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Abstract—Soft errors are a type of transient digital signal
corruption that occurs in digital hardware components such as
the internal flip-flops of CPU pipelines, the register file, memory
cells, and even internal communication buses. Soft errors are
caused by environmental radioactivity, magnetic interference,
lasers, and temperature fluctuations, either unintentionally, or
as part of a deliberate attempt to compromise a system and
expose confidential data.

We propose a bit-level error coalescing (BEC) static program
analysis and its two use cases to understand and improve
program reliability against soft errors. The BEC analysis tracks
each bit corruption in the register file and classifies the effect of
the corruption by its semantics at compile time. The usefulness
of the proposed analysis is demonstrated in two scenarios,
fault injection campaign pruning, and reliability-aware program
transformation. Experimental results show that bit-level analysis
pruned up to 30.04% of exhaustive fault injection campaigns
(13.71% on average), without loss of accuracy. Program vul-
nerability was reduced by up to 13.11% (4.94% on average)
through bit-level vulnerability-aware instruction scheduling. The
analysis has been implemented within LLVM and evaluated on
the RISC-V architecture.

To the best of our knowledge, the proposed BEC analysis is
the first bit-level compiler analysis for program reliability against
soft errors. The proposed method is generic and not limited to
a specific computer architecture.

Index Terms—static analysis, abstract interpretation, reliabil-
ity, soft errors, fault injection pruning, instruction scheduling,
LLVM, RISC-V

I. INTRODUCTION

Soft errors—also known as transient hardware faults—are

one of the most common threats to the reliable operation of

digital devices. Soft errors temporarily alter one or more bits

in hardware, thereby corrupting the execution semantics of a

program. Soft errors can happen in any hardware component

that is exposed to lasers, radiation [1], [2], magnetic interfer-

ence [3], and temperature fluctuations [4], either accidentally

or intentionally to compromise a computer system.

Soft errors can be masked without any observable effect

on program execution (e.g., if after the occurrence of a soft

error in a CPU register the corrupted bit is overwritten by the

application logic and thus reverted to a correct state). However,

soft errors that are not masked will propagate through the

software stack and may lead to catastrophic system failure

by corrupting sensitive data, or altering the control flow of

an application and thereby potentially granting unauthorized

access to critical program paths. Mitigation of soft errors

is thus an essential concern, particularly for safety-critical

systems such as avionics, space, autonomous vehicles, nuclear

reactor control systems, and life support devices.

Hardware-level soft error mitigation methods, such as event

detection and correction (EDAC), are effective but make hard-

ware more expensive to design, manufacture, and operate. For

instance, EDAC has been reported to increase the device cost

by 40% and to increase power consumption [5]. More impor-

tantly, the protection level of hardware methods is limited. For

instance, EDAC can detect up to double-bit flips and correct

single-bit flips, which makes software-level countermeasures

indispensable [6]. A recent report cites radiati on effects

as the cause for 2128 single-bit upsets in the SRAM of a

satellite during a 286 day low-orbit mission [7]. The SRAM

was equipped with EDAC circuitry. Fault attacks [8] are an

outstanding example of soft-error exploitation, to compromise

a system by injecting faults to divert the control flow of a

program and thereby expose security-critical information being

processed by the program.

In this work, we propose a bit-level error coalescing (BEC)

analysis, to understand and improve program reliability against

soft errors at bit-level. The proposed BEC analysis tracks each

bit corruption in the register file and classifies the effect by

its semantics at compile-time. Thus the results of the analysis

can be utilized by other compiler analyses and optimizations.

BEC analyzes each bit of a register value separately and

independently. This complies better with the nature of soft

errors and provides more accurate analysis results compared

to value-level analyses. For a soft error to propagate, the target

register must contain a live value (i.e., a value that will be

read in the future). But not every bit of a live value may

be live. For instance, a bit-shifting operation will shift out

some bits of a register while preserving other bits (albeit in

different bit positions). Furthermore, BEC identifies which live

bit corruptions are equivalent in their effects. Let us assume

that a corrupted bit value is relocated to a new bit location

via a shift operation without affecting any other operation in

between. Then, the effect of a bit corruption that occurred
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before the shift operation will be equivalent to the effect of a

bit corruption that occurred at the new bit location after the

shift operation.

We have implemented the proposed BEC analysis within

LLVM 16.0.0 and demonstrated its effectiveness for eight

distinctive benchmarks on the RISC-V [9] architecture. Ex-

perimental results show that the proposed bit-level analysis

prunes up to 30.04% of the fault injection campaigns (13.71%
on average) compared to value-level analysis, and reduces

the program vulnerability by up to 13.11% through bit-

level vulnerability-aware instruction scheduling (4.94% on

average).

This paper makes the following contributions:

1) We propose BEC, the first bit-level static program analy-

sis that exploits the semantics of operations to track and

classify the effect of bit corruptions due to soft errors.

2) We propose an abstract bit-value analysis, which extends

the scope of the analysis from sequences of instructions

to global scope.

3) We validate the BEC analysis empirically and show its

soundness.

4) We demonstrate the effectiveness of the BEC analysis

with two use cases, fault injection campaign pruning

and vulnerability-aware instruction scheduling, on eight

distinctive benchmarks.

5) We have implemented the BEC analysis within LLVM

and made it available to the public [10].

The remainder of this paper is organized as follows. We

introduce the relevant background in Section II. Section III

illustrates the proposed bit-level analysis with a motivating

example, followed by the formal description in Section IV.

Section V empirically validates the proposed method, before

introducing the two use cases of the BEC analysis in Sec-

tion VI-A and Section VI-B. We discuss the related work in

Section VII and draw our conclusions in Section VIII.

II. BACKGROUND AND NOTATION

A program P = {p0, . . . , pn−1} consists of n = |P | pro-

gram points (i.e., instructions). Each program point maintains

the same set V = {v0, . . . , vm−1} of data points (i.e., vari-

ables). The number of data points of the system that executes

program P is denoted by m = |V |. In the case of physical

hardware, m indicates the number of registers provided by

the underlying hardware architecture, and m is conceptually

infinite if no underlying hardware is specified (e.g., with the

virtual registers of LLVM). Data points may refer to memory

cells if data in memory is modeled by a compiler. Data point

vy = [vw−1
y , . . . , v0y ] is of bit-width w. We use the little-endian

notation for the bit representations of data points, thus, viy
indicates the value of the i-th least-significant bit (LSB) of

data point vy . For the sake of simplicity, we assume that all

data points are of the same bit-width.

P provides the scope of the temporal structural locations

of a program and V the scope of the spatial locations of the

underlying hardware where soft errors may occur. We denote

the Cartesian product of the two orthogonal scopes, F = P ×

1 int countYears() {

2 int res = 0;

3 for(int year=7;year>0;year--)

4 if((year%2==0)&&(year%4!=0)) res++;

5 return res;

6 }

Fig. 1. Motivating example to count the number of years that are even but
not a multiple of four, inspired by the concept of leap year.

