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Abstract—System-level emulators have been used extensively
for the design, debugging and evaluation of the system soft-
ware. They work by providing a system-level virtual machine
that can support a guest operating system (OS) running on a
platform with the same or different native OS using the same
or different instruction-set architecture. For such a system-level
emulation, dynamic binary translation (DBT) is one of the core
technologies. A recently proposed learning-based approach using
automatically-learned translation rules has shown to improve
DBT performance significantly with much higher quality trans-
lated code. However, it has only been used on user-level emulation,
not system-level emulation.

In applying this approach directly on QEMU for system-level
emulation, we find it actually causes an unexpected performance
degradation of 5% on average. By analyzing its main culprits
in more detail, we find that the learning-based approach will
by default use host registers to maintain the guest CPU states
that include condition-code registers (or FLAG registers). In
cases where QEMU needs to be involved (in which QEMU also
needs to use the host registers), maintaining system states in
the host registers for the guest, the host and QEMU during
and between the context switches can cause undue overheads, if
not handled carefully. Such cases include emulating system-level
instructions, address translation and interrupts, which require
the use of QEMU’s helper functions. To achieve the intended
performance improvement through better-quality code generated
by the learning-based approach, we propose several optimization
techniques that include reducing the overhead incurred in each
context switch, the number of needed context switches, and better
code scheduling to eliminate context switches. Our experimental
results show that such optimizations can achieve an average of
1.36X speedup over QEMU 6.1 using SPEC CINT2006 and 1.15X
on real-world applications in the system emulation mode.

I. INTRODUCTION

System-level emulators are an important tool for designing

new system architectures, debugging binary codes and pro-

filing application programs in a full system environment. A

system-level emulator emulates the binary code of a guest

operating system (OS) implemented on the guest instruction

set architecture (ISA), and booted on a host with the same or a

different ISA running the same or a different OS. In a system-

level emulation, dynamic binary translation (DBT) is one of

the core technologies. This technology has been used in many

applications provided by VMware, Valgrind, QEMU [1], and

Rosetta. In essence, a DBT system provides the capability of

dynamically translating a guest binary code to run on a host

with a different system environment at runtime.

Depending on usage scenarios, a DBT can emulate guest

binaries at the user level or the system level. When at the user

level, the DBT only translates the guest binaries and runs the

translated binaries directly on the host OS without emulating

detailed guest OS operations such as virtual address translation

and system calls. While at the system level, the DBT needs to

translate the entire guest execution environment that includes

all guest OS operations. It thus provides a complete system-

level emulation on top of the host environment.

A general dynamic binary translator, such as QEMU, pro-

vides a general framework that includes an intermediate repre-

sentation (IR) as a common interface between the guest and the

host binaries. Guest binaries are first translated to the QEMU

IR, and then from the IR to host binaries in different ISAs,

i.e., it is a ”many(ISAs)-to-many(ISAs)” binary translation.

However, due to this two-step translation approach, each guest

instruction will be translated into n IR instructions and each

IR instruction to m host instructions, with a total of nxm

host instructions. For example, [2] shows that a guest ARM

instruction can be translated into 8.18 host x86 instructions on

average. In addition, it requires significant engineering effort

to manually create translation rules that translate each guest

instruction to the IR, and then translate each IR instruction to

the host binaries.

A learning-based DBT approach [2] [3] [4] was proposed

recently to resolve those issues using automatically-learned

translation rules for each pair of guest ISA and host ISA,

i.e., an ”one(ISA)-to-one(ISA)” binary translation approach.

These translation rules can be automatically learned from the

optimized guest and host binary codes produced by compilers

using the same source code. It is an ’one-step’ translation

approach (i.e. without going through IR) based on high-quality

translation rules with minimal engineering effort. However,

this approach has only been applied to user-level emulation,

and not yet to system-level emulation. Our recent experimental

results show that, although the learning-based approach works

well at the user level, it unexpectedly causes a 5% slowdown
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after we apply it to a system-level emulation.

In this paper, we first analyze the new challenges in the

system-level emulation. We find that, when it encounters

system-level instructions as well as address translation and

interrupts, which are common in a system mode emulation,

the learning-based approach needs to switch to QEMU for

various system support. Any DBT system, not just learning-

based DBT systems, needs to maintain guest CPU states such

as the content of general registers and condition codes/flags

registers that are set implicitly. For example, QEMU uses a

designated memory region to hold and maintain such guest

CPU states. The learning-based approach, on the other hand,

uses the host registers to hold and maintain guest CPU states

by default. In cases where QEMU needs to be involved (in

which QEMU also needs to use the host registers), maintaining

system states in the host registers for the guest, the host

and QEMU during and between the context switches can

cause undue overheads. These overheads can offset the benefits

derived from the learning-based approach if not coordinated

and handled carefully.

To achieve a better performance, we propose several opti-

mizations to reduce the overhead incurred during and between

the context switches. One optimization is to delay the parsing

of the guest CPU state. It can reduce the number of needed

instructions to maintain the guest CPU state during each

context switch. We also identify several common scenarios

that can create rapid consecutive context switches and incur a

substantial amount of overhead. They include (1) consecutive

memory access instructions that require emulating the address

translation in QEMU, (2) define-before-use translation blocks

(TBs), and (3) consecutive context switching between the

translated code and QEMU due to system calls, interrupts

or instruction sequences not in the translation rules. We can

consolidate and combine some of those episodes to reduce the

number of context switches and their associated overheads.

