

oneDNN Graph Compiler: A Hybrid Approach for
High-Performance Deep Learning Compilation

Jianhui Li
Intel, US

 jian.hui.li@intel.com

Yunfei Song
Intel, China

yunfei.song@intel.com

Xianhang Cheng
Intel, China

xianhang.cheng@intel.com

Zhennan Qin
Intel, China

 zhennan.qin@intel.com

Ciyong Chen
Intel, China

ciyong.chen@intel.com

Baihui Jin
Intel, China

baihui.jin@intel.com

Eric Lin
Intel, China

eric.lin@intel.com

Yijie Mei
Intel, China

yijie.mei@intel.com

Yifei Zhang
Intel, China

yifei.zhang@intel.com

Yan Zhang
Intel, China

yan3.zhang@intel.com

Dan Lavery
Intel, US

daniel.m.lavery@intel.com

Jingze Cui
Intel, China

jingze.cui@intel.com

Longsheng Du
Intel, China

longsheng.du@intel.com

Jason Ye
Intel, China

jason.y.ye@intel.com

Abstract—With the rapid development of deep learning models
and hardware support for dense computing, the deep learning
(DL) workload characteristics changed significantly from a few
hot spots on compute-intensive operations to a broad range of
operations scattered across the models. Accelerating a few
compute-intensive operations using the expert-tuned
implementation of primitives doesn’t fully exploit the
performance potential of AI hardware. Various efforts have been
made to compile a full deep neural network (DNN) graph. One of
the biggest challenges is to achieve high-performance tensor
compilation by generating expert-level performance code for the
dense compute-intensive operations and applying compilation
optimization at the scope of DNN computation graph across
multiple compute-intensive operations.

We present oneDNN Graph Compiler, a tensor compiler that
employs a hybrid approach of using techniques from both
compiler optimization and expert-tuned kernels for high-
performance code generation of the deep neural network graph.
oneDNN Graph Compiler addresses unique optimization
challenges in the deep learning domain, such as low-precision
computation, aggressive fusion of graph operations, optimization
for static tensor shapes and memory layout, constant weight
optimization, and memory buffer reuse. Experimental results
demonstrate significant performance gains over existing tensor
compiler and primitives library for performance-critical DNN
computation graphs and end-to-end models on Intel® Xeon®
Scalable Processors.

Index Terms—Deep Learning Compiler, Code Generation and
Optimization, High-Performance Library

I. INTRODUCTION

With the rapid development of AI applications, deep
learning software stacks and hardware are rapidly evolving.
Data scientists are continuously exploring new deep neural
network (DNN) models to improve the accuracy of the models
by increasing the model parameters, using larger training
datasets, and exploring innovative DNN structures and

operations. Deep learning frameworks, like TensorFlow [3] and
PyTorch [4], have been developed to support the development
and deployment of deep learning models. While supporting Data
scientists to develop new models, DL frameworks also need to
efficiently use hardware resources to meet the huge computing
needs of deep learning. Meanwhile, various types of hardware
support for deep learning have been introduced, including
adding matrix operation units on GPU and CPU, and hardware
accelerators dedicated to deep learning computation.

Deep learning (DL) frameworks provide a rich set of deep
neural network (DNN) operations for developers to describe a
DNN model and use primitives libraries by default to offload the
most performance-critical operations to CPU and GPU
[1][2][20]. Most of the execution time of DL applications is
spent on the DNN model. DL frameworks represent the DNN
models internally as a computation graph of DNN operations.
After performing high-level graph optimizations, the graph is
traditionally executed operation by operation. On top of their
own implementation of DNN ops, DL frameworks use third-
party primitives libraries to offload the most performance-
critical DNN operations.

Primitives library offers a simple and effective way to
offload deep learning computation. However, with the fast
evolution of AI software and hardware, the DL workload
characteristics have been shifted from a few hot spots of
concentrated compute-intensive operations to many scattered
DNN operations, and the percentage of memory-bound
operations is becoming significantly larger. Multiple sources
contribute to the increasing time percentage of memory-bound
operations. First, the deep neural networks used for natural
language processing [19] and recommendation systems [18]
have smaller input data and overall lower compute intensity
compared to computer vision models [22][23]. Second, instead
of supporting each innovative activation function with a
complex DNN operation, DL Frameworks tend to compose
multiple existing fine-grain operations, to maintain a balance of

scalability and usability. Lastly, hardware acceleration usually
focuses on accelerating the dense computation of low-precision
data types and relies on the software to optimize memory-bound
operations.