V , as the overall fault space. A single fault site on a bit viy
at a program point px is denoted by (px, v

i
y) ∈ F . We define

F 0 to be an empty tuple ().
A control-flow graph (CFG, [11]) is a directed graph

〈P,E, e, x〉, where nodes are program points p ∈ P , and

edges E ⊆ P × P represent a transfer of control between

program points. The unique entry and exit nodes are denoted

by e and x, respectively. For program point p and CFG G,

pred(p) and succ(p) are the sets of predecessor and successor

program points. For program point p, write(p), read(p), and

kill(p) are the sets of data points written, read, and killed at

p, respectively. Data points in read(p) must be live before

program point p, and data points in kill(p) are no longer live

after program point p.

We use a variation of definition-use chains [12] to connect

the data points in a CFG. By def(p, v) we denote the set of

program points p′ that define data point v and there is a CFG

path from p′ to p that does not re-define (kill) data point v.

Similarly, by use(p, v) we denote the set of program points p′

that use data point v from p and there is a path from p to p′

that does not re-define (kill) data point v. Note that use(p, v)
is sensitive to control-flow dependencies. |def(p, v)| can be

greater than 1, which means that data flow is not limited to

static single assignment (SSA) form [13].

As the proposed BEC analysis is a bit-level analysis, we

introduce a notion for the known bit values of data points at

arbitrary program points. k(p, v) denotes the bit values of data

point v after program point p. Likewise, k(p, vi) denotes the

bit value of the i-th bit from the LSB of data point v after

program point p. k (p, vi) is an abstract interpretation [14]

of a bit value, which is 0 or 1 if the bit is known to

be zero or one in any of the temporal states of the fault

site (p, vi), ⊤ if it is not possible to determine the actual

value of the corresponding bit at compile-time, and ⊥ if the

value is undefined. The abstraction function is defined as

γ(0) = {0}, γ(1) = {1}, γ(⊤) = {0, 1}, γ(⊥) = ∅, and the

concretization function is given as α({0}) = 0, α({1}) = 1,

α({0, 1}) = ⊤, and α(∅) = ⊥. The concept of k(p, vi) is

comparable to KnownBits in LLVM and tnum in the Berkeley

Packet Filter (BPF, [15]).

III. MOTIVATING EXAMPLE

Our motivating example counts the number of years that are

even but not a multiple of four. It was inspired by the concept

of leap year but simplified for the sake of exposition. For

the same reason we confine the discussion of our motivating

example to a 4-bit architecture. Fig. 1 depicts the source code



Live fault sites with abstract bit values Probed fault sites (value-level analysis) Probed fault sites (bit-level analysis)

bb.entry:

p0:v0 = li 0

p1:v1 = li 7

bb.loop:

p2: v2 = andi v1, 1

p3: v3 = andi v1, 3

p4: v1 = addi v1, -1

p5: v2 = seqz v2
p6: v3 = snez v3
p7: v2 = and v2, v3
p8: v0 = add v0, v2
p9: bnez v1, bb.loop
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5
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p6: v3 = snez v3
p7: v2 = and v2, v3
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bb.exit:

p10: ret v0
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Fig. 2. (a) CFG and (b) fault sites of the motivating example from Fig. 1. With fault sites, the x-axis presents data points (variables). The y-axis refers to
program points (instructions), which are labeled by their corresponding instructions from the CFG (labels p0–p10). Live fault sites are data and program
points that contain live values, depicted by white boxes with known bit values. Boxes are colored if the fault sites are identified as subjects for vulnerability
tests by value-level analysis (red) or bit-level analysis (orange). The right half of the figure (c,d) depicts the motivating example after instruction rescheduling
to minimize the live fault sites in bits. Note that the number of instructions to be executed and the number of fault injection runs required remain unchanged
after bit-level vulnerability-aware instruction scheduling, at a reduction of the number of live fault sites by 15.4%.

of the program in C. The for loop (lines 3–4) iterates from 7

to 1 to accumulate in variable res the number of years that

meet the before-mentioned condition.

Fig. 2a presents the CFG of our motivating example. The

proposed analysis anticipates the bit-level semantics (i.e., side

effect) of each instruction of the RISC-V target architecture [9]

represented in three-address code format [11].

Fig. 2b illustrates the fault sites. Fault sites constitute the

program points where the soft errors that occurred in the

underlying hardware are first observed at the software level

as bit flips. Soft errors can happen in any part of the hardware

where machine status is stored in bits, i.e., the register file,

internal flip-flops of pipelines, memory buses, memory cells

etc., but soft errors must be visible to the software, for instance,

as a bit corruption of the register file, to divert the behavior

of the program. A bit flip of a fault site represents any soft

error that happened on any hardware component and ended

up corrupting a bit at the fault site. Thus the probability of

observing a bit flip at a fault site due to soft errors may

differ by hardware design and operational environments, but

the consequence of a bit flip manifested at a particular fault

site is analyzable in software. We use a single event upset

model per run as it is the dominant attack model for studies

from both academia and industry [16]–[18]. Bits flipped by

soft errors remain on the system until overwritten.

In the presence of cycles in the CFG of a program, a single

fault site can be reached multiple times during a program

run, and the faults that occur across different visitations of a

fault site are semantically distinguishable. For example, faults

that occur at data point v1 at program point p2 in basic

block bb.loop in different loop iterations are semantically

different and may lead to different outcomes. For the sake of

simplicity, we use four-bit unsigned values for the spatial fault

sites of our running example in Fig. 2. The LSB of a fault site

is its rightmost bit.

The BEC analysis first computes the prospective bit values,

k(px, v
i
y) for all (px, v

i
y) ∈ F . We use × instead of ⊤ in the

motivating examples to denote that a bit value is unknown

at compile-time. Suppose we have k (p, v) = 00×1, then the

value of data point v at program point p can be either 0001
or 0011. Throughout this paper, we use boxes ( ) to depict

the abstract bit values of fault sites. For instance, in Fig. 2a at

program point p1, data point v1 is initialized to constant 7.

Thus, k(p1, v1) = 0111, as shown in the second column

of Fig. 2b. Inside the loop body (program points p2–p9 of

basic block bb.loop), the bits of data point v1 are unknown

because data point v1 is an induction variable and the analysis

information must hold for all possible temporal states of the

loop.

Based on the analyzed bit values of fault sites, the BEC

analysis identifies and classifies the effect of bit corruptions at

compile-time. The static classification of bit corruptions at all

possible fault sites in a program is useful for understanding

the vulnerability of a program and enhancing its reliability

against soft errors without additional run-time overhead. In the

remainder of this section, we will outline the two use cases we

have explored to demonstrate the usefulness of the proposed

bit-level analysis.

A. Use Case 1: Fault Injection Pruning

A fault injection campaign is an effective technique to

assess the reliability and robustness of a program or a system.

It involves the systematic injection of faults into a running

program to evaluate its behavior under faulty conditions. To

determine the impact of a bit corruption at a given fault site,

the running program is suspended at the clock cycle prior to

the fault site, the bit under investigation is flipped, and the



program is resumed until the outcome becomes certain. The

outcome of the program after the fault injection is compared

with the golden output (i.e., the trace of events and the output

obtained from a fault-free execution of a program).