Further optimizations include doing a better code scheduling

for guest instructions that define and use CPU states (e.g. con-

dition codes/flags), which can reduce redundant instructions

needed to maintain those CPU states.

To study the effectiveness and the performance improve-

ment that the learning-based approach can achieve with those

optimization techniques in a system-level DBT, we imple-

mented a prototype on QEMU 6.1. We use SPEC CINT2006 to

evaluate our design. Experimental results show that, compared

to the QEMU running in a system mode, the learning-based

approach without our proposed optimizations has an average of

5% slowdown. When all optimizations are applied, 48.83% of

all operations that are related to maintaining guest CPU states

can be eliminated. It can achieve a performance improvement

of 1.36X over the baseline QEMU on average. In addition,

we also use several real-world applications for evaluation.

The results show that the learning-based approach achieves

an average of 1.15X speedup.

In summary, this paper makes the following contributions:

• We apply the learning-based approach to system-level

DBT, and propose several optimizations to reduce the

overhead required to maintain CPU states during and

between the context switches frequently encountered in

the system mode.

• We implement the proposed learning-based system-level

design and its optimizations in a prototype using QEMU.

• We conduct several experiments to evaluate the learning-

based system-level emulator. The results show that we

can achieve an average of 1.36X speedup over QEMU on

SPEC CINT2006 and 1.15X on real-world applications

with all of the proposed optimizations applied.

The rest of this paper is organized as follows. In Section II,

we discuss the motivation and challenges in applying the

learning-based approach to a system-level DBT. In Section III,

we present the design of the learning-based system-level

emulator and propose several optimizations to improve the

coordination efficiency. In Section IV, we evaluate our im-

plementation and show some experimental results. Section V

includes some related work. Section VI concludes this paper.

II. BACKGROUND & MOTIVATION

In this section, we first give a brief introduction to the

learning-based DBT approach, and then discuss the CPU state

maintenance strategy in the learning-based DBT approach.

Finally, we present the challenges of applying the learning-

based approach to system-level DBT.

A. Learning-Based DBT Approach

There are three parts in the learning-based DBT approach:

(1) learning of the translation rules, (2) parameterization of

the learned rules, and (3) rules application [2] [3] [4].

In the learning phase, it uses an automated learning frame-

work to generate high-quality translation rules. First, it com-

piles a source code into executable binaries of both the guest

and the host architectures (e.g., ARM and x86) using popular

compilers such as LLVM or GCC with the debug option

turned on. Next, it uses the generated debugging information,

such as the line numbers of the source code, to extract the

semantically-equivalent code fragments in the two binaries,

e.g., the binary sequences that correspond to the same source

statement. These two code fragments form the basis of a

translation rule since they are from the same source statement

and are supposed to be semantically equivalent. It then uses

a symbolic execution tool to perform a formal semantic-

equivalence verification of the two code fragments. After the

formal verification, the two code fragments (i.e., the guest and

the host binary sequences) finally form a translation rule. This

process can be iterated automatically using different training

source codes to build a more comprehensive and complete

translation rule set.

In the parameterization phase, the translation rules are

parameterized to reduce the total number of rules in the rule

set and achieve a higher coverage with a smaller training set.

Instead of making each of these ALU-type instructions, such

as add, and, and or, into a different translation rule, we can

lump them together into one translation rule for all ALU-type

instructions. In the rule-application phase during the binary



translation, we first try to find a matched translation rule in the

rule set. If we cannot find it, it will be switched to QEMU for

emulation. And as mentioned earlier, this context switch will

require the guest CPU states to be saved and restored. Such

a learning-based approach can significantly improve DBT

performance with translation rules learned from the native

compilers. As its focus is on instruction-level translation, it

is orthogonal to other optimizations such as memory-related

optimizations [5], parallelism exploitation [6], and leveraging

special host hardware features [7], [8].

B. CPU State Coordination

The guest CPU states contain all of the information needed

to emulate guest binary codes. It includes the content of the

general-purpose registers, status flags in the condition code

register (CCR) and the program counter (PC). Some DBT

systems, such as QEMU, maintain the guest CPU states in

the memory. In QEMU, it maps the guest CPU states to a

data structure in IR and maintains it in the memory. When

executing the translated host binaries, it loads the guest CPU

states from the memory. After the execution, it stores the latest

guest CPU states back in the memory. Although this strategy is

intuitive and easy to implement, it can generate a large number

of memory operations and incur a significant overhead.

As the learning-based approach bypasses the IR and trans-

lates the guest binaries directly into the host binaries, it keeps

the guest CPU states in the host CPU states as much as

possible. This strategy can reduce the number of memory

operations needed to maintain the CPU states. However, since

the learning-based approach cannot achieve a 100% coverage,

it will need to switch to QEMU to translate those instructions

not covered in its rule set. The context switching between the

translated binaries and QEMU requires additional overhead to

maintain correct CPU states.

We use the example in Figure 1 to show how it works.

Note that, like most DBT systems, QEMU maintains the

translated binaries in a code cache. The unit of translated

binaries organized in the code cache is a basic block of the

guest binaries, marked as TB1 and TB2 in Figure 1. In this

example, after executing the host binary in TB1 we need to

find and translate TB2, which will bring it back to QEMU.