This performance characteristic shift drives the development
of low-level graph compilers in the deep learning domain, also
known as tensor compilers [5][6][7][10][15][17]. DL
frameworks like TensorFlow and PyTorch capture and optimize
users’ input DNN graph and lower it to a low-level DNN graph
with a reduced set of basic operations. The tensor compilers take
the low-level DNN graph as input and focus on generating
highly efficient code with optimization techniques specific to
deep learning. Tensor compilers view DNN operations as tensor
computation, internally represented as nested multi-level loops
with the innermost loop body processing each tensor element.
They use compiler loop transformation techniques to parallelize,
vectorize, reorder, and merge the nested loops. XLA [5] fuses
consecutive memory-intensive operations into one function and
generates the code as one kernel. Triton [6] provides a tile-based
programming model and focuses on compiling tile programs to
efficient GPU code.

It has been a hot research area on how to automatically
generate code for DNN computation graphs containing both
compute-intensive and memory-intensive operations and
achieve high-performance implementation. Tensor
Comprehensions [9] provided a high-level language describing
a DNN operation’s mathematics and a polyhedral JIT
compilation approach. Stripe [28] uses a Nested Polyhedral
Model to enable automatic code generation for DNN operations.
Various compiler techniques for loop parallelization and
transformation trying to reach performance parity with the
expert-tuned implementation have been explored using MLIR as
an internal representation [6] [14] [21], with the goal of trying
to reach performance parity with the expert-tuned
implementation. Due to the inherent complexity of nested loop
transformation, some tensor compiler researchers use
autotuning methods to search for an optimal solution in a large
search space [16] [25][27]. Performance library developers tend
to use analytical models or cost model based heuristics to
determine optimal tuning parameters for generating high-
performance primitives [12]. The tensor compiler is mainly used
in specific use cases where the expert-tuned primitives library
can’t offer the required performance and/or the users are willing
to spend extra resources to find a better solution, very often via
autotuning.

TVM [7] adopts Halide’s approach to separate compute and
schedule to represent DNN operations. The compute describes
the nested multi-level loop, and the schedule represents possible
transformations like loop tiling and reordering to find the best
implementation on a target device. The optimization includes
tensorization that maps instruction sequences or innermost loops
to hardware-specific matrix instructions. TVM has developed an
automated schedule optimizer that iteratively evaluates loop
schedule proposals until an optimal one is found. Both TVM and
oneDNN Graph Compiler take a DNN computation graph as
input, perform both graph-level and operator-level optimization,
and generate highly efficient low-level code for compute-

intensive operations and fusion with neighboring memory-
intensive operations.

oneDNN Graph Compiler is an open-source tensor compiler
that automates the code generation for a DNN computation
graph and is implemented as an embedded compiler component
of oneDNN performance library. The goal of providing
acceleration on top of existing deep learning frameworks and
compilers has driven the major design decisions about
optimizations and supporting IRs. In order to achieve the same
level of computing efficiency for compute-intensive operations
as primitives library implementation [1], oneDNN Graph
Compiler develops target-specific templates and microkernels to
generate expert-level kernels and fuse neighboring operations.
Since the hardware type is limited, we believe it is a reasonable
design choice that sacrifices some generality on kernel
algorithm description in exchange for more direct control to
achieve the best performance on a specific hardware device.

The contributions of the paper are the following:

 We propose a tensor compiler design with two level IR.
Graph IR supports graph transformation like low-precision
computation transformation, constant weigh preprocessing,
layout propagation, and fine-grain fusion region formation.
Tensor IR supports parallel-for loop generation for fine-
grain fusion, merging of multiple Fused OP to one parallel
loop for coarse-grain fusion, and memory buffer
optimization.

 We introduce a template-based lowering for compute-
intensive operations, which implements the best-known
algorithm learned from expert-tuned kernel. The template
uses microkernel and blocked layout and avoids lengthy
and difficult compiler transformation passes to generate
expert-level primitives.

 We introduce fused operation template to generate efficient
code for fine-grain fusion. The template provides multiple
anchor points for fusions so the compiler can choose the
best places and assemble a parallel-for loop merged with
loops representing neighboring fusible ops. It allows a
broad set of flexible fusions including reduction and
reordering operations without the complexity of parallel
loop merging at low-level IR using traditional compiler
techniques.

oneDNN Graph Compiler applies domain-specific expert
knowledge that was distilled from the expert-tuned kernel
development process to an automated compilation process and
achieves comparable performance [1][11][12][13]. It combines
compiler and kernel library techniques and focuses on domain-
specific optimization problems. With expert-tuned microkernels
and two levels of compiler IR, oneDNN Graph Compiler
addresses domain-specific optimization challenges, such as
generating efficient code with blocked data layouts specialized
for static tensor shapes, constant weight optimization,
aggressive fusion, and memory buffer reuse. On top of that, it
further explores more advanced optimization at the graph level,
such as optimizing the whole Multilayer Perception (MLP)
network construct containing multiple matrix multiplication
operations. Experimental results show that oneDNN Graph

Compiler delivers significant performance gains over primitive-
based optimization for performance-critical DNN computation
graph on CPU.