The probability of a program malfunctioning in the presence

of soft errors can be obtained by conducting fault injection

runs on each spatial fault site of each temporal fault site—for

each bit in the register file of a processor at each cycle—

and counting the number of malfunctioning cases. While such

an exhaustive fault injection campaign can provide valuable

insights into a program’s reliability, it is an extremely resource-

intensive process. The large number of faults required to

obtain a statistically meaningful figure for reliability renders

exhaustive fault injection infeasible for large and complex

programs. A principled method for the identification and

selection of a representative subset of faults to inject without

sacrificing analysis precision is therefore required to accelerate

fault injection campaigns.

The BEC analysis can reduce the number of fault injection

sites without any loss of coverage or accuracy. In other words,

the analysis results of an exhaustive fault injection campaign

can be achieved by performing only a subset of the fault

injection runs. As discussed in the following, the colored

boxes in Fig. 2b illustrate how the proposed BEC analysis

can accelerate a fault injection campaign.

Inject-on-read [18]–[20] is a method proposed to accelerate

fault injection campaigns on hardware at gate-level, by inject-

ing faults only when the fault site is read. For instance, data

point v0 in Fig. 2 is a return value that accumulates the number

of the years of interest, thus, it is live throughout the lifespan

of the function. But fault injection runs on data point v0 are

required only at program point p8 per loop iteration, and

the results of the fault injection runs at program point p8
are identical to the fault injection runs performed at any

program point after the previous program point that accessed

the variable, which is program point p8 of the previous loop

iteration. The inject-on-read method is efficient, yet its analysis

is performed on values. In Fig. 2b we marked the fault sites in

red for which fault injection is required by the inject-on-read

method.

The proposed bit-level analysis can further identify which

bits within a value require a fault injection run. For example,

data point v2 keeps the result of instruction p2 and p5 in

Fig. 2b, which encodes the condition year%2 == 0 in

line 4 of Fig. 1. After the execution of instruction p2, which

masks out all but the LSB of data point v2, it holds that

k(p2, v2) = 000×. Knowing that instruction seqz at program

point p5 tests v2 for zero, we note that any corruption that

flips any one of the bits v12 , v
2
2 , or v32 from 0 to 1 will result

in the same negative test result. Consequently, only one fault

injection is required among the bits v12 , v
2
2 , and v32 at program

point p2. As indicated by the orange color for data point v2
at program point p2 in Fig. 2b, our bit-level analysis injects

only bit v12 , whereas the prior approach injects all three bits.

Because program point p2 is part of the loop, the savings

achieved by our analysis pertain to each temporal fault site

(i.e., one per loop iteration) of program point p2. Unlike our

running example, the registers of contemporary processors

are 32- or even 64-bit wide. Capitalizing on those two facts,

our bit-level analysis yields noticeable gains (as discussed in

Section VI-A).

Not only can the proposed bit-level analysis classify which

fault sites share an identical response to soft errors, it can

further analyze which fault sites are dead, meaning that bit

corruption on such fault sites are known to be ineffective. Fault

sites (p5, v
1
2), (p5, v

2
2), and (p5, v

3
2) are dead in Fig. 2b because

a corruption of any of those bits will be masked by the and

operation at program point p7.

The fault sites required to be probed by fault injection

runs by the proposed BEC analysis are marked by orange

boxes in Fig. 2b, in contrast to the red boxes which are fault

sites required to be probed by value-level analysis. With the

motivating example in Fig. 2 in conjunction with the given

loop bounds, the number of fault injection runs required by

value-level analysis is 288†, whereas the number of fault

injection runs required by the proposed bit-level analysis

is 225‡. Thus, the number of fault injection runs saved is

1− 225
288 = 21.8%.

B. Use Case 2: Bit-level Vulnerability-aware Instruction

Scheduling

The size of the spatial and temporal fault surface for soft

errors is one of the main metrics to determine a program’s

vulnerability. If Program A completes a task in the same

number of cycles as Program B, but requires more hardware

resources, then Program A is more vulnerable to soft errors

because of its larger spatial fault surface than Program B.

Similarly, if Program A takes longer than Program B to

complete the same task with the same amount of resources,

then program A is more susceptible to soft errors regarding

its temporal fault surface. Thus, it is important to minimize

the number of instructions and hardware resources required to

complete a task to improve the overall reliability of a program.

The fault surface of a program can be determined by the

number of live fault sites in data for every program point

executed by a program run. In Fig. 2b, the number of live

fault sites for a program run is 681††. As in the case of data

point v2 at program points p5 and p6, and data point v3 at

program point p6 in Fig. 2b, dead fault sites identified by

the proposed bit-level analysis can be exploited to reduce

the overall vulnerability of the program by rescheduling of

instructions.

In the example, data points v0 and v1 are live at almost

every program point. As a result, rescheduling instructions

would not decrease the number of fault sites for v0 or v1
on any program point. However, data points v2 and v3 are

temporary within each iteration and only carry one fault site

per program point after program points p5 and p6 in Fig. 2a

have been executed. Thus, there is room for reducing fault

†4 + 4 + 7× (4 + 4× 4 + 3× 4 + 2× 4) = 288
‡4 + 4 + 7× (4 + 4× 4 + 2 + 1 + 4 + 3 + 1) = 255

††3× 4 + 7× (8× 4 + 8× 4 + 4× 4 + 2× 1 + 3× 4 + 1) + 4 = 681



sites by instruction scheduling on these two variables. Fig. 2c

shows the modified sequence of instructions and Fig. 2d shows

its fault sites of the same motivating example from Fig. 1 after

instruction rescheduling to minimize the live fault sites.

The number of fault sites per program point is reduced

from four to one after program point p′5 for data point v2
and program point p6 for data point v3 in Fig. 2c. Thus,

these instructions are executed as early as possible in Fig. 2c.

Temporary variables are retired as early as possible for the

same purpose. With the new sequence of instructions, the

total number of fault sites of the program is reduced by

15.4% (= 1 − 576
681 ). Note that the number of instructions to

be executed and the number of fault injection runs required

remain unchanged after instruction rescheduling.

IV. BIT-LEVEL ANALYSIS FOR RELIABILITY

To classify the effect of soft errors at fault sites, we

introduce the notion of fault index, denoted by s
(

(px, v
i
y)
)

. A

fault index labels the effect induced by a soft error at fault site

(px, v
i
y) ∈ F . We use s0 to denote the intact execution of the

program, and s0 = s
(

F 0
)

= s(()). The set of fault indices S
is defined as S = {s

(

(px, v
i
y)
)

| (px, v
i
y) ∈ F} ∪ {s0}. For

a given program, if bit flips at two distinct fault sites (p, ui)
and (q, vj) have the same effect on program execution, we

consider these fault sites as equivalent. We employ equivalence

relations [21] to represent the equivalence of fault indices

based on the equivalence of their associated fault sites in terms

of the underlying program semantics.

An equivalence relation R = S/∼R constitutes the set of all

equivalence classes over S induced by a binary relation ∼R.

We write sx ∼R sy for sx, sy ∈ S, denoting that the fault

indices sx and sy are in the same equivalence class under R.

Hence, the effects of faults at their associated fault sites are

equivalent according to the above definition.