At this point, the guest CPU state is being maintained in the

host CPU registers as shown in the figure. After the host CPU

is switched to QEMU, it will modify the host registers and

corrupt the guest CPU state. Thus, at the end of TB1, we need

to upload the guest CPU states to the memory locations where

QEMU maintains the guest CPU states, as Path 1 shows. After

QEMU translates TB2 and places the translated binary in the

code cache, it needs to download the guest CPU states from

the memory to the host registers where the translated binary in

TB2 maintains the guest CPU states as Path 2 shows. We call

the process of keeping the guest CPU states consistent during

such a context switch ”CPU state coordination”.

CPU state

Memory

QEMU

Learning-based

Host registers

R1
CCR
PC
…

Guest TB2

…

Guest TB1

…

Fig. 1. CPU state maintenance and coordination.

C. Issues and Challenges

There are several challenges in CPU state coordination when

we apply the learning-based approach directly in a system-

level DBT. They can incur a large amount of overhead and

lead to a 5% slowdown on QEMU as mentioned earlier.

System-level instructions. System-level instructions usu-

ally perform privileged operations in guest OS, which do not

exist in user-level applications. As a result, the learning-based

approach cannot automatically learn system-level instruction

rules from user-level applications. It thus needs to use QEMU

to translate the system-level instructions. QEMU uses a series

of helper functions to emulate these instructions. For example,

a privileged ARM instruction such as vmsr1 is emulated

by a QEMU helper function instead of translating into its

corresponding host instruction sequence. When executing a

helper function, it will context switch from the translated

binaries in the code cache to QEMU. If the helper function

needs to read or update guest CPU states, the guest CPU states

can become inconsistent.

Figure 2 gives such an example. Assume the guest ISA

is ARM. System-level instructions such as vmsr transfer the

data between a VFP system register and an ARM register,

in which VFP is a vector floating-point system register in an

ARM processor. Assume that the instructions in the TB are all

translated by the translation rules. When emulating the vmsr

instruction, the learning-based approach invokes a QEMU-

provided helper function. The helper function reads the ARM

CPU state in the memory maintained by QEMU. However,

this CPU state has expired because an earlier instruction ”cmp

al” translated by rules will produce a new CPU state, and

the learning-based approach maintains the latest guest CPU

state in host registers. On the other side, the helper function

for vmsr needs to maintain its own CPU state, which will

overwrite the host registers and corrupt the guest CPU state

stored there. The following instruction ”add eq” after the

1vmsr transfers the content of an ARM register to its VFP system register



helper function will have lost the guest CPU state produced

by the ”cmp al” instruction.

Guest (ARM)

…

cmp al r0, 0x0

…

System-level Instr.

…

add eq r0, r1, r2

…

HELPER 

function

Latest CPU state

Corrupted CPU state

Expired 

CPU state
CPU state in 

memory
Latest 

CPU state

CPU state in host 

registers

Fig. 2. An example of handling a system-level instruction.

Address translation. In a user-level DBT, it translates

a memory address directly from its guest virtual address

(GVA) to a host virtual address (HVA) by adding a fixed

offset. However, in the system-level emulation, the DBT needs

to emulate the guest memory management unit (MMU) for

potential page faults. In this case, GVA is not necessarily

mapped to a pre-determined HVA location. Therefore, it needs

to be translated through an address translation process as

shown in Figure 3.

Guest (ARM)

ldr r2, [r1, #0x1c]

Address 

translation

Page fault

Exception 

handler

Fig. 3. Address translation.

The learning-based approach does not support the address

translation process. When encountering a memory access

instruction it will context switch to QEMU, and QEMU needs

to use the host registers to carry out address translation thus

corrupting the guest CPU states.

Interrupts. Figure 4 shows the interrupt handling mech-

anism in QEMU. Interrupts, such as I/O interrupts caused

by the keyboard, are caught by the interrupt-check function

(i.e., check_interrupt()) at the beginning of every TB

as shown in the figure. The interrupt check function will invoke

the corresponding interrupt handler to deal with the particular

interrupt. QEMU has to translate and execute the interrupt

handler provided by the guest OS. If system-level instructions

are involved, a context switch from the translated code cache

to QEMU is required.

Guest TB1

check_interrupt()

…

ldr r2, [r1, #0x1c]

b ne #TB2

Guest TB2

check_interrupt()

…

add eq r0, r1, r2

…

Interrupt 

handler

Fig. 4. System-level interrupt.

To estimate the overhead of such context switches, we

collect at runtime the dynamic numbers of system-level in-

structions, memory access instructions, interrupt-check func-

tions, and the total number of guest instructions executed in

each application of SPEC CINT2006. We then calculate the

occurrence frequency of each category per guest instruction,

e.g., # of system-level instructions / # of guest instructions.

The data are shown in Table I.

TABLE I
DISTRIBUTION OF THE THREE CATEGORIES THAT REQUIRE GUEST CPU

STATE COORDINATION IN SPEC CINT2006.

Benchmark System-level instr. Memory instr. Interrupt check

perlbench 0.28% 36.94% 19.64%

bzip2 0.28% 40.03% 14.24%

gcc 2.48% 29.90% 20.11%

mcf 0.45% 41.19% 20.53%

gobmk 0.25% 30.58% 17.53%

hmmer 0.09% 47.98% 5.18%

sjeng 0.17% 33.86% 17.84%

libquantum 0.09% 23.36% 9.19%

h264ref 0.13% 55.21% 9.15%

omnetpp 0.24% 22.54% 22.02%

astar 0.24% 31.42% 15.92%

xalancbmk 0.34% 23.81% 25.94%

GEOMEAN 0.25% 33.46% 15.12%

From the statistics, we can see that a context switch is

required roughly every two guest instructions on average for

QEMU at the system level. Most of the context switches

are for memory access instructions (33.46%) and interrupt

checks (15.12%). Only a small percentage is for system-level

instructions (0.25%) in SPEC CINT2006.