II. HIGH-LEVEL DESIGN

A few important design choices allow us to replicate the
performance of expert-tuned kernels and further attain superior
graph-level performance with a manageable development effort.
First, instead of lowering graph IR to a general nested loop
representation and applying advanced loop transformations
using compiler techniques, we use templates to mechanically
generate code for compute intensive kernels and fusion with
neighbor memory intensive operations. Second, instead of using
multiple level IRs and gradual lowering, we choose two level
IRs: Graph IR, and Tensor IR. Graph IR keeps OP semantics
and supports graph optimizations, and Tensor IR abstracts
hardware targets and supports low level optimization. Third, we
use the microkernel to hide implementation details of the best-
performant matrix instruction sequence. The templates and
microkernel inherit the algorithm and implementation from the
expert-tune kernel, and Graph and Tensor IR support graph-
level optimization and potential reuse for other hardware targets.

Fig 1. provides a high-level view of oneDNN Graph
Compiler design. The input DNN computation graph is
internally represented as Graph IR. The Graph IR optimization
module performs a number of transformations that optimize and
group the computation graph as a sequence of fused operations.
Graph IR is further lowered to Tensor IR. The Tensor IR doesn’t
preserve DNN operation semantics and is close to the C program
semantics. The data structure it operates on is multidimensional
arrays, representing tensor buffers in physical memory. Tensor
IR is then further lowered to LLVM IR and intrinsic calls to
Microkernels.

Using templates and microkernels greatly simplifies the
compiler design. Just like implementing high-performance
primitives using C language, the templates implement the best-
known algorithm and can be instantiated with parameters and
lowered to Tensor IR-based high-performance primitives. Since
oneDNN Graph Compiler also uses templates to support fusing
with neighboring operations, it doesn’t require any sophisticated
loop transformation and supporting loop IRs like MLIR Affine
and Linalg dialects. Besides, by using microkernels, oneDNN
Graph Compiler avoids developing low-level optimization
techniques to generate efficient code at the instruction level.

Graph IR increases the optimization scope from individual
primitives to a larger subgraph with multiple compute-intensive
operations. As Graph IR retains the DNN OP semantics, most
domain-specific optimizations are done at this level. The DNN
OP semantics are implemented by the templates, which directly
guide the decisions of parallel task decomposition, loop
scheduling and tiling, tensor memory layout, and how to fuse
with neighbor operations. Graph IR uses graph, logical tensor,
and OP to describe a computation graph. A graph contains a set
of OPs and logical tensors. Each OP represents an operation in
a computation graph. A logical tensor represents the tensor’s
metadata, like the element’s data type, shape, and memory
layout. OP has kind, category, attributes, and logical tensors for
inputs and outputs.

Graph IR optimization module first decomposes complex
OPs into basic DNN OPs. The complex DNN OPs are OPs with
complex semantics which could be composed of simple
fundamental operations like addition and multiplication. They

are introduced by DL frameworks to support high-level DNN
OP semantics for ease of programming, such as batchnorm,
quantize, gelu, and many activation operations. The basic DNN
OPs are categorized to be either Tunable OP or Fusible OP.
Tunable OPs describe DNN operations that use tunable
parameters to instantiate a pre-defined template to generate the
best-performing code. The examples include compute-intensive
operations like matmul. Fusible OP refers to operations that can
be fused to Tunable OPs, such as element-wise operations,
broadcast, reduction, and data movement operations.

The decomposition of complex DNN operations simplifies
the Graph IR optimization module so it only needs to handle
basic DNN operations. Besides the general compiler
optimizations like common subexpression elimination (CSE),
dead code elimination, and constant folding, it includes domain-
specific optimizations like low-precision conversion, tensor
memory layout propagation, constant weight preprocessing, and
fusion. The fusion optimization pass decides whether it is
profitable to fuse two operations and keeps fusing OPs to form
a subgraph, which is represented as a Fused OP. The Graph IR
is transformed into a graph of Fused OPs and then lowered into
Tensor IR.

Tensor IR supports mechanically lowering Fused OP to
simple loops, without complex nested loop analysis and
transformation. Tensor IR optimization mainly focuses on
tensor buffer optimization and supports low-level code
generation. Just like the C program, Tensor IR supports
function, statement, expression, and intrinsic functions. The
Tensor IR module, lowered from a Graph IR graph, contains
multiple functions, each of which represents a lowered Fused
OP. The Tensor IR module has an entry function that contains a
sequence of calls to other functions lowered from Fused OPs. A
Tensor IR function contains multiple statements build on
expressions, which operate on constants, variables, and tensors.
Constants and variables represent individual data elements, used
to represent scalar data like loop index, tensor shape, address,
and offset to tensor buffer. Tensors represent multi-dimension
arrays backed by a data buffer. The intrinsic function is used to
represent a microkernel, which is carefully hand-tuned and
fulfills a subtask of a DNN OP with data in the fastest cache on
a single CPU core.