The equivalence class of sx under ∼R is defined as [sx]R =
{sy ∈ S | sx ∼R sy}. For instance, if [sx]R = {sx, sy}, it

holds that [sx]R = [sy]R. We define the merge of two equiv-

alence classes as R
[

[sx]R ∪ [sy]R
]

= ((R \ [sx]R) \ [sy]R) ∪
{[sx]R ∪ [sy]R} for any sx, sy ∈ S. By abuse of notation, we

merge arbitrary equivalence classes as R[X ] = R
[
⋃

x∈X [x]R
]

for any X ⊂ S.

The proposed BEC analysis computes a safe approximation

of the equivalence relation S/∼R over the fault indices S of

a program. If the analysis determines that [s
(

(p, vi)
)

]R =
[s
(

(q, uj)
)

]R, then the effects of soft errors at fault sites (p, vi)
and (q, uj) are known to be equivalent. Conversely, if the

analysis fails to establish the equivalence of two fault sites

wrt. soft errors, they may still be equivalent but cannot be

shown so within the analysis approximations (this is further

discussed in Section V). BEC employs the abstract bit values

of a fault site and is thus conducted in two steps: (1) a

global abstract bit-value analysis (Section IV-A), which is a

forward data-flow analysis at the granularity of the individual

bits of data points, and (2) an analysis to coalesce fault

indices (Section IV-B), which is a backward data-flow analysis

⊤

0 1

⊥

∧ ⊥ 0 1 ⊤

⊥ ⊥ 0 1 ⊤
0 0 0 ⊤ ⊤
1 1 ⊤ 1 ⊤
⊤ ⊤ ⊤ ⊤ ⊤

and ⊥ 0 1 ⊤

⊥ ⊥ ⊥ ⊥ ⊤
0 ⊥ 0 0 0
1 ⊥ 0 1 ⊤
⊤ ⊤ 0 ⊤ ⊤

(a) (b) (c)
Fig. 3. Bit-level analysis: (a) lattice representation of bit values, (b) meet
operator, and (c) bit-wise and operator.

Algorithm 1: Bit-Value Analysis

Input: program point p ∈ P and data point v ∈ V
Output: k(p, v), the abstract bit-value of v after the

execution of p
1 forall u ∈ read(p) do

2 forall o ∈ def(p, u) do

3 for i← {0, . . . , w − 1} do

4 k (p, ui)← k(p, ui)∧ k(o, vi)

5 forall v ∈ write(p) do

6 for i← {0, . . . , w − 1} do

7 k(p, vi)← opp ({k(p, u) | u ∈ read(p)})

that identifies and classifies the corruption of the program

semantics due to soft errors based on bit values.

A. Global Abstract Bit Value Analysis

To analyze the effects of soft errors at the granularity of

individual bits, we first identify the bit values of all data

points i.e., k(px, v
i
y), ∀(px, v

i
y) ∈ F , by performing a forward

data-flow analysis across the entire program. Our analysis

is inspired by a value-level constant propagation algorithm

by Wegman and Zadek (SC, [22]), which we extend to bit-

level analysis. We deliberately locate our analysis at a late

stage within the pass sequence of the LLVM backend to

benefit from target-specific strength reduction optimizations

that lower arithmetic operations to bit-level operations and

thereby increase the opportunity for the application of our

analysis. SSA form is already deconstructed at this stage, and

our analysis computes use(px, v
i
y), ∀(px, v

i
y) ∈ F as defined

in Section II. LLVM provides a bit-level analysis named

KnownBits for straight-line sequences of code. We extend this

analysis to support inter-basic-block (global) data flow.

Fig. 3a depicts the lattice representation of bit values

employed with the analysis: ⊥ (undefined) is used for a bit

at a particular program point that has not seen an assignment

yet; 0 (or 1) is used for a bit of a data point where it is

certain that the bit-value will be zero (or one) on all paths

to the respective program point that have been considered so

far, and ⊤ (unknown and overdefined) denotes a bit value that

cannot be determined at compile-time. For instance, a bit is

unknown and overdefined if the bit value is zero on some

paths (or loop iterations) and one on others. For each bit, the

computed information can only raise in the lattice.

Algorithm 1 describes the analysis for a given program

point p and data point v. Because of join points in the un-



Algorithm 2: Fault Index Coalescing Analysis

Input: a program P = {p0, . . . , pn−1}, a set of data

points V = {v0, . . . vm−1}, and bit-width w
Output: A set of equivalence classes R = S/∼R

/* Initialization */

1 R← {{s0}}
2 forall (p, vi) ∈ F do

3 if v ∈ write(p) ∨ v ∈ read(p) then

4 if v ∈ kill(p) then

5 [s0]R ← [s0]R ∪
{

s
(

(p, vi)
)}

6 else

7 R← R ∪
{

{s
(

(p, vi)
)

}
}

/* Iterative coalescing */

8 while R is updated do

/* Intra-instruction coalescing */

9 forall p ∈ P do

10 R′

p ← intra instr coalescing(p, V, w,R)

/* Inter-instruction coalescing */

11 forall (p, vi) ∈ F do

12 R←

R
[

[

s
(

(p, vi)
)]

R
∪
⋂

q∈use(p,v)

[

s
(

(q, vi)
)]

R′

q

]

derlying CFG, multiple definitions may reach p for any of the

data points it reads. The purpose of the loop starting at line 2

is to merge all definitions that reach data point u ∈ read(p).
The innermost loop iterates over all the bits of data point u.

It uses the meet operator (∧) from Fig. 3b. For instance, the

meet of definitions zero and one sets the corresponding bit to

overdefined, i.e., ∧(0, 1) = ⊤.

In case program point p computes values (e.g., the bit-

wise and of two values), lines 6–7 in Algorithm 1 iterate

over all bits in the corresponding data point v to perform

the computation (opp in line 7) of the program point in the

abstract domain of the lattice. As an example, Fig. 3c provides

the definition of the bit-wise and operation. The definition of

an operation ensures that the abstract value of a bit can only

move upward in the lattice. We note that the analysis permits

any number of values computed at a program point (line 5 in

Algorithm 1), which is a generalization of the three-address

code used in the motivating example in Section III.

B. Bit-level Fault Index Coalescing Analysis

The fault index coalescing analysis is a backward data-flow

analysis that (1) identifies which fault sites mask soft errors

and (2) classifies which fault sites result in equivalent program

semantics when corrupted by a bit flip.

Algorithm 2 describes the fault index coalescing algorithm,

which assigns fault indices s ∈ S the same equivalence

class if the effects of faults occurring at those indices are

identical (equivalent) according to the semantics of the under-

lying program. The algorithm returns an equivalence relation

R = S/∼R.

The loop from line 2 in Algorithm 2 initializes equivalence

relation R for each data point v that is accessed (i.e., read or

written) at program point p. If the accessed data point v is not

live after program point p, any faults occurring at v after p will

be overwritten and masked. Soft errors at masked fault sites do

not alter the program semantics. Thus masked fault sites are

assigned to the equivalence class s0 (line 5 in Algorithm 2).

For fault site (p, vi) ∈ F , if data point v is accessed at and live

after program point p, a new equivalence class is assigned to

the fault site (line 7 in Algorithm 2). Note that data points that

are not accessed at a program point may be live and susceptible

to soft errors, but the equivalence relation considers those only

that are accessed at the program point. This is because the

semantics of a program can only be changed by reading a

corrupted value regardless of when the corruption happened.