III. DESIGN & OPTIMIZATIONS

As mentioned earlier, the learning-based approach includes

three phases: rule learning, parameterization, and rule ap-

plication. CPU state coordination does not affect the rule

learning and the parameterization phases. Thus, they will be

the same as in the user-level DBT. However, in the rule-

application phase, we propose an enhanced design with the

optimizations mentioned earlier to reduce the overall context

switch overheads.

A. Basic Guest CPU State Coordination

There are two types of guest CPU state coordination. One is

the coordination needed when it switches from the code cache

to QEMU shown as Path 1 in Figure 1, we call it sync-save

(as viewed from the perspective of the code cache). The other

is to switch from QEMU back to the code cache shown as

Path 2 in Figure 1, called sync-restore. The needed operations

are determined by the context that has the latest guest CPU

state before it is switched to the other context.

To reduce overall overheads caused by context switching, a

basic coordination scheme is shown in Figure 5. In the rule

application phase, we first perform a scan on the guest TB to

check each guest instruction. It marks the instructions in the

TB, such as system-level instructions and ld/st instructions,

that require guest CPU state coordination. We also identify

what guest CPU states these instructions may read and/or



write. Based on the information collected, the translation

rule will insert codes to coordinate those CPU states when

translating the corresponding instruction (see Figure 5).

Guest (ARM)

Sync-save.

check_interrupt()

Sync-restore.

Sync-save.

ld/st instr.

Sync-restore.

Sync-save.

System instr.

Sync-restore.

Guest (ARM)

check_interrupt()

ld/st instr.

System instr.

Fig. 5. A basic guest CPU state coordination.

We show the example of a system-level instruction such

as a vmrs/vmsr in Figure 6. The translation rule will insert

a Sync-save and a Sync-restore before and after the helper

function used to emulate the guest system-level instruction. In

the Sync-save before a vmrs instruction, it will upload the

latest guest CPU state updated by the previous rule-translated

cmp al instruction to QEMU, which allows the helper function

to get the latest guest CPU state. Similarly, if the system-level

instruction is a vmsr instruction, a Sync-restore will pass the

latest guest CPU state from QEMU to the host registers after

emulating this instruction. It allows the following instruction

”add eq” to have the latest guest CPU state in the host

registers when we apply the learned translation rule on it.

Guest (ARM)

…

cmp al r0, 0x0

…

Sync-save.

System-level Instr.

Sync-restore.

…

add eq r0, r1, r2

…

HELPER 

function

Latest CPU state

Latest CPU state

Latest 

CPU state
CPU state in 

memory
Latest 

CPU state

CPU state in host 

registers

Fig. 6. An example of the guest CPU state coordination for a system-level
instruction.

However, such a naive implementation will require very

frequent guest CPU state coordination and incur a lot of

runtime overhead. Thus, we propose three optimizations in

the following subsections to reduce its overhead.

B. Coordination Overhead Reduction

In the three scenarios mentioned in Section II-C, only

system-level instructions will update and modify guest CPU

states. For address translation and interrupts, guest CPU state

coordination is required only to prevent these states from being

corrupted during a context switch. However, even if we only

maintain those CPU states that will be modified in a context

switch, our experimental results show that it still requires

14 instructions in each context switch, i.e., it only yields very

modest overhead reduction.

In addition, in the rule-based binary translation2, it may

maintain several components of the CPU state in one reg-

ister, but are maintained in separate memory locations by

QEMU. A typical example is the bit-wise condition codes

and flags, which are maintained in one condition-code

register (CCR) in the rule-based translation since both x86

and ARM have such registers. But each condition code bit

is kept in a different memory location in QEMU. We call

this type of CPU state ”one-to-many CPU state”. In a Sync-

save operation, it will need to parse the host CCR register

and store each condition code in a different memory location

using several store operations. However, if QEMU does not use

them in its emulation, we can save the CCR register in one

memory location using only one store operation and restore

them afterward with only one load operation. In this way, we

can reduce the total number of memory operations in Sync-

save and Sync-restore operations.

Based on the above observation, depending on the types

of the instructions collected in the lightweight parsing of a

translation block, if a Sync-save operation involves an one-

to-many state, we store the content of the host register that

maintains the state to one memory location. In the case of

the CCR register, unless QEMU needs to access any of the

condition codes for emulation, we need not store them in

separate memory locations designated by QEMU. As most

of the Sync-save and Sync-restore operations are just to keep

guest CPU state from being corrupted during context switches

(see Table I), a significant number of memory operations can

be eliminated this way.

Guest TB1

cmp al r0, 0x0

parse and save cc

b ne #TB2

Guest TB2

check_interrupt()

…

add eq r0, r1, r2

…

Guest TB1

cmp al r0, 0x0

save CCR

b ne #TB2

Guest TB2

check_interrupt()

…

add eq r0, r1, r2

…

Handler

restore CCR

parse and save cc

Handler

…

Fig. 7. Coordination overhead reduction.

Figure 7 shows an example that involves condition codes.