 Fig. 1. oneDNN Graph Compiler IR and Optimization

III. MICROKERNEL-BASED TEMPLATE FOR TUNABLE OP

LOWERING

Automating the high-performance code generation for
Tunable OPs is the foundation of a tensor compiler. oneDNN
Graph Compiler took an approach inherited from the
performance library development, which first creates the code
templates for a given Tunable OP and then instantiates it with
parameters decided by a heuristic. The parameters are decided
based on the input data tensor shape and hardware sizes of the
microarchitecture.

The template shown in Fig 2. is for a matmul op that does
matrix multiplication over A[M, K] and B[K, N] and produces
C[M, N]. The template is applied to a common deep learning
use case where the computation uses multiple cores, and the size
of input and output tensor fits within the cache system. The outer
parallel loops divide the kernel into multiple subtasks for multi-
cores. Each subtask is assigned to one single core, named single-
core kernel, which is represented by the inner loops which call a
microkernel in the innermost loop body.

The microkernel and the single-core kernel operate on a
tensor slice that represents a subset of tensor elements. For
example, the original tensor is represented as A[0:M, 0:N],
where the subscription represents starting offset and size for
each dimension. The tensor slice is represented as A[0:MB,
0:NB], where MB and NB refer to the tile size of the tensor slice
along m and n dimensions. A submatrix is a special case of a 2-
dimension tensor slice. In the template above, the microkernel
produces a small submatrix C[0:MB, 0:NB], and the single-core
kernel outputs a larger submatrix C[0:MSN, 0:NSN].

The microkernel is an important element for the oneDNN
Graph Compiler to achieve comparable performance to expert-
tuned primitives. oneDNN Graph Compiler uses the
microkernel named batch-reduce GEMM [8][24]. The
microkernel has two inputs, both representing a batch of 2D
matrices. It first applies matrix multiplication with each batch
element to produce a batch of immediate 2D matrices and then
sums them to a final 2D matrix output. This interface can be used
for many variants of matmul and convolution op in both

inference and training use cases and was adopted by both
oneDNN primitives and oneDNN Graph Compiler.

The microkernel is fine-tuned to maximize the compute
efficiency by fully utilizing the compute function unit and the
high bandwidth provided by registers and the L1 cache. It
abstracts the ISA difference so oneDNN Graph Compiler doesn't
need to deal with different vector or matrix instructions provided
by different CPUs. However, the oneDNN Graph Compiler
needs to choose the input submatrix sizes for the microkernel so
that they are usually multiples of register sizes used by the vector
and matrix function units. Also, it needs to choose the batch size
for the microkernel so that the whole input and output
submatrices fit within the L1 cache. To further streamline the
cache access, the input and output tensors are blocked. To
simplify the implementation, the input and output tensors are
blocked using the submatrix sizes [MB, NB, KB]. So, each
microkernel accesses a contiguous memory buffer.

The parameters for lowering a matmul op refer to the
variable values in the template above: MPN, NPN, MB, NB,
KB, BS, and ordering of loops indexed by msi, ksi, and nsi. The
other parameters can be derived from the parameters above.
oneDNN Graph Compiler uses an expert-tuned heuristic to
decide these parameters. For a given output matrix size, it first
proposes single-core kernel size options, a set of [MPN, NPN],
which can use all cores with good load balance. It further
proposes microkernel size options, a set of [MB, NB, KB, BS],
which ensure good microkernel performance. Then the heuristic
picks a pair of these sizes, which has the best overall kernel
performance for the entire system with all cores. It iteratively
searches for the best parameters, based on a cost model which
considers multi-core load balancing and single-core kernel
efficiency. Heuristic also reports the loop ordering of the inner
loops which it assumes when computing the single-core kernel
efficiency during the search process.

oneDNN Graph Compiler developed multiple templates for
different uses. One Tunable OP can have multiple templates
depending on the use cases. For example, for inference cases,
sometimes the use case only processes one data sample with
multiple cores so that the template may have to apply “k-slicing”
to extract additional parallelism from the reduction axis.

m n k

Index of single-core kernel within multi-core kernel mpi npi kpi

Number of single-core kernels within multi-core kernel MPN NPN KPN

Index of microkernel within single-core kernel msi nsi ksi

Number of microkernel within single-core kernel MSN NSN KSN/BS

Index of microkernel within multi-core kernel mpsi npsi kpsi

Number of microkernel within multi-core kernel MPSN NPSN KPSN/BS

Tensor size M N K

Tensor block size MB NB KB

Tensor slice size accessed by Microkernel size (batch
size = BS