Thus we postulate that the effect of any faults that occurred

at a data point are the same until the program reaches the

program point that reads the data point.

After initialization, equivalence relation R is a set of sin-

gletons of all fault sites of F . It is interpreted as no live

fault sites are identified to be equivalent nor masked. This

is sound but not necessarily precise. The analysis results

are subsequently refined by coalescing equivalence classes

within instructions (intra-instruction coalescing, line 10 in Al-

gorithm 2) and across instructions (inter-instruction coalescing,

line 12 in Algorithm 2), in an iterative manner.

Intra-instruction coalescing is depicted in Algorithm 3 for a

selection of RISC-V instructions [9], but the proposed method

is general and applicable to any other instruction set archi-

tecture (ISA). During intra-instruction coalescing, equivalence

classes are merged based on the semantics of the operation

of a program point, applied to the abstract bit values of the

accessed data points. For instance, for program point p with

bitwise operation z = and x, y and a bit of operand x known to

be zero, i.e., k(p, xi) = 0 (line 22 in Algorithm 3), a soft error

carried to fault site (p, yi) is masked as a result of the and

operation. Thus, the equivalence class [s
(

(p, yi)
)

]R is merged

with [s0]R (line 23 in Algorithm 3). Conversely, if bit xi of

operand x is known to be one (line 24 in Algorithm 3), a

fault on the corresponding bit yi will be propagated to the

result bit zi. Thus, these two equivalence classes are merged

(line 25 in Algorithm 3). Lines 18–21 in Algorithm 3 follow

by commutativity of the and operation.

A few instructions in our analysis are oblivious to the

abstract bit values of their operands. Instructions mv and

xor belong to this category, and coalescing is conducted

unconditionally. With xor (line 5 in Algorithm 3), any soft

errors at (p, xi) or (p, yi) are propagated to (p, zi) after the

operation. Thus, the equivalence classes [s
(

(p, xi)
)

]R and

[s
(

(p, yi)
)

]R are merged with [s
(

(p, zi)
)

]R (lines 6 and 7 in

Algorithm 3).

For brevity, several utility functions have been introduced in

Algorithm 3. Function min(p, v) returns the minimum possible

value of data point v at program point p considering k(p, v).
Function eval(p, vi) (partially) evaluates the instruction at pro-

gram point p based on the abstract bit values of the operands,



Algorithm 3: Intra-instruction Coalescing

Input: a program point p ∈ P , a set of data points

V = {v0, . . . vm−1}, bit-width w, and a set of

equivalence classes R = S/∼R

Output: A set of equivalence classes R′ = S/∼R′

1 R′ ← ∅, I ← {0, . . . , w − 1}

2 forall i ∈ I do

3 if p : z = mv x and x, z ∈ V then

4 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s
(

(p, zi)
)

]R
]

5 else if p : z = xor x, y and x, y, z ∈ V then

6 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s
(

(p, zi)
)

]R
]

7 R′ ← R
[

[s
(

(p, yi)
)

]R ∪ [s
(

(p, zi)
)

]R
]

8 else if p : z = or x, y and x, y, z ∈ V then

9 if k(p, yi) = 0 then

10 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s
(

(p, zi)
)

]R
]

11 else if k(p, yi) = 1 then

12 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s0]R
]

13 else if k(p, xi) = 0 then

14 R′ ← R
[

[s
(

(p, yi)
)

]R ∪ [s
(

(p, zi)
)

]R
]

15 else if k(p, xi) = 1 then

16 R′ ← R
[

[s
(

(p, yi)
)

]R ∪ [s0]R
]

17 else if p : z = and x, y and x, y, z ∈ V then

18 if k(p, yi) = 0 then

19 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s0]R
]

20 else if k(p, yi) = 1 then

21 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s
(

(p, zi)
)

]R
]

22 else if k(p, xi) = 0 then

23 R′ ← R
[

[s
(

(p, yi)
)

]R ∪ [s0]R
]

24 else if k(p, xi) = 1 then

25 R′ ← R
[

[s
(

(p, yi)
)

]R ∪ [s
(

(p, zi)
)

]R
]

26 else if p : z = shr x, y and x, y, z ∈ V then

27 if i−min(p, y) < 0 then

28 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s0]R
]

29 else if y is constant and i− y ≥ 0 then

30 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s
(

(p, zi−y)
)

]R
]

31 else if p : z = shl x, y and x, y, z ∈ V then

32 if i+min(p, y) ≥ w then

33 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s0]R
]

34 else if y is constant and i+ y < w then

35 R′ ← R
[

[s
(

(p, xi)
)

]R ∪ [s
(

(p, zi+y)
)

]R
]

36 if p : [slt|beq|bne|bge|blt] x, y and x, y ∈ V then

37 forall i ∈ I, j ∈ {0, . . . , i− 1}, v ∈ {x, y} do

38 if eval(p, vi) = eval(p, vj) then

39 R′ ← R
[

[s
(

(p, vi)
)

]R ∪ [s
(

(p, vj)
)

]R
]

assuming that a soft error occurred at fault site (p, vi). If p is

a branch instruction, the result of the evaluation is the target

branch taken by the instruction.

The temporary equivalence relation R′ is introduced to defer

the merge of the equivalence classes until all fault sites have

been visited during inter-instruction coalescing. Equivalence

class [s
(

(p, vi)
)

]R is merged and updated only if [s
(

(q, vi)
)

]R′

q

for all q ∈ use(p, vi) agree (line 12 in Algorithm 2) for a given

(p, vi) ∈ F .

The iterative fault index coalescing analysis terminates

when no further update of the equivalence classes in R
occurs (line 8 in Algorithm 2), thereby reaching a fixed

point [11]. By Knaster-Tarski’s fixed point theorem [23], any

monotone function on a complete lattice admits a least fixed

point. The collection of all equivalence relations on a set

forms a complete lattice [24], and the fault index coalesc-

ing analysis is monotonic: it is performed backward along

the dependency edges, from write(p) to read(p) and from

use(p, v) to def(q, v). Thus, the iterative fault index coalescing

algorithm is guaranteed to terminate.

C. Coalescing Example

Fig. 4a presents the initial fault indices of our coalescing

example in red solid boxes. Fault indices are represented by

integer identifiers such as s
(

(p0, a
0)
)

= 1 and s
(

(p5, v
3
8)
)

=
24. Fault index identifier 0 is reserved for the intact semantics,

s0 ∈ S. The example uses data points of bit-width four, thus

four red solid boxes are mapped for each data point.

Note that fault indices of data point v may differ before

and after a program point that reads the data point, even if

the value of the data point remains the same. For instance,

in Fig. 4a, data point v written at program point p2 is read

at program point p3, and new fault indices are assigned to

data point v after the data point is live and will be read at

program points p5 and p6. Thereby the analysis distinguishes

a bit corruption at vj between program points p2 and p3 from

the ones between program points p3 and p5 or p6. No new fault

indices are assigned to data point v at program points p5 and

p6 as the data point is assumed to be killed at those program

points.

The fault index coalescing analysis is an iterative process

and is performed in two phases: (1) intra-instruction fault index

coalescing, where fault indices are coalesced within a program

point (Fig. 4b), and (2) inter-instruction fault index coalescing,

where fault indices are coalesced across instructions (Fig. 4c).