It includes a check_interrupt() in TB2 that requires

access to the condition codes. However, interrupts only occur

very rarely. In this case, we save the content of CCR to a

memory location at the end of TB1. If an interrupt has been

triggered at the beginning of TB2, we restore the content of

CCR, parse CCR and save the condition codes separately

to their designated memory locations in QEMU. This is

needed only when an interrupt occurs and the condition codes

are actually needed. From our experimental results, we find

2Since the learning-based DBT uses translation rules for the binary trans-
lation, we also call it rule-based binary translation.



such interrupts occur very rarely in most applications. For

example, it occurs only 0.0001% per guest instruction in SPEC

CINT2006. A significant number of memory operations can

thus be avoided.

Similar optimization can be applied to Sync-save and Sync-

restore operations for system-level instructions and address

translation as well. As the example shown in Figure 8, it needs

about 14 instructions to parse the Eflags register (the CCR of

x86) and save the condition codes to QEMU. After applying

the optimization, only 3 instructions are actually needed, with

a saving of (14-3)/14 = 78%.

lahf 

seto     %al

movw     %ax, 0x103c(%ebp)

movl $0, %eax

setae    %al

movl %eax, 0x200(%ebp)

movl $0, %eax

seto %al

leal 0x7fffffff(%eax), %eax

movl %eax, 0x204(%ebp)

movl $0, %eax

setne %al

movl %eax, 0x20c(%ebp)

movl $0, %eax

sets     %al

leal 0x7fffffff(%eax), %eax

movl %eax, 0x208(%ebp)

Parse and save cc Save CCR

Fig. 8. Effect of coordination overhead reduction.

C. Coordination Elimination

Even after the overhead of each guest CPU state coordina-

tion is reduced by the optimization mentioned above, there

are still cases where such coordination operations can be

eliminated all together. We propose three such optimizations

in this section.

1) Redundant Sync-restores Elimination: There are

conditionally-executed instructions in some ISAs, which

are executed based on whether the condition specified by

the instruction is satisfied or not. For example, add eq is

a conditional instruction in ARM-v7 that depends on the

condition code Z. Only when the condition code Z is set,

this instruction will be executed. In a DBT system, when a

guest conditional instruction is translated, a host comparison

instruction (e.g., cmpl in x86) is used to determine whether

the current condition is satisfied or not. This will cause

the guest CPU state maintained in the host registers to be

corrupted. In the rule-based approach, as a host comparison

instruction will change its CPU state that may be inconsistent

with the semantics of its corresponding guest instruction, it

is allowed only in a constrained rule [3]. The basic rule-

based design will insert a Sync-restore after the comparison

instruction to maintain the correct guest CPU state. However,

if we encounter consecutive conditional instructions that

depend on the same condition, we only need to restore the

guest CPU state once at the first conditional instruction, and

the remaining instructions can be translated normally without

the additional comparison instructions and Sync-restore

operations. To do this, in each TB, it first checks if there

are such instructions that update the CPU state and the

conditional instructions that depend on the updated CPU state

in the TB. Next, it keeps the first Sync-restore before the first

instruction in the TB that uses the CPU state, and eliminates

the other Sync-restores until it reaches an instruction that

requires a Sync-save operation or reaches the end of the TB.

As the example shown in Figure 9, we assume that after

the instruction ”cmp al”, some situation (e.g., a system-level

instruction) requires the Sync-save operation to save the CPU

state to QEMU. At the same time, the next few instructions

”add eq” need to use the CPU state. The rule-based trans-

lation will have a Sync-restore for each of such instructions.

But in this case, only the first Sync-restore is needed, and

the rest of the Sync-restores and the translated comparison

instructions can be eliminated. Through this optimization, a

significant amount of coordination overhead due to the rule-

based translation can be eliminated.

Guest (ARM)

cmp al r1, 0x0

Sync-save.

Sync-restore.

add eq r0, r1, r2

Sync-restore.

add eq r0, r2, r3

Guest (ARM)

cmp al r1, 0x0

Sync-save.

Sync-restore.

add eq r0, r1, r2

add eq r0, r2, r3

Fig. 9. Coordination-restore optimization.

2) Optimization for Consecutive Memory Operations: In

the case of consecutive memory-access instructions, we can

use a similar coordination elimination scheme to reduce re-

dundant coordination. Because of the need to emulate address

translation in QEMU at the system level, a Sync-save operation

is inserted before and a Sync-restore after each memory access

instruction during the rule-based translation. Apparently, if

there are consecutive memory-access instructions in a TB,

the intermediate coordination among those instructions can be

removed. In this case, it first checks if it has a sequence of

consecutive memory-access instructions in the TB. If it has,

it keeps the Sync-save operation before the first memory-

access instruction and the Sync-restore operation after the

last memory access instruction in the sequence. The rest of

the intermediate Sync-save and Sync-restore operations in the

sequence can be removed.

As the example shown in Figure 10, there are two con-

secutive memory-access instructions str after the instruction

”cmp al”. The rule-based translation will insert two pairs

of coordination in this situation. After applying the redundant

coordination elimination, only a pair of Sync-save and Sync-

restore are needed.

3) Inter-TB Optimization: As the unit of translation in a

DBT is a guest TB, it needs to save the CPU state at the

end of each TB and switch back to QEMU because the

following TB may yet to be translated, or it may need to

do a check_interrupt before the next TB. However,

block chaining is a common optimization [9] [10] that chains



Guest (ARM)

cmp al r1, 0x0

Sync-save.

str al r2, [r1]

Sync-restore.

