-driver code written in C++,
these manual baselines will be labeled as cpp MANUAL. All
baselines are implemented with various tiling strategies, with no

additional data transfer overheads and with the fewest number
of data transfer calls for the selected dataflow.

B. Matrix-Multiplication Experiments

The tile-based accelerators used here resemble vector MAC
engines [32], [33], [34], [35] implementing MatMul algorithms.
They vary in input/output buffer size and supported dataflow.
From the CPU-host perspective, some of them can support
varying degrees of data reuse when the appropriate opcode
stream drives the accelerator. Table I presents a short summary
of their functionality, where size stands for the supported tile
size of the accelerator. For example, v14 is a MatMul4x4x4
accelerator that does not support data reuse and only supports
tM, tN, tK == 4, 4, 4 tiles. For v14, AXI4MLIR will tile the
algorithm’s loops in the host code, taking into account the accel-
erator size of 4 and all the data movement will happen in the in-
nermost loop - “opcode_flow <(sA sB cCrC)>”. For v28,
AXI4MLIR will tile the computation by 8 and generate code to
maximize the reuse of one of the inputs. In v2, a stationary (As)
is implemented with opcode_flow <(sA (sB cCrC))>.

Accelerators v3 and v4 can also reuse their output data
structures. Accelerator v4, marked with flex size, supports
computations of non-square tiles, i.e., v416 can process a
MatMul of tM, tN, tK = 32, 16, 64, as long as tM, tN, tK
are divisible by 16 and fit in the accelerator’s memory. All
accelerators were implemented using HLS pipelining and
unrolling to maximize the number of internal processing
elements instantiated and their arithmetic throughput. The last
column of Table I reports throughput (OPs/cycle) for each
accelerator, highlighting that many arithmetic operations are
executed in parallel at each cycle. Different types of accelerators
with the same size have the same throughput, and accelerators
with bigger sizes provide higher throughput. All bar graphs
presented in this section represent the average of 5 independent
runs with the same configuration.
Accelerator relevance. In order to evaluate the performance of
the accelerators defined in Table I, we conducted experiments
to compare the runtime of the CPU execution (mlir CPU)
against the manual C++ implementation (referred to as cpp
for short) of the driver code using the accelerators. The task
clock was used as a metric to measure the execution time of
the benchmarks. We present the results of the experiments in
Figure 10, which plots the task clock on the y-axis (smaller is
better) and only includes the “Nothing Stationary flow”, which
means that the data transfers happen in the innermost loop.

Looking at Figure 10, we can see that the accelerator offload
only becomes relevant (i.e., executes faster than the CPU)
for problems with dims ≥ 64, where dims = M = N =
K. For problems with smaller dimensions, CPU execution
will be faster than the accelerator. In addition, the results
in Figure 10 suggest that accelerators only become relevant
if accel size = tM = tN = tK ≥ 8. For smaller accelerator
sizes, the CPU execution is faster than the accelerator.

These observations suggest that the performance benefits of
using the accelerators are limited for ranges of problem sizes
and accelerator sizes. Therefore, it is important to carefully

TABLE I: Accelerators used in the experiments. Synthesized with AMD/Xilinx
Vitis at 200MHz.

Type Possible Reuse Opcode(s) Configurations
v1size Nothing sAsBcCrC (Size, OPs/Cycle)
v2size Inputs sA, sB, cCrC (4, 10)
v3size Ins/Out sA, sB, cC, rC (8, 60)
v4size Ins/Out (flex size) sA, sB, cC, rC (16, 112)

(1
6,

 0
, N

O
N

E
)

(1
6,

 4
, v

1)

(1
6,

 8
, v

1)

(1
6,

 1
6,

 v
1)

(3
2,

 0
, N

O
N

E
)

(3
2,

 4
, v

1)

(3
2,

 8
, v

1)

(3
2,

 1
6,

 v
1)

(6
4,

 0
, N

O
N

E
)

(6
4,

 4
, v

1)

(6
4,

 8
, v

1)

(6
4,

 1
6,

 v
1)

(1
28

, 0
, N

O
N

E
)

(1
28

, 4
, v

1)

(1
28

, 8
, v

1)

(1
28

, 1
6,

 v
1)

(2
56

, 0
, N

O
N

E
)

(2
56

, 4
, v

1)

(2
56

, 8
, v

1)

(2
56

, 1
6,

 v
1)

dims,accel_size,accel_version

102

103

ta
sk

-c
lo

ck
 [m

s]

cpp_MANUAL
mlir_CPU

Fig. 10: Runtime characterization CPU vs. Accelerator execution for Matrix
Multiplication problems. Note how an accelerator only becomes relevant for
problems with dims ≥ 64 and accel size ≥ 8.

choose the appropriate accelerator configuration for a given
problem to achieve the best performance. Consequently, for
the next experiments we will limit our focus to problems with
dims ≥ 64 and accelerators with accel size ≥ 8.
AXI4MLIR generated vs. Manual implementation.

AXI4MLIR provides several benefits. First, our passes
automatically tile data mapped to the CPU memory hierarchy,
leveraging spatial and temporal locality. The second benefit
is the ability to automatically generate specific flows, such as
the Nothing Stationary (Ns) flow, which can be tedious and
error-prone when done manually. Additionally, AXI4MLIR
provides an efficient path to flow strategies that can potentially
improve performance, such as input A or B stationary (As, Bs)
flows. Figure 11 presents these results.