By repeating the two phases, fault index coalescing merges

equivalence classes of fault indices backward along the depen-

dency edges, until a fixed point is reached.

Fig. 4b illustrates intra-instruction fault index coalescing of

our coalescing example. At program point p3, an and opera-

tion is conducted on argument v and an immediate of bit repre-

sentation 0001. According to the intra-instruction fault index

coalescing rule of the and operation from Algorithm 3, soft

errors at fault sites (p3, v
1), (p3, v

2), and (p3, v
3) are masked,

thus s
(

(p3, v
1)
)

∼R′ s
(

(p3, v
2)
)

∼R′ s
(

(p3, v
3)
)

∼R′ s0,

where R′ is the temporary equivalence relation in Algorithm 3.



Bit value Referred bit value Fault index Referred fault index

. . .

p0: a = . . .

. . .

p1: b = . . .

p2: v = φ(a, b)

p3: m = andi v, 1

p4: beqz m, bb.even

bb.even:

p5: v8 = shl v, 3

. . .

bb.odd:

p6: v4 = shl v, 2

. . .

a: ××××
4 3 2 1

b: ××××
8 7 6 5

v: × × × ×

12 11 10 9

a: ××××
4 3 2 1

b: ××××
8 7 6 5

m: 0 0 0 ×

16 15 14 13

v: × × × ×

20 19 18 17

12 11 10 9

m: 0 0 0 ×
16 15 14 13

v8: × 0 0 0
24 23 22 21

v: × × × ×
20 19 18 17

v4: × × 0 0
28 27 26 25

v: × × × ×
20 19 18 17

. . .

p0: a = . . .

. . .

p1: b = . . .

p2: v = φ(a, b)

p3: m = andi v, 1

p4: beqz m, bb.even

bb.even:

p5: v8 = shl v, 3

. . .

bb.odd:

p6: v4 = shl v, 2

. . .

a: ××××
4 3 2 1

b: ××××
8 7 6 5

v: × × × ×

12 11 10 9

a: ××××
34 2 1

b: ××××
8 7 6 5

m: 0 0 0 ×

16 15 14 13

v: × × × ×

20 19 18 17

0 0 0 13

m: 0 0 0 ×
16 16 16 13

v8: × 0 0 0
24 23 22 21

v: × × × ×
0 0 0 24

v4: × × 0 0
28 27 26 25

v: × × × ×
0 0 28 27

. . .

p0: a = . . .

. . .

p1: b = . . .

p2: v = φ(a, b)

p3: m = andi v, 1

p4: beqz m, bb.even

bb.even:

p5: v8 = shl v, 3

. . .

bb.odd:

p6: v4 = shl v, 2

. . .

a: ××××
4 3 2 1

b: ××××
8 7 6 5

v: × × × ×

0 0 10 9

a: ××××
4 3 2 1

b: ××××
8 7 6 5

m: 0 0 0 ×

16 16 16 13

v: × × × ×

0 0 18 17

0 0 0 13

m: 0 0 0 ×
16 16 16 13

v8: × 0 0 0
24 23 22 21

v: × × × ×
0 0 0 24

v8: × × 0 0
28 27 26 25

v: × × × ×
0 0 28 27

(a) Initial fault indices (b) Intra-instruction fault index coalescing (c) Inter-instruction fault index coalescing

Fig. 4. Iterative fault index coalescing of a fork-after-join CFG snippet using 4-bit data points: (a) initial fault indices are assigned to bits of data points,
(b) fault indices are coalesced within their instruction during the intra-instruction fault-index coalescing phase, and (c) fault indices are coalesced across
instructions during the inter-instruction fault index coalescing phase. Note that coalescing is a monotonic process that is performed backward along the
dependency edges. The example code is in SSA form for brevity, but the proposed method is not limited to SSA form.

Intra-instruction fault index coalescing is performed among

the data points read within a program point as well. For

instance, in case of the instruction beqz %mod, bb.even

at program point p4, any soft errors occurring at bits where the

value is known to be 0 will divert the control flow to bb.odd.

Thus s
(

(p4,m
1)
)

∼R′ s
(

(p4,m
2)
)

∼R′ s
(

(p4,m
3)
)

.

Fig. 4c depicts the incorporation of the temporary equiv-

alence relation R′—the result of intra-instruction fault in-

dex coalescing—into equivalence relation R by the inter-

instruction fault index coalescing analysis. The result of intra-

instruction fault index coalescing is applied across instruc-

tions only if the new fault indices do not conflict with

other access points. For instance, in Fig. 4c, soft errors at

data point v after program point p2 and before program

point p3 affect all three reads of data point v at program

points p3, p5, and p6. Hence, use(p2, v) = {p3, p5, p6}. But

soft errors between program point p2 and p5 or p6 only

affect data point v at program point p5 or p6, therefore,

use(p3, v) = {p5, p6}. Thus, [s
(

(p3, v
j)
)

]R′ , [s
(

(p5, v
j)
)

]R′ ,

and [s
(

(p6, v
j)
)

]R′ are merged into [s
(

(p2, v
j)
)

]R only if

s
(

(p3, v
j)
)

∼R′ s
(

(p5, v
j)
)

∼R′ s
(

(p6, v
j)
)

for any 0 ≤
j < 4. In Fig. 4c, [s

(

(p2, v
2)
)

]R and [s
(

(p2, v
3)
)

]R are

coalesced to [s0]R after inter-instruction fault index coalescing,

but [s
(

(p2, v
0)
)

]R and [s
(

(p2, v
1)
)

]R remain the same.

V. VALIDATION

The BEC analysis comprises two monotonic data-flow anal-

yses, the bit-value analysis and the fault index coalescing

analysis, and both are the maximal fixed-point (MFP) assign-

ment [23], [25]. In the bit-value analysis, each fault site meets

all definitions reachable to the fault site under the given CFG

and overapproximates its bit-value. The fault index coalescing

analysis determines two equivalence classes are equivalent

only when it holds for all use sites that may follow the fault

site under the given CFG. The maximal fixed point guarantees

the minimally acceptable soundness criterion of the quality of

flow analysis [22], [26].

We implemented the BEC analysis in LLVM 16.0.0 for

the RISC-V architecture [9]. To validate the correctness of

the implementation, we conducted exhaustive fault injection

campaigns on execution traces of programs using an instru-

mented version of the SPIKE RISC-V ISA simulator [27].