Sync-save.

str al r3, [r1]

Sync-restore.

Guest (ARM)

cmp al r1, 0x0

Sync-save.

str al r2, [r1]

str al r3, [r1]

Sync-restore.

Fig. 10. Optimization on consecutive ld/st instructions.

multiple TBs in the code cache together without context

switching back to QEMU after each TB.

In this case, if the first guest instruction of the next TB will

update a CPU state without using the CPU state defined in the

previous TB, we will need neither a Sync-save operation at the

end of the previous TB nor a Sync-restore at the beginning

of the current TB. After an in-depth analysis of the execution

flow in application codes, we find that if a series of TBs are

chained together such an execution flow can be analyzed. In

other words, in a code cache that uses block chaining similar

to one used in QEMU, there is an opportunity to eliminate the

Sync-save at the end of the current TB and the Sync-restore

operation at the beginning of the next TB if the next TB will

update its CPU state before using it.

Based on the above observation, we propose an inter-block

optimization. It first checks if the current TB will jump to

a TB in the code cache via block-chaining. Next, for each

CPU state that needs to be coordinated, check the next TB

to see if there is an instruction using the CPU state before it

is updated by an earlier instruction in the TB. If not, we can

omit the Sync-save operation at the end of the current TB and

the Sync-restore operation at the beginning of the next TB.

Guest TB1

cmp al r0, 0x0

Sync-save.

b ne #TB2

Guest TB2

Sync-restore.

cmp al r0, r1

b ne #TB3

Guest TB1

cmp al r0, 0x0

b ne #TB2

Guest TB2

cmp al r0, r1

b ne #TB3

Chaining Chaining

Fig. 11. Inter-TB optimization.

Figure 11 shows such an example. After the rule-based

translation, the instruction ”cmp al” in TB1 will update the

condition codes. It needs to do a Sync-save operation for the

condition codes to be used in the following TB. In addition, the

following TB2 needs to do a Sync-restore operation to obtain

the correct condition codes. After traversing the block chain,

it is found that TB1 jumps to TB2 in the chain. Furthermore,

the instruction ”cmp al” in TB2 updates the condition codes

before the instruction ”b ne” uses the condition codes. We

can thus eliminate the Sync-save operation in TB1 and the

Sync-restore operation in TB2.

D. Instruction Scheduling

We can also use instruction scheduling to reduce more

redundant coordination. In this section, we present two scenar-

ios, called define-before-use scheduling and interrupt schedul-

ing, that can further reduce such coordination.

1) Define-Before-Use Scheduling: Within a TB, the instruc-

tion that uses the CPU state such as condition codes may be

several instructions behind the instruction that updates such

CPU state. There may be other instructions in between also.

Some of them may even be system-level instructions or ld/st

instructions that require QEMU’s intervention. In the rule-

based translation, a Sync-save operation will be inserted after

the ”update/define” instruction and a Sync-restore will be

inserted before the ”use” instruction. But, if there is no instruc-

tion in between that is data-dependent on either instruction, we

can schedule the two instructions next to each other to avoid a

CPU state coordination. We call such an instruction scheduling

scheme the define-before-use scheduling scheme.

Figure 12 shows such an example. In this example, the

instruction ”cmp al” updates the condition codes, and the

instruction ”b ne” uses them. During the rule-based transla-

tion, it will insert a Sync-save operation and a Sync-restore

operation before and after the memory-access instruction ldr.

However, the ldr instruction is not dependent on the ”cmp

al” instruction nor the ”b ne” instruction. By scheduling

both instructions together after the ldr instruction, there is

no longer a need to coordinate these condition codes before

and after the ldr instruction.

Guest (ARM)

cmp al r0, 0x0

Sync-save.

ldr r2, [r1, #0x1c]

Sync-restore.

b ne #TB2

Guest (ARM)

ldr r2, [r1, #0x1c]

cmp al r0, 0x0

b ne #TB2

Fig. 12. Define-before-use scheduling.

2) Interrupt-driven Scheduling: QEMU handles interrupts

at the system level by inserting an interrupt-check function at

the beginning of each TB. In theory, we can place the interrupt-

check function in any other location in the TB. In the rule-

based translation scheme, we insert CPU state coordination

before and after each interrupt-check function. If the TB has

memory-access instructions, we also need such coordination

for each such instruction to prevent possible inconsistencies.

Similar to the instruction scheduling scheme described earlier,

if we can schedule the interrupt-check function close to the

memory-access instructions, we can eliminate those redundant

coordination. As the memory-access instructions appear quite

frequently while interrupts rarely occur, there are ample op-

portunities to cut down such redundant coordination. We call



such an approach interrupt-driven scheduling. It is particularly

effective if block chaining is applied to TBs in the code cache.

Figure 13 shows such an example. Initially, CPU state

coordination operations will be inserted both at the interrupt-

check function and the memory-access instruction ldr. In

fact, we can move the interrupt-check function to the front of

the memory-access instruction ldr. This scheduling will not

affect the interrupt handling and can reduce the coordination

from two pairs to one.

Guest TB1

cmp al r0, 0x0

Sync-save.

b ne #TB2

Guest TB2

check_interrupt()

Sync-restore.

...

Sync-save.

ldr r2, [r1, #0x1c]

Sync-restore.

Guest TB1

cmp al r0, 0x0

b ne #TB2

Guest TB2

...

Sync-save.

check_interrupt()

ldr r2, [r1, #0x1c]

Sync-restore.