First, we compare the differences in execution time between
a manual implementation (see Section IV-A) of an Ns flow
strategy and an AXI4MLIR generated Ns flow strategy, repre-
sented by the first two bars in each group of bars in Figure 11.
The remaining bars in each group of bars show results for
automatically generated flow strategies, with As and Bs for v2
accelerators and As, Bs, and Cs for v3 accelerators. Looking
at Figure 11 we see that some flows, especially Cs, provide
improvements. To achieve this, the user simply has to encode
the information for Cs (or other flows) during compilation. For
example, we can encode Cs using the opcode flow previously
presented in Figure 6a-L25 in the the operation’s trait.

Next, in Figure 11, we focus on the results with the
v3 accelerator. Here, we see that AXI4MLIR generated Cs
performs better than the manually generated Ns, although the
other flows are not performing as expected. First, we would
expect the performance of AXI4MLIR generated Ns to have
similar/closer task clock performance than manual Ns. And
second, we would also expect As and Bs flows to always
outperform Ns due to the degree of reuse, as they copy less

(6
4,

 8
, v

2)

(6
4,

 8
, v

3)

(6
4,

 1
6,

 v
2)

(6
4,

 1
6,

 v
3)

(1
28

, 8
, v

2)

(1
28

, 8
, v

3)

(1
28

, 1
6,

 v
2)

(1
28

, 1
6,

 v
3)

(2
56

, 8
, v

2)

(2
56

, 8
, v

3)

(2
56

, 1
6,

 v
2)

(2
56

, 1
6,

 v
3)

dims,accel_size,accel_version

102

103
ta

sk
-c

lo
ck

 [m
s]

cpp_MANUAL, Ns
mlir_AXI4MLIR, Ns
mlir_AXI4MLIR, As
mlir_AXI4MLIR, Bs
mlir_AXI4MLIR, Cs

Fig. 11: Runtime results on Matrix Multiplication kernels. Manual implemen-
tation of Ns flow vs. AXI4MLIR generated driver code for different flow
strategies, Ns, As, Bs, Cs. All bar groups follow similar trends. Ns, As, and
Bs bottlenecks are analysed and addressed in following experiments.

data and can keep the accelerator better utilized. Hence, this first
implementation has room for improvement and, in the following
experiment, we identified and fixed the bottlenecks by analyzing
performance counters and implementing optimizations that
specialize memory copies.
Identifying bottlenecks & improving AXI4MLIR codegen.
Next, we identify performance bottlenecks in AXI4MLIR
generated copies and improve upon them to enhance the
performance of the workloads when using the custom hardware
accelerators. Specifically, the experiment compares the perfor-
mance of manually implemented host-accelerator driver code
with AXI4MLIR generated code for Ns, As, Bs, and Cs flows
in terms of branch-instructions, cache reference counters, and
the task clock. These metrics were obtained using the perf

tool [36] to profile the application and retrieve counters for
CPU perf events over 5 runs.

Figure 12a shows branch instructions, cache reference
counters, and the task clock for dims == 128, for the v316
accelerator that supports input and output stationary flows. The
trends are similar to other problem and accelerator sizes. Our
results are normalized to the same counters collected on a CPU-
only execution of the same problem size. In each group we show
results for AXI4MLIR automatically generated code for Ns,
As, Bs, Cs flows, and compare against manual implementations
(first bar of a group) for copying the necessary data through
the DMA memory-mapped region. MLIR applications have to
consider MLIR memory references (presented in Section II-A1),
but manual implementations use bare C-arrays. To support
generality, MLIR copies between MemRef and the raw array
(DMA buffer region) are implemented with a recursive call,
loading and storing one element at a time. This is necessary to
support rank = N MemRefs, where strides in all dimensions
are different from 1.

In order to address this issue, we implemented an opti-
mization for when strides[N − 1] == 1 (i.e., elements in
N − 1 dimension are adjacent to each other in memory) and
specialized MemRef copies for some known rank sizes, such as
rank == 2. For this scenario, we leverage the spatial locality

branch-instructions cache-references task-clock
metric

0%

10%

20%

30%

40%

50%

N
or

m
al

iz
ed

 V
al

ue
s

Ac
ce

le
ra

to
r
v3

16
 v

s
m

lir
_C

PU
(P

ro
bl

em
 D

im
s

=
=

 1
28

)

cpp_MANUAL, Ns
mlir_AXI4MLIR, Ns
mlir_AXI4MLIR, As
mlir_AXI4MLIR, Bs
mlir_AXI4MLIR, Cs

(a) Without the MemRef-DMA buffer copy optimization. Generated host-
accelerator code has overheads if not specialized.

branch-instructions cache-references task-clock
metric

0%

10%

20%

30%

40%

50%

N
or

m
al

iz
ed

 V
al

ue
s

Ac
ce

le
ra

to
r
v3

16
 v

s
m

lir
_C

PU
(P

ro
bl

em
 D

im
s

=
=

 1
28

)

cpp_MANUAL, Ns
mlir_AXI4MLIR, Ns
mlir_AXI4MLIR, As
mlir_AXI4MLIR, Bs
mlir_AXI4MLIR, Cs

(b) With MemRef-DMA buffer copy optimization. AXI4MLIR improves
accelerator performance over manual Ns implementation.
Fig. 12: Cache, branch, and runtime metrics of different tools and strategies
using v316 accelerator with problem size (dims == 128). Normalized values
against CPU (without accelerator) executions of same problem size.

and implement the copy not with individual load and store in-
structions, but by calling std::memcpy(src, dst, size).
When compiling this function for our platform, the compiler
will inline the assembly, implementing a vectorized copy
that improves the performance of the copy operation. The
implications of this optimization are twofold. First, it reduces
the number of branch references because there is no need for
branching to handle non-unitary strides or to iterate over an
arbitrary number of dimensions, resulting in better control flow
and branch prediction. Second, the vectorized code reduces
the number of cache references because the data is accessed
sequentially in memory. Therefore, there will only be two
cache reference to fetch the cache line containing the requested
data, and subsequent loads within the same cache line will not
require additional cache references as they are read from the
vector VFP registers [37]. The results for this optimization are
presented in Figure 12b.