Each fault injection run induces a single soft error at a fault

site, which is a particular bit of a register file at a specific

clock cycle. For each fault site, individual runs are conducted

to probe every bit of the register file exhaustively and one

fault injection run is conducted per probed bit. For each fault

injection run, the location and the cycle of the fault to be

injected are passed as command-line arguments to the ISA



TABLE I
TIME AND DISK SPACE REQUIREMENTS FOR

THE EXHAUSTIVE FAULT INJECTION CAMPAIGN

Benchmark Time Disk space

bitcount 0.5h 1GB
AES 2h 7GB

CRC32 7h 116GB
SHA 10 h 100GB
RSA 50 h 700GB

TABLE II
CLASSIFICATION OF COMPARISONS

[

s

(

(p, vi)
)]

R
=

[

s

(

(q, uj)
)]

R
∧ t

(

(p, vi)
)

= t
(

(q, ui)
) Sound,

precise

[

s

(

(p, vi)
)]

R
6=

[

s

(

(q, uj)
)]

R
∧ t

(

(p, vi)
)

= t
(

(q, uj)
) Sound,

imprecise
[

s

(

(p, vi)
)]

R
=

[

s

(

(q, uj)
)]

R
∧ t

(

(p, vi)
)

6= t
(

(q, uj)
)

Unsound

simulator. The ISA simulator executes the program for each

fault injection run from the beginning, flips the to-be-probed

bit when the specified execution cycle is reached, and resumes

execution.

Corrupted execution traces are generated for each fault

injection run and labeled based on their semantics. An execu-

tion trace comprises a sequence of executed instructions, side

effects caused by the instructions executed such as memory

accesses, and observable outcomes of the program.

The validation process highlights several merits of the BEC

analysis. The exhaustive fault injection campaign is a highly

time- and disk-space consuming process. Table I lists time and

disk space required to conduct fault injection campaigns on a

single execution trace per benchmark, limited to benchmarks

where the baseline campaign is tractable. Execution times were

obtained on a 3.8GHz AMD processor and execution traces

are generated and classified on the fly and only distinguishable

traces are archived to conserve disk space. Besides the time

and space costs required for fault injection campaigns, which

can easily become infeasible even with small programs, a

fault injection campaign is required for each execution trace.

Considering that different initial machine states, e.g., due to

program input, may generate different execution traces for

a program, it is impossible to test all possible execution

traces because the input space is generally infinite [28], [29].

In contrast, the BEC analysis needs to run only once per

benchmark, at compile-time, and the analysis results hold for

all initial machine states and all possible execution traces.

The BEC analysis was tractable for all benchmarks, and no

significant compile time overhead was observed.

To address the quality of the analysis, let us define t
(

(p, vi)
)

to represent an execution trace generated from a fault in-

jection run with a fault injected at fault site (p, vi) ∈ F .

Table II lists the three classifications of validation results

where (p, vi), (q, uj) ∈ F . The BEC analysis is considered

sound and precise if it identifies all fault sites that generate

identical execution traces when subjected to fault injection. If

the BEC analysis identifies some fault sites as not equivalent

but the execution traces are identical, then the BEC analysis

is sound but imprecise. This can occur in the presence of

dynamic information which is not available at compile time,

such as program inputs. We observed a negligible number of

sound but imprecise cases, for instance, when analyzing global

registers where no assumption is safe, such as tp, and gp in

RISC-V. If two fault injection runs are classified as identical

but differ in their execution traces, the analysis is unsound. No

such case was observed with the BEC analysis.

VI. EXPERIMENTAL RESULTS

The two use cases of the BEC analysis are evaluated

using eight distinctive benchmarks from FISSC [30] and

MiBench [31]. We use integer benchmarks for the experiments,

but the proposed approach is not limited to specific data

types. For instance, x86 AVX registers [32] provide bit-wise

and/or operations on IEEE754 floats and can benefit from the

proposed method in the same way as integer registers.

This section describes the details of the two use cases and

their experimental results.

A. Use Case 1: Fault Injection Campaign Pruning

The BEC analysis classifies the effect of soft errors across

all fault sites of a program. Thus, the analysis result can be

useful to prune fault injection runs of fault injection campaigns

that are known to be masked or identical to the runs that have

already been conducted.

Table III shows the number of fault sites that are identi-

fied as live and subject to fault injection runs without the

BEC analysis (Row “Live in values”) and with the BEC

analysis (Row “Live in bits”) on the eight benchmarks. The

numbers for “Live in values” are obtained based on the

inject-on-read [18]–[20] analysis, which employs value-level

analysis to identify fault sites that are live and subject to fault

injection runs. Row “Live in bits” shows the numbers of live

fault sites that require fault injection runs when analyzed at

the granularity of bits by the BEC analysis. Row “Total FI

runs pruned” depicts the percentages of fault injection runs

pruned by the BEC analysis (rows “Live in bits” versus “Live

in values”). Across the eight benchmarks, the BEC analysis

pruned up to 30.04% of fault injection runs, at an average of

13.71%.

Rows “Masked bits” and “Inferrable bits” in Table III show

the breakdown of fault sites pruned by the BEC analysis:

Row “Masked bits” depicts the numbers of fault sites pruned

because soft errors on those fault sites are analyzed to be

masked and dead, and Row “Inferrable bits” presents the

numbers of fault sites pruned because the effects of the faults

are identical to other fault injection runs.

The degree of the effect of the BEC analysis on fault

injection pruning varies due to benchmark characteristics. Bit

values are rarely known in AES at compile-time. Yet, AES

frequently uses xor operations to encrypt or decrypt secret

keys, which is particularly effective for the BEC analysis.

With xor operations, fault indices coalesce unconditionally



TABLE III
RESULTS OF FAULT INJECTION PRUNING BY THE PROPOSED STATIC ANALYSIS

bitcount dijkstra CRC32 adpcm enc adpcm dec AES RSA SHA

Live in values 26 272 230 336 245 760 2 819 904 2 003 744 150 112 1 026 304 421 632
Live in bits 20 571 229 409 211 176 2 424 874 1 653 714 105 025 1 025 436 371 294
Masked bits 2 506 70 7 368 71 000 258 000 680 434 10 660

Inferrable bits 3 195 857 27 216 324 030 92 030 44 407 434 39 678

Total FI runs pruned 21.70% 0.40% 14.07% 14.01% 17.47% 30.04% 0.08% 11.94%

TABLE IV
CHANGES IN THE RELIABILITY AGAINST SOFT ERRORS FROM BIT-LEVEL VULNERABILITY-AWARE INSTRUCTION SCHEDULING

bitcount dijkstra CRC32 adpcm enc adpcm dec AES RSA SHA

Total fault space 541 696 27 286 528 2 922 496 58 426 368 44 085 248 3 180 544 18 295 808 7 483 392
Best reliability 85 018 159 966 348 384 28 401 348 19 400 720 1 928 214 8 650 606 2 559 116

Worst reliability 94 366 166 074 394 040 28 530 244 19 538 104 2 007 194 8 764 640 2 688 188
Worst/Best 111.00% 103.82% 113.11% 100.45% 100.71% 104.10% 101.32% 105.04%

+ +11.00% +3.82% +13.11% +0.45% +0.71% +4.10% +1.32% +5.04%

across instructions. These characteristics of AES resulted in

the highest pruning rate across the set of benchmarks, 30.04%.

BEC achieved a solid 17.47% pruning rate for the ADPCM

decoder (adpcm dec), but for a different reason. The decoding

process involves an abundant number of bit operations, more

importantly, with constant values. This enhances the quality of

bit-value analysis, leading to more precise analysis results. The

ADPCM encoder and decoder perform internal operations on

4-bit values but clamp to 1-bit or 2-bit values to output. Such

characteristics of the benchmarks foster the BEC analysis to

identify more fault sites to be masked.