Chaining Chaining

Fig. 13. Interrupt scheduling.

E. Optimization Interaction

The optimizations described above may change the corre-

sponding host basic blocks in different ways. Therefore, we set

different priorities among these optimizations and coordinate

them for the best results. Redundant sync-restores elimi-

nation and optimization for consecutive memory operations

mentioned in III-C, whose trigger conditions are orthogonal,

simply reduce intra-block coordination and are applied first.

Then, if the conditions of inter-TB optimization mentioned

in III-C are met, we apply it to remove the coordination at

the end of the block and the beginning of the next block.

Otherwise, we use the coordination overhead reduction men-

tioned in III-B at the end of the block. Finally, we apply

the instruction scheduling, changing the instruction order and

further eliminating coordination. Note that this optimization

order will not activate any previous optimizations.

IV. EVALUATION

In this section, we evaluate our design and try to answer

the following questions: (1) Using the rule-based translation

approach at the system level with the proposed optimization

to reduce redundant guest CPU state coordination, how much

performance improvement can we achieve compared to state-

of-the-art systems like QEMU 6.1? (2) How do various

optimizations proposed in the paper affect the overall per-

formance? (3) How does the performance of our approach

compare to that of the native execution? (4) What about its

performance improvement for real applications?

A. Experimental Setup

We have implemented a system-level rule-based DBT pro-

totype based on QEMU 6.1. We take ARM-v7 as the guest

ISA and Intel x86 as the host ISA. The translation rules used

are the same parameterized translation rules used in [2]. The

prototype is run on an Intel Xeon E5-2680 v4 machine with

2 cores, 56 threads and 126GB DRAM. The host OS is a

32-bit Ubuntu 14.04 with Linux 3.13. The guest OS is a 32-

bit unmodified Linux system with kernel 4.4.0. We compile

the SPEC CINT2006 using GCC-4.8 with -O2 optimization

level and statically linking, and run the ref input of SPEC

CINT2006 3 on the guest OS. To better understand the

performance of the rule-based approach, we also evaluate

several real-world applications that include memcached, sqlite,

fileIO, untar and cpu-prime, which are widely used in other

system research [11], [12]. We run each benchmark ten times

and take the average to reduce the effect of fluctuation. To

measure the performance speedup, we use the execution time

on unmodified QEMU 6.1 as the baseline.

B. Overall Performance

To study the effectiveness of our approach, we collect

the performance data on QEMU 6.1 that includes the un-

modified QEMU 6.1, the rule-based implementation of the

system level on QEMU 6.1, and its optimized version with

the three optimizations described in Section III (marked as

”Full Opt.” in the following figures).

As the results in Figure 14 show, the un-optimized rule-

based implementation of QEMU 6.1 has a 5% slowdown

compared to QEMU 6.1, i.e., it is actually slower than QEMU

6.1 running in system mode. The main reason is the CPU

state coordination overhead explained in Section III. However,

after the three optimizations are applied to reduce coordination

overheads, the optimized rule-based QEMU 6.1 running at the

system level can achieve a 1.36X speedup.
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Fig. 14. Performance of SPEC CINT2006 running in system mode on un-
modified QEMU 6.1, the un-optimized rule-based implementation of QEMU
6.1, and the optimized version of the rule-based implementation.

3The rule-based approach also supports the translation of floating-point
instructions. Due to the space constraint, the floating-point applications in
SPEC 2006 are not listed here. When these applications are included, our
approach can achieve an average of 1.92X speedup over QEMU 6.1, instead
of 1.36X speedup for only SPEC CINT2006.



Based on the data in Table I, an average of 48.83% guest

instructions (which include system-level instructions, memory-

access instructions and interrupt checks) will require CPU-

state coordination operations. Moreover, each coordination

operation will introduce around 14 host instructions. From

Table I, for some benchmarks such as mcf and h264ref, the

percentages of instructions that require such coordinations run

as high as 62.17% and 64.49%, respectively. Their perfor-

mance also suffers the most compared to other benchmarks as

shown in Figure 14.

After the three optimizations are applied to remove redun-

dant coordination operations, the percentage of instructions

that require coordination is reduced to 24.61%, and the number

of host instructions required in each coordination operation

also goes down to only around 3 host instructions (as shown

in Figure 8). To further understand the effect of the rule-

based approach, we also collect the average number of host

instructions needed to translate a guest instruction. The data

are shown in Figure 15. As the data show, QEMU 6.1

in system mode requires an average of around 17.39 host

instructions for each guest instruction, while the optimized

rule-based implementation requires an average of 15.40 host

instructions - a reduction of around 11.44%.
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Fig. 15. Average number of host instructions needed to translate a guest
instruction in un-modified QEMU 6.1, and in the optimized rule-based
implementation.

To identify the performance bottleneck, we count the num-

ber of instructions in the host basic blocks and group the

instructions by their functionality. Based on our analysis, one

of the major bottlenecks is in the address translation. Since

QEMU needs to emulate MMU behavior for each memory

access in system mode, it involves about 20 host instructions

for each translated memory instruction on average. This shows

that the address translation incurs very high overheads, and it

will be the focus for further optimization in our future work.

C. Impact of Coordination Optimizations

To understand the performance impact of each coordina-

tion optimization, we evaluate the cumulative performance

improvement after adding each optimization. The results are

shown in Figure 16.