After incorporating this optimization, the AXI4MLIR gener-
ated driver code executed faster on all accelerators as compared
to their respective manual implementations. In Figure 13, we
compare AXI4MLIR against manual implementations for Ns,
As, Bs, and Cs, and found that the compiled generated driver
code provided by AXI4MLIR is consistently faster (1.18×
average speedup and 1.65× max speedup), thanks to its ability
to leverage proper tiling for the CPU’s memory hierarchy,
resulting in a 10% average and 56% max reduction in cache
references.

(6
4,

 8
, v

2,
 N

s)

(6
4,

 8
, v

2,
 A

s)

(6
4,

 8
, v

2,
 B

s)

(6
4,

 8
, v

3,
 N

s)

(6
4,

 8
, v

3,
 A

s)

(6
4,

 8
, v

3,
 B

s)

(6
4,

 8
, v

3,
 C

s)

(6
4,

 1
6,

 v
2,

 N
s)

(6
4,

 1
6,

 v
2,

 A
s)

(6
4,

 1
6,

 v
2,

 B
s)

(6
4,

 1
6,

 v
3,

 N
s)

(6
4,

 1
6,

 v
3,

 A
s)

(6
4,

 1
6,

 v
3,

 B
s)

(6
4,

 1
6,

 v
3,

 C
s)

(1
28

, 8
, v

2,
 N

s)

(1
28

, 8
, v

2,
 A

s)

(1
28

, 8
, v

2,
 B

s)

(1
28

, 8
, v

3,
 N

s)

(1
28

, 8
, v

3,
 A

s)

(1
28

, 8
, v

3,
 B

s)

(1
28

, 8
, v

3,
 C

s)

(1
28

, 1
6,

 v
2,

 N
s)

(1
28

, 1
6,

 v
2,

 A
s)

(1
28

, 1
6,

 v
2,

 B
s)

(1
28

, 1
6,

 v
3,

 N
s)

(1
28

, 1
6,

 v
3,

 A
s)

(1
28

, 1
6,

 v
3,

 B
s)

(1
28

, 1
6,

 v
3,

 C
s)

(2
56

, 8
, v

2,
 N

s)

(2
56

, 8
, v

2,
 A

s)

(2
56

, 8
, v

2,
 B

s)

(2
56

, 8
, v

3,
 N

s)

(2
56

, 8
, v

3,
 A

s)

(2
56

, 8
, v

3,
 B

s)

(2
56

, 8
, v

3,
 C

s)

(2
56

, 1
6,

 v
2,

 N
s)

(2
56

, 1
6,

 v
2,

 A
s)

(2
56

, 1
6,

 v
2,

 B
s)

(2
56

, 1
6,

 v
3,

 N
s)

(2
56

, 1
6,

 v
3,

 A
s)

(2
56

, 1
6,

 v
3,

 B
s)

(2
56

, 1
6,

 v
3,

 C
s)

dims,accel_size,accel_version,strategy

101

102

103
ta

sk
-c

lo
ck

 [m
s] cpp_MANUAL

mlir_AXI4MLIR

Fig. 13: Runtime comparison of manual implementation of driver code and AXIMLIR generated. Each set of two bars have a matching Accelerator Type,
Accelerator Size, and Flow Strategy (Ns, As, Bs, Cs). AXI4MLIR is better in all cases.

256_32_512 256_512_32 32_256_512 32_512_256 512_256_32 512_32_256
dims [M_N_K]

0

10

20

30

40

50

60

70

ta
sk

-c
lo

ck
 [m

s]

C
s 128 32 32

As 128 32 32

C
s 32 128 32

C
s 32 128 32

B
s 32 128 32

C
s 128 32 32

As-squareTile Bs-squareTile Cs-squareTile Best

Fig. 14: MatMul problem permutations (v4 accelerator) for different strategies.
For the “Best” strategies we annotate the chosen flow and tiling values.

C. Matrix-Multiplication with flexible sizes

Runtime configurable accelerators allow for fine-grained
hardware tuning for specific problems. With AXI4MLIR, we
can generate host code to configure and optimize flexible
accelerators for the target problem. To demonstrate this
capability, we evaluate multiple permutations of a MatMul
problem on the v4 accelerator. The v4 accelerator supports
multiple dataflow strategies and adjustable tile sizes for its
tM , tN , and tK dimensions. The intuition is that scientific
and machine learning workloads present problem sizes with
different values for each dimension, sometimes resulting in
tall/skinny matrices during execution. Tiling the problem in
the accelerator with different dimensions for tM , tN , and tK,
and selecting the appropriate flow strategy can be beneficial
for the application.

When using AXI4MLIR, a developer is not limited to one
configuration of an accelerator. Based on the user’s knowledge
of the application, AXI4MLIR can automatically generate
the driver for accelerators with adjustable dimensions. This
flexibility allows for a more thorough exploration of the design
space, enabling the developer to find the best sizes for tM ,
tN , tK, and the best flow strategy for each problem instance.

In Figure 14, we compare four different heuristics and use
them to choose the best tiling and dataflow configuration for
a MatMul problem. We evaluate performance in terms of
execution time. We profile the problem with M ,N , and K
dimensions permuted from the following values: [32, 256, 512].
Hence, the theoretical minimum number of multiply-accumulate

operations required for all permutations is the same. Here,
the As-squareTile, Bs-squareTile, and Cs-squareTile heuristics
try to find the best configuration to reduce the total memory
access count given the constraint of tiling the MatMul with
square tiles (i.e., tM = tN = tK = T), with A, B, and C
stationary dataflow, respectively. The fourth heuristic, Best,
chooses between all dataflows and flexible tiling options, only
sharing the choice of the accelerator. In Figure 14 we annotate
the “Best” configuration found for each problem.
Square tiling. We observe that as we change the problem per-
mutation, the best flow between As-squareTile, Bs-squareTile,
and Cs-squareTile tiling strategies changes. The best flow
depends on the problem shape, the size, and the available
accelerator buffer space. T = 32 was selected for all square
flows because it is the biggest value, so the tiles fit inside the
accelerator’s internal memory.
Flexible tiling. The Best heuristic, selected from non-square
strategies, outperforms square tiling by leveraging flexible tiling
sizes. AXI4MLIR can generate code to utilize larger tile sizes
in various dimensions, taking advantage of the v4 accelerator’s
unrestricted tiling factors and improving the accelerator’s
internal memory utilization.
Configurations. Manually implementing all configurations’
driver code for even a simple accelerator such as v4 is very
time-consuming. AXI4MLIR can quickly generate hostcode
for configurable accelerators easily, enabling the developer to
specify an accelerator configuration per problem instance.

D. Convolution

We show the flexibility of AXI4MLIR by generating driver
code for a convolution-based accelerator executing different
problems sizes. This accelerator supports varying input channel
(iC) and filter (fHW) sizes, computing one output slice (all
elements in one output channel - oC) per iteration. To orches-
trate the execution, multiple instructions have to be sent to the
accelerator. This orchestration is achieved by compiling the
driver code derived from the MLIR accel code (Figure 15b).
The accel code is generated after a transformation pass takes
into account the attributes shown in Figure 15a and MLIR’s
linalg.conv_2d_nchw_fchw operations. Note that if the
convolution operation has iC, fH, fW dimensions that are

1 accel_dim = map<(B,H,W, iC,oC,fH,fW) ->
2 (0,0,0,256, 1, 3, 3)>, // Tiling
3 opcode_map<
4 sIcO=[send_literal(70), send(0)], // send 3D input window
5 // and compute
6 sF=[send_literal(1), send(1)], // send 3D filter
7 rO=[send_literal(8), recv(2)], // recv 2D output slice
8 rst=[send_literal(32), send_dim(1,3), // set filter size
9 send_literal(16), send_dim(0,1)]> // set iC size

10 opcode_flow <(sF (sIcO) rO)> // filter+output stationary
11 init_opcodes <(rst)>

(a) Opcode Map and Flow for Conv2D accelerator.

1 func.func @conv_call(...) {
2 // With %I: !mrI_1_256_7_7; %W: !mrW_64_256_3_3
3 // and %O: !mrO_1_64_5_5
4 // Declare constants (loop bounds and literals): %cX, ...
5 accel.dma_init(%c0,%c66,%c65280,%c65346,%c65280) : ...
6 accel.sendLiteral(%c32, %c0) : i32,i32->i32 // send inst
7 accel.sendDim(%W,%c3,%c0) : !mrW,i32,i32->i32 // send %fH
8 accel.sendLiteral(%c16, %c0) : i32,i32->i32 // send inst
9 accel.sendDim(%I,%c1,%c0) : !mrI,i32,i32->i32 // send %iC

10

11 // Tile dims by (B,H,W,iC,oC,fH,fW) -> (-,-,-,256,1,3,3)
12 scf.for %b = %c0 to %c1 step %c1 { // B loop
13 scf.for %oc = %c0 to %c64 step %c1 { // OC loop
14 %sW = memref.subview %W[%oc,0,0,0][1,256,3,3] ...
15 %offset0 = accel.sendLiteral(%c1, %c0) : i32,i32->i32
16 %offset1 = accel.send(%sW, %offset0) :
17 !mrSubWx256x3x3, i32 -> i32
18 scf.for %oh = %c0 to %c5 step %c1 { // OH loop
19 scf.for %ow = %c0 to %c5 step %c1 { // OW loop
20 %xoffset = ... // index calculation
21 %yoffset = ... // index calculation
22 %sI = memref.subview %I[0,0,%xoffset,%yoffset]
23 [1,256,3,3] ...
24 %offset2 = accel.sendLiteral(%c70, %c0) : ...
25 %offset3 = accel.send(%sI, %offset2) :
26 !mrSubIx256x3x3, i32 -> i32
27 // inner product of sW and sI computed in HW
28 } }
29 %sO = memref.subview %O[0,%oc,0,0] [1,1,5,5] ...
30 %offset4 = accel.sendLiteral(%c8, %c0) : ...
31 accel.recv {mode="accumulate"}(%sO, %c0) :
32 !mrSubO_5x5_0, i32 -> i32
33 } } } } return }

(b) IR to drive the Conv2D accelerator with an output-stationary flow.
Fig. 15: Information added to the linalg.generic traits to capture convolution
accelerator behavior in MLIR and IR with accel operations.

smaller than the dimensions in accel_dim, no tiling will be
performed across these dimensions. In the convolution example
(Figure 15), upon accelerator reset, we use send_dim(1,3)

to send to the accelerator the filter size as the dimension ‘3’ of
data structure ‘1’ (i.e., the filter), and we use send_dim(0,1)

to send the input channel size as the dimension ‘1’ of the data
structure ‘0’ (i.e., the input).

We evaluate the performance of AXI4MLIR during the
execution of all convolution layers of ResNet18 [38]. Figure 16
presents performance metrics normalized to the runtime of
layer-specific manual C++ driver code. The results observed
here present similar trends as observed in the MatMul ex-
periments. Only one layer (56 64 1 128 2) presented a 10%
slowdown, contrary to previous trends. The slowdown happened
because fHW (1) and iC (64) were too small, and the overhead
of dealing with small MemRefs was not overcome since we
could not leverage the strided copy optimization presented
in Section IV-B. Smaller AXI4MLIR speedups are observed
every time that fHW== 1. That said, AXI4MLIR achieves
better runtime performance on 10 out of 11 ResNet18 layers,
with 1.28× and 1.54× average and max speedup, respectively,

14
_2

56
_1

_5
12

_2

16
_2

56
_3

_2
56

_1

16
_2

56
_3

_5
12

_2

23
0_

3_
7_

64
_2

28
_1

28
_1

_2
56

_2

30
_1

28
_3

_1
28

_1

30
_1

28
_3

_2
56

_2

56
_6

4_
1_

12
8_

2

58
_6

4_
3_

12
8_

2

58
_6

4_
3_

64
_1

9_
51

2_
3_

51
2_

1

dims [iHW, iC, fHW, oC, stride]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pe
rf

or
m

an
ce

 m
et

ri
cs

(N
or

m
az

lie
d

to
 c

pp
_M

AN
U

AL
)

Branch-Inst
Cache-references

Task-clock

Fig. 16: ResNet18 convolution layers: AXI4MLIR vs. Manual.

thanks to the improved CPU cache performance.

E. End-To-End Analysis

Finally, we evaluate AXI4MLIR when compiling a natural
language processing model to co-execute on both the CPU and
the v416 accelerator. We benchmark TinyBERT [31], a compact
transformer [39] model for Masked Language Modeling and
Next Sentence Prediction targeted at mobile and embedded
devices. We translate TinyBERT to MLIR IR using Torch-
MLIR [40] and compare the inference performance of CPU
execution (using -O3 during compilation) against co-execution
using the “Ns” offloading approach and the “Best” approach,
which employs the heuristics presented in Section IV-C.

As we can see in Figure 17, AXI4MLIR achieves a 3.4×
speedup in end-to-end execution, with an 18.4× speedup in the
accelerated MatMul layers that represent 75% of the original
CPU runtime. This experiment showcases how AXI4MLIR can
be used during evaluation and optimization of natural language
processing models on embedded devices. Our study highlights
that developers can easily co-design the accelerators when
targeting full workloads, which enables efficient exploration
and utilization of both CPU and accelerator resources.

CPU (MLIR) Ns-SquareTile AXI4MLIR Best
Compilation Approach

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti

m
e

(N
or

m
az

lie
d

to
 C

PU
)

e2e: 3.32x
Matmuls: (14.69x)

e2e: 3.44x
Matmuls: (18.43x)

Other Layers on CPU
Matmuls on CPU
Matmuls on ACC

Fig. 17: Execution time of the TinyBERT model with batch size == 2.
Each bar represents a compilation strategy. Speedups for end-to-end (e2e) and
for accelerated MatMul layers are shown as annotations.

V. RELATED WORK

Prior studies [41], [18], [11], [17], [13], [42], [43], [44]
have proposed new accelerator designs or presented new
methodologies to generate flexible accelerators for a wide
range of algorithms. However, these approaches fall short in
providing insights into how host-to-accelerator transfers should

be performed. Most of these tools assume that the required data
is already placed in the accelerator’s internal buffers. There
have also been efforts to support hardware/software co-design
of an accelerator for an application [19], [20], [30]. However,
these implementations adopt a simple offload model, where
execution of the kernel code is simply replaced by runtime
calls that copy the data to-and-from the accelerator, without
considering the host memory hierarchy or accelerator features,
which would require manual driver code modifications.

HeteroFlow [45], an FPGA accelerator programming model,
decouples algorithm specification from data placement op-
timization using a new primitive “.to()”. This approach
exposes data placement specification at various granularities,
achieving efficient code generation while matching optimized
manual HLS designs. HeteroFlow does not support arbitrary
custom accelerators, as it is limited to accelerators co-designed
with its framework (extended HeteroCL [46]). It also requires
the new primitive to be used while describing the algorithm
in Python, imposing manual application modification. Unlike
HeteroFlow, AXI4MLIR utilizes MLIR to target languages
employing linalg.generic operations during compilation,
eliminating the need for manual transformation.

Several other studies have addressed the challenge of
efficiently mapping algorithms and their loops onto accelera-
tors through operation scheduling. Notably, Interstellar [47],
DMazeRunner [48], and PolySA [49] delve into more versatile
loop structures by adopting diverse loop representations for
DNN layers. CoSA [50] and Vaidya et al. [51] tackle the
generation of execution schedules for DNNs in a time-efficient
manner, leveraging constrained optimization solvers. Self-
tuning algorithms have also been employed in addressing the
scheduling problem. Approaches like ConfuciuX [52], Flex-
Tensor [53], AutoTVM [54], and Ansor [55] utilize machine
learning algorithms. Furthermore, Flexer [56] employs an out-
of-order scheduling technique, unbound by loop order, which
orchestrates operations based on a comprehensive analysis of
the data-flow graph of a given layer. Some of these works
are tailored to a specific type of accelerator or algorithm. In
addition, these works primarily focus on scheduling aspects,
which AXI4MLIR currently lacks as a component. Nonetheless,
these scheduling techniques could potentially complement
AXI4MLIR’s attributes and transformations to enhance the
overall accelerator integration process.

The Pattern Description Language (PDL) and Transform
MLIR dialects [57] offer productive ways for expressing
IR transformations and could be leveraged to implement
similar functionality as provided by AXI4MLIR. However,
PDL cannot currently identify patterns in nested MLIR regions.
Additionally, the transform dialect focuses on scheduling
linear algebra transformations but requires extensions for
runtime call generation targeting accelerators and dataflows.
In contrast, AXI4MLIR’s opcode_map and opcode_flow

extensions enable flexible automatic driver code generation
for custom accelerators. Future work may involve integrating
AXI4MLIR passes as Transform operations and using PDL
to identify operation sequences for transformation, potentially

supporting fusing operations for custom accelerator execution.
Host code generation transforms accel operations into DMA

library calls. To facilitate further optimizations leveraging the
MLIR infrastructure, users can modify these transformation
passes while applying optimizations such as double buffer-
ing, building on our infrastructure supporting non-blocking
transfers and transfer completion checks. Our ongoing work
will introduce a new attribute to select inputs/outputs for
double buffering. This aligns with MLIR’s capability to modify
and add passes to the transformation pipeline. For further
efficiency, coalescing transfer requests are essential; future
work will implement a transformation that consolidates multiple
start_send calls into a single call after data preparation, thus
reducing the need for multiple wait_send calls, which incur
higher CPU accelerator-DMA synchronization costs.

VI. CONCLUSION

In this paper we presented AXI4MLIR, an extension to the
MLIR compiler framework to describe AXI-based accelerators
with a range of features including accelerator opcodes. We
implemented attribute extensions and compiler transformations
to describe and automatically generate host code that can
leverage different flows of flexible accelerators, allowing us
to break away from simple offload HW/SW co-design models.
After implementing data staging and accessing optimizations
during communication, our results show that AXI4MLIR is
effective in generating host code that efficiently uses CPU
resources and accelerator features. This allows for measurable
runtime improvements versus manual implementations for all
tested accelerators, while providing automation and conve-
nience during the co-design cycle. Finally, our user-driven host
code generation is entirely automated, providing a significant
advantage in terms of productivity and maintainability, specially
during the early stages of the co-design process.

ACKNOWLEDGMENT

We acknowledge support from: the DMC Initiative, the
AT SCALE Initiative, and the Compiler Frameworks and
Hardware Generators to Support Innovative US Government
Designs project at Pacific Northwest National Laboratory;
the Engineering and Physical Sciences Research Council
(grant EP/R513222/1); the grant RYC2021-031966-I funded by
MCIN/AEI/10.13039/501100011033 and the “European Union
NextGenerationEU/PRTR.”

REFERENCES

[1] J. Hennessy and D. Patterson, “A new golden age for computer architec-
ture: Domain-specific hardware/software co-design, enhanced security,
open instruction sets, and agile chip development,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA).
Los Angeles, CA, USA: IEEE, 2018, pp. 27–29.

[2] H. Shabani, A. Singh, B. Youhana, and X. Guo, “Hirac: A hierarchical
accelerator with sorting-based packing for spgemms in dnn applications,”
in 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). Montreal, QC, Canada: IEEE, 2023, pp. 247–258.

[3] B. Kim, S. Li, and H. Li, “Inca: Input-stationary dataflow at outside-
the-box thinking about deep learning accelerators,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). Montreal, QC, Canada: IEEE, 2023, pp. 29–41.

[4] J. Zhao, Y. Yang, Y. Zhang, X. Liao, L. Gu, L. He, B. He,
H. Jin, H. Liu, X. Jiang, and H. Yu, “Tdgraph: A topology-driven
accelerator for high-performance streaming graph processing,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 116–129. [Online]. Available:
https://doi.org/10.1145/3470496.3527409

[5] S. Hsia, U. Gupta, B. Acun, N. Ardalani, P. Zhong, G.-Y. Wei,
D. Brooks, and C.-J. Wu, “Mp-rec: Hardware-software co-design to
enable multi-path recommendation,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
449–465. [Online]. Available: https://doi.org/10.1145/3582016.3582068

[6] S. Zheng, R. Chen, A. Wei, Y. Jin, Q. Han, L. Lu, B. Wu, X. Li,
S. Yan, and Y. Liang, “Amos: Enabling automatic mapping for tensor
computations on spatial accelerators with hardware abstraction,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 874–887. [Online]. Available:
https://doi.org/10.1145/3470496.3527440

[7] F. Muñoz Martı́nez, R. Garg, M. Pellauer, J. L. Abellán, M. E.
Acacio, and T. Krishna, “Flexagon: A multi-dataflow sparse-sparse
matrix multiplication accelerator for efficient dnn processing,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3, ser. ASPLOS 2023. New York, NY, USA: Association for
Computing Machinery, 2023, p. 252–265. [Online]. Available:
https://doi.org/10.1145/3582016.3582069

[8] M. Abolhasani and E. Kumacheva, “The rise of self-driving labs in
chemical and materials sciences,” Nature Synthesis, vol. 0, no. 0, pp.
1–10, 2023.

[9] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: Chances and
challenges,” in 2018 IEEE/ACM 1st International Workshop on Software
Engineering for AI in Autonomous Systems (SEFAIAS), ser. SEFAIS ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
35–38. [Online]. Available: https://doi.org/10.1145/3194085.3194087

[10] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko et al., “Highly
accurate protein structure prediction with alphafold,” Nature, vol. 596,
no. 7873, pp. 583–589, 2021.

[11] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W. Hwu, and D. Chen,
“DNNExplorer: A Framework for Modeling and Exploring a Novel
Paradigm of FPGA-based DNN Accelerator,” in ICCAD. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 1–9.

[12] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,
D. Chen, and Y. Lin, “Autodnnchip: An automated dnn chip predictor and
builder for both fpgas and asics,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. New
York, NY, USA: Association for Computing Machinery, 2020, p. 40–50.
[Online]. Available: https://doi.org/10.1145/3373087.3375306

[13] H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen, “Hybriddnn: A
framework for high-performance hybrid DNN accelerator design and
implementation,” in DAC. San Francisco, CA, USA: IEEE, 2020, pp.
1–6.

[14] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar,
“Maestro: A data-centric approach to understand reuse, performance, and
hardware cost of dnn mappings,” IEEE Micro, vol. 40, no. 3, pp. 20–29,
2020.

[15] P. Gibson, J. Cano, E. J. Crowley, A. Storkey, and M. O’Boyle, “DLAS:
An Exploration and Assessment of the Deep Learning Acceleration
Stack,” arXiv:2311.08909, Nov. 2023.

[16] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

[17] TVM Developers, “VTA: Deep learning accelerator stack,” 2020.
[Online]. Available: docs.tvm.ai/vta

[18] J. Ngadiuba, V. Loncar, M. Pierini, S. Summers, G. Di Guglielmo,
J. Duarte, P. Harris, D. Rankin, S. Jindariani, M. Liu et al., “Compressing
deep neural networks on FPGAs to binary and ternary precision with
hls4ml,” ML: Science and Technology, vol. 2, no. 1, p. 015001, 2020.

[19] S. Skalicky, J. Monson, A. Schmidt, and M. French, “Hot & Spicy:
Improving Productivity with Python and HLS for FPGAs,” in FCCM.
Boulder, CO, USA: IEEE, 2018, pp. 85–92.

[20] N. Bohm Agostini, S. Dong, E. Karimi, M. T. Lapuerta, J. Cano, J. L.
Abellán, and D. Kaeli, “Design space exploration of accelerators and end-
to-end dnn evaluation with tflite-soc,” in SBAC-PAD. Porto, Portugal:
IEEE, 2020, pp. 10–19.

[21] ARM Developers, “AMBA AXI and ACE Protocol Specification,” 2020.
[Online]. Available: https://developer.arm.com/documentation/ihi0022/e/
AMBA-AXI3-and-AXI4-Protocol-Specification

[22] S. Liu, H. Fan, X. Niu, H.-c. Ng, Y. Chu, and W. LUK, “Optimizing
cnn-based segmentation with deeply customized convolutional and
deconvolutional architectures on fpga,” ACM Trans. Reconfigurable
Technol. Syst., vol. 11, no. 3, dec 2018. [Online]. Available:
https://doi.org/10.1145/3242900

[23] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation,” in CGO.
Seoul, Korea (South): IEEE, 2021, pp. 2–14.

[24] M. Developers, “’linalg’ Dialect,” 2020, online accessed on 11-04-2023.
[Online]. Available: https://mlir.llvm.org/docs/Dialects/Linalg/

[25] T. D. Le, G.-T. Bercea, T. Chen, A. E. Eichenberger, H. Imai, T. Jin,
K. Kawachiya, Y. Negishi, and K. O’Brien, “Compiling ONNX Neural
Network Models Using MLIR,” ArXiv, vol. 0, no. 0, pp. 1–8, 2020.

[26] Xilinx, “AXI Reference Guide,” 2012. [Online]. Available: https:
//docs.xilinx.com/v/u/14.1-English/ug761 axi reference guide

[27] C. Salvador Rohwedder, N. Henderson, J. a. P. L. De Carvalho, Y. Chen,
and J. N. Amaral, “To pack or not to pack: A generalized packing analysis
and transformation,” in Proceedings of the 21st ACM/IEEE International
Symposium on Code Generation and Optimization, ser. CGO 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p. 14–27.

[28] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
and Engg., vol. 12, no. 3, p. 66–73, may 2010.

[29] R. Reyes, G. Brown, R. Burns, and M. Wong, “Sycl 2020: More than
meets the eye,” in Proceedings of the International Workshop on OpenCL,
ser. IWOCL ’20. New York, NY, USA: Association for Computing
Machinery, 2020.

[30] J. Haris, P. Gibson, J. Cano, N. Bohm Agostini, and D. Kaeli, “SECDA-
TFLite: A toolkit for efficient development of FPGA-based DNN
accelerators for edge inference,” Journal of Parallel and Distributed
Computing, vol. 173, pp. 140–151, 2023.

[31] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, “Tinybert: Distilling bert for natural language understanding,”
arXiv preprint arXiv:1909.10351, vol. 0, no. 0, pp. 1–12, 2019.

[32] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 1–13, 2016.

[33] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), IEEE. Taipei, Taiwan: IEEE, 2016, pp. 1–12.

[34] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun et al., “Dadiannao: A machine-learning supercomputer,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
IEEE. Cambridge, UK: IEEE, 2014, pp. 609–622.

[35] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays. New York, NY, USA: Association for
Computing Machinery, 2015, pp. 161–170.

[36] The Linux Perf Team, “Perf wiki,” n.d., accessed on April 13, 2023.
[Online]. Available: https://perf.wiki.kernel.org/index.php/Main Page

[37] A. Developer, “Neon registers,” 2023. [On-
line]. Available: https://developer.arm.com/documentation/dht0002/a/
Introducing-NEON/NEON-architecture-overview/NEON-registers

[38] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang,
and X. Tang, “Residual attention network for image classification,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, Honolulu, HI, USA, 2017, pp. 3156–3164.

[39] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen,
C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. Rush, “Transformers: State-of-the-art natural language
processing,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations.

https://doi.org/10.1145/3470496.3527409
https://doi.org/10.1145/3582016.3582068
https://doi.org/10.1145/3470496.3527440
https://doi.org/10.1145/3582016.3582069
https://doi.org/10.1145/3194085.3194087
https://doi.org/10.1145/3373087.3375306
docs.tvm.ai/vta
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://doi.org/10.1145/3242900
https://mlir.llvm.org/docs/Dialects/Linalg/
https://docs.xilinx.com/v/u/14.1-English/ug761_axi_reference_guide
https://docs.xilinx.com/v/u/14.1-English/ug761_axi_reference_guide
https://perf.wiki.kernel.org/index.php/Main_Page
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-registers
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-registers

Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45.
[Online]. Available: https://aclanthology.org/2020.emnlp-demos.6

[40] Torch-MLIR Developers, “The Torch-MLIR Project,” 2021. [Online].
Available: https://github.com/llvm/torch-mlir

[41] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio,
“A Unified Backend for Targeting FPGAs from DSLs,” in ASAP. Milan,
Italy: IEEE, 2018, pp. 1–8.

[42] N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya,
M. Minutoli, V. G. Castellana, J. Manzano, D. Brooks, G.-Y. Wei, and
A. Tumeo, “Bridging python to silicon: The soda toolchain,” IEEE Micro,
vol. 42, no. 5, 2022.

[43] N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G.
Castellana, J. Manzano, D. Kaeli, and A. Tumeo, “An mlir-based compiler
flow for system-level design and hardware acceleration,” in ICCAD. New
York, NY, USA: Association for Computing Machinery, 2022.

[44] A. Stjerngren, P. Gibson, and J. Cano, “Bifrost: End-to-End Evaluation
and optimization of Reconfigurable DNN Accelerators,” in 2022 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS). Singapore: IEEE, May 2022, pp. 288–299.

[45] S. Xiang, Y.-H. Lai, Y. Zhou, H. Chen, N. Zhang, D. Pal, and Z. Zhang,
“Heteroflow: An accelerator programming model with decoupled data
placement for software-defined fpgas,” in Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 78–88.

[46] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “Heterocl: A multi-paradigm programming infrastructure for
software-defined reconfigurable computing,” in Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 242–251.

[47] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
halide’s scheduling language to analyze dnn accelerators,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
369–383.

[48] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava, “Dmazerunner:
Executing perfectly nested loops on dataflow accelerators,” ACM Trans.
Embed. Comput. Syst., vol. 18, no. 5s, oct 2019.

[49] J. Cong and J. Wang, “Polysa: Polyhedral-based systolic array auto-
compilation,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). San Diego, CA, USA: IEEE, 2018, pp. 1–8.

[50] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,
J. Wawrzynek, and Y. S. Shao, “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). Valencia,
Spain: IEEE, 2021, pp. 554–566.

[51] M. Vaidya, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan, “Com-
prehensive accelerator-dataflow co-design optimization for convolutional
neural networks,” in 2022 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). Seoul, South Korea: Association
for Computing Machinery, 2022, pp. 325–335.

[52] S.-C. Kao, G. Jeong, and T. Krishna, “Confuciux: Autonomous hardware
resource assignment for dnn accelerators using reinforcement learning,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). Athens, Greece: IEEE, 2020, pp. 622–636.

[53] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor: An
automatic schedule exploration and optimization framework for tensor
computation on heterogeneous system,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 859–873.

[54] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Learning to optimize tensor
programs,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2018/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf

[55] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen et al., “Ansor: Generating High-Performance tensor
programs for deep learning,” in 14th USENIX symposium on operating
systems design and implementation (OSDI 20), 2020, pp. 863–879.

[56] H. Min, J. Kwon, and B. Egger, “Flexer: Out-of-order scheduling
for multi-npus,” in Proceedings of the 21st ACM/IEEE International
Symposium on Code Generation and Optimization, ser. CGO 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p. 212–223.

[57] M. Developers, “Transform Dialect: Fine-grain transformation control
dialect,” 2022, online accessed on 11-04-2023. [Online]. Available:
https://mlir.llvm.org/docs/Dialects/Transform/

https://aclanthology.org/2020.emnlp-demos.6
https://github.com/llvm/torch-mlir
https://proceedings.neurips.cc/paper_files/paper/2018/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf
https://mlir.llvm.org/docs/Dialects/Transform/