RSA is an adversary case for the BEC analysis because

the majority of its operations are arithmetic and thus chal-

lenging for bit-value analysis, with noticable impact on the

performance of the fault index coalescing analysis.

B. Use Case 2: Bit-level Vulnerability-aware Instruction

Scheduling

Vulnerability-aware instruction scheduling highlights the

merit of static analysis. The BEC analysis identifies which

fault sites are masked and insensitive to soft errors, and such

information can be employed with instruction scheduling to en-

hance the reliability of programs against soft errors. Instruction

scheduling in LLVM is based on list scheduling [33]. First, it

maintains a dependency graph among instructions and registers

accessed per basic block to examine which instructions in a

basic block are ready to be scheduled. If multiple instructions

are ready for instruction scheduling, LLVM uses heuristics

to choose the one with the highest priority. These heuristics

include register pressure, instruction latency, pipeline stalls,

etc. The number of fault sites susceptible to soft errors

analyzed by the BEC analysis is used as a novel criterion to

select the most appropriate instruction to schedule when there

is more than one candidate.

Algorithm 4 describes how instruction scheduling is con-

ducted with the BEC analysis as the selection criterion. For

each scheduling region, i.e., a basic block, a data dependency

graph is created with instructions. The instruction scheduler

iterates over the set of instructions until all the instructions

Algorithm 4: Instruction Scheduling for Reliability

Input: a set of instructions P with data dependencies

Output: a sequence of instructions S
1 Initialize an empty schedule S.

2 while P 6= ∅ do

3 Choose a set of ready instructions R in P with no

unsatisfied data dependencies

4 Choose an instruction p in R which kills the most

fault sites in bits

5 Add the instruction p to S
6 Remove the instruction p from P

are scheduled into a list of instructions. When multiple instruc-

tions satisfy the data dependency requirement and are ready

to be scheduled, the result of the BEC analysis is used as a

selection criterion, and the instruction that reduces the most

unmasked fault sites is prioritized for scheduling.

Table IV shows the experimental results when the BEC

analysis is used as the new selection criterion for instruction

scheduling. Row “Total fault space” in Table IV indicates the

total number of fault sites per execution trace of benchmarks,

and Row “Best reliability” in Table IV shows the numbers

of fault sites susceptible to soft errors when the instruction

scheduling criterion is set to maximize the number of masked

fault sites. Row “Worst reliability” shows the numbers of fault

sites susceptible to soft errors when the selection criterion

is the opposite. Row “Worst/Best” in Table IV shows the

maximum possible reliability improvement against soft errors

with the proposed instruction scheduling technique.

The benchmarks that improved noticably from vulnerability-

aware instruction scheduling were CRC32 and bitcount, show-

ing 13.11% and 11.00% reduction in vulnerable fault sites,

respectively. Both CRC32 and bitcount have abundant numbers

of masked bits, facilitating a high improvement in reliability

against soft errors after vulnerability-aware instruction schedul-

ing.

Both the ADPCM encoder and decoder contain large num-



bers of masked bits, but instructions are rather tightly ordered

compared to other benchmarks. It restricted scheduling flexi-

bility irrespective of the respective scheduling policy.

AES does not contain many bits masked in live registers.

However, the registers stay live relatively long for infrequent

read accesses. The effect of masked bits are exacerbated in

such long-lived registers even if the masked bits are few.

Shortening the live ranges of registers with more live fault

sites contributed the most to the improvement of reliability in

the case of AES.

RSA lacks masked or inferable bits to be exploited by the

new scheduling criterion and it is a highly sequential program

with frequent memory accesses. Thus, there was little room for

improvement by varying instruction scheduling criteria, yet the

proposed instruction scheduling technique achieved a 0.08%
improvement.

Bit-level vulnerability-aware instruction scheduling en-

hanced by the BEC analysis increased the reliability of pro-

grams by up to 13.11%, and 4.94% on average. Despite

the heuristic nature of instruction scheduling, no degradation

of the reliability against soft errors was observed among

the benchmarks that we have evaluated. It is worth noting

that instruction scheduling does not affect the number of

instructions executed per program nor the raw number of

fault injection runs required for an exhaustive fault injection

campaign, because it does not change the number of data

accesses.

VII. RELATED WORK

A. Static vs. Dynamic Analysis for Reliability

Several dynamic approaches have been proposed to analyze

the propagation of faults at bit-level in hardware compo-

nents [19], [34] and in execution traces of programs [35].

Dynamic analysis under-approximates program semantics. In

contrast, static analysis, which is the proposed method, com-

putes an over-approximation of program semantics. Thus, a

single static analysis run covers all possible inputs or exe-

cution traces of a program, while dynamic analysis must be

performed for every possible input or trace of a program. The

essential limitation with dynamic approaches is therefore that

it is impossible to test all possible inputs because the input

space is generally infinite [28], [29].

Another merit of static analysis is that it can contribute

to improving programs fundamentally by optimizing or trans-

forming the program at compile-time based on the analysis

results. As a proof of concept, we have conveyed the result

of the proposed analysis method to the instruction scheduler

of LLVM to enhance the reliability of programs against soft

errors.

B. Fault Injection Pruning

We have demonstrated the effectiveness of the BEC analysis

on fault injection pruning as the first use case. One efficient

and widely used fault injection pruning strategy is to conduct

fault injection runs just before the value is read. This method

was introduced by Smith et al. [36] as a way to determine

equivalent fault classes for permanent and transient faults in

values. It was further developed to Inject-on-read [18]–[20],

[37]. Unlike BEC, these methods operate at the granularity of

values and hence lack optimization opportunities at bit-level.

C. Instruction Scheduling for Reliability

As the second use case of the proposed bit-level analysis,

we used the analysis results as the criteria for instruction

scheduling in LLVM. With the results of the proposed bit-

level analysis, instruction scheduling can be determined in a

way to maximize the number of fault sites insensitive to soft

errors. Rehman et al. [38] proposed reliability-aware instruc-

tion scheduling strategies that determine reliability-critical

instructions by looking ahead in the instruction sequences.

Xu et al. [39] proposed an instruction scheduling strategy that

reduces the overall length of the live intervals of registers.

These approaches are based on value-level analysis for the

criticality or longevity of registers. The proposed bit-level

analysis can be readily combined with the previous approaches

to further enhance the effectiveness. Instruction scheduling

augmented by the BEC analysis enhanced the reliablity of

programs against soft errors comparable to the improvements

achieved by established methods in the field [39]–[41].

VIII. CONCLUSION

We have presented BEC, a static bit-level analysis that

enhances the reliability of programs against soft errors, and

two of its use cases. The work has been implemented within

LLVM 16.0.0 for the RISC-V architecture and validated on

an instrumented version of the SPIKE RISC-V ISA simulator

using eight benchmarks with distinctive characteristics. The

proposed bit-level analysis pruned up to 30.04% of exhaustive

fault injection campaigns (13.71% on average), without loss

of accuracy. Program vulnerability reduced by up to 13.11%
(4.94% on average) through bit-level vulnerability-aware in-

struction scheduling.

The BEC analysis has been applied to software, but we

anticipate this work to be easily extended for hardware testing

to reduce production costs. For instance, it can be adopted as

a pass of hardware synthesis tools to shorten the chip testing

process analytically and systematically.
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