In the figure, ‘Base’ marks the performance of the un-

optimized version as described in Section III-A. ‘+ Reduction’

marks the performance after adding the optimization to reduce

the number of host instructions in a coordination operation

as described in Section III-B. ‘+ Elimination’ marks the

performance after further adding the optimization that elim-

inates redundant coordinations as described in Section III-C.

‘+ Scheduling’ marks the performance after further applying

instruction scheduling as described in Section III-D. The

baseline is the performance of the unmodified QEMU 6.1.

As the data show, it achieves 1.22X speedup after the reduc-

tion optimization is applied. After adding the optimization that

eliminates redundant coordination operations, the cumulative

performance improvement is 1.30X. When all optimizations

are applied, we achieve 1.36X overall speedup.
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Fig. 16. Cumulative performance improvement after adding each proposed
optimization.

To further understand the performance impact of these three

optimizations, we also calculate the average number of host

instructions needed for coordination per guest instruction. It

is calculated by the following formula:

sync instr per guest ins =
sync num ∗ sync overhead

guest num

In the formula, sync num is the total number of coordination

operations, sync overhead is the average number of host

instructions used in a coordination operation, and guest num

is the total number of translated guest instructions. The results

are shown in Figure 17.

Because we can reduce the number of host instructions in a

coordination operation from 14 instructions to 3 instructions as

shown in Figure 8, the average number of host instructions for

coordination per guest instruction is reduced from 8.36 to 1.79.

After the elimination of redundant coordination operations, the

number of host instructions for coordination per guest instruc-

tion is further reduced to 1.33. When the instruction scheduling

is finally applied, that number is eventually dropped to 0.89.

D. Comparison to Native Execution

The slowdown factor of a system-level emulation compared

to the native execution of a program is an important factor in

designing an emulator. We collect such performance data for

both un-modified QEMU 6.1 and our rule-based optimized

version of QEMU 6.1. The data are shown in Figure 18.

Compared to QEMU 6.1, our rule-based optimized version

of QEMU 6.1 achieves an average slowdown of 13.83X while

QEMU 6.1 has an average of 18.73X slowdown.
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Fig. 17. Average number of host instructions per guest instruction for
coordination after three optimizations are applied.
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Fig. 18. Slowdown factors of the system-level emulation on un-modified
QEMU 6.1 and the fully-optimized rule-based QEMU 6.1 compared to the
native execution using SPEC CINT2006 (lower is better).

E. Performance on Real-World Applications

To better understand the performance of optimized rule-

based approach at the system level, we evaluate the perfor-

mance with several real-world applications. The real-world

applications consists of Memcached, Sqlite, FileIO, Untar and

CPU-prime. As the results in Figure 19 show, our design can

achieve an average of 1.15X speedup over QEMU 6.1. In these

applications, FileIO and Untar are IO-bound applications and

Memcached is a network application. Since a lot of execution

time is spent on IO or network, we can only achieve a speedup

of 1.08X, 1.09X and 1.13X, respectively.
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Fig. 19. Speedup of real-world applications on optimized rule-based QEMU
6.1 compared to un-modified QEMU 6.1.

V. RELATED WORK

DBT systems have attracted extensive research. Prior work

includes instruction translation and optimization [2]–[4], [13]–

[16], system-level translation [1], [6], [7], [17], memory-

access instruction optimization [5], [18], [19], indirect-branch

optimizations [20]–[23], translation of architecture-specific

instructions such as SIMD instructions [24]–[27], translation

of atomic instructions [28], [29], and more. In this paper, we

mainly focus on system-level DBT systems.

For system-level optimizations, [5] speeds up the memory

address translation using embedded shadow page tables to do

a direct mapping between a guest virtual address to its host

physical address. [30] proposes a parallel system-level DBT

emulator using a separate thread to optimize the translated

code. Qlet [31] is a cross-ISA system-level instrumentation

tool and several techniques is used to improve its performance.

COREMU [6] uses one QEMU instance to emulate a multi-

core system with a lightweight library for communication.

By leveraging multi-core platforms and the optimizations in

LLVM, HQEMU [10] proposed a parallel DBT system. The

kernel-level binary translation mechanism in [32] achieves a

near-native performance. [7], [8] translated binaries between

ARM and x86 by utilizing host hardware features. The work

in [17], [33], [34] takes advantage of hardware features to

support system-level binary translation. Captive [17] is a

retargetable system-level DBT hypervisor. It combines both

offline and online optimizations running in a virtual bare-metal

environment to deliver performance improvement.

Our work extends the rule-based DBT and applies it to

the system-level DBT. It focuses on improving the quality

of instruction translation, and can be combined with other

optimizations applied to system-level DBTs to further im-

prove performance, such as memory optimizations [5], paral-

lelism [6] and hardware feature-based optimizations [7], [8].

VI. CONCLUSION

The rule-based approach using an automatic learning pro-

cess to learn translation rules has shown to be effective in a

DBT such as QEMU at the user level. To apply this approach

to the system level, this paper presents a basic design to

coordinate CPU states embedded in the guest and the host

instructions when switching between the execution from the

code cache and the emulation in QEMU. We address the issues

critical to such a design and propose several optimization

strategies to reduce such coordination overhead. We also

implement a prototype based on QEMU 6.1 to demonstrate

the feasibility of such an approach. The experimental results

show that our design is quite efficient. Compared to QEMU

6.1, our fully optimized system can achieve an average of

1.36X speedup on SPEC CINT2006 and an average of 1.15X

on real-world applications.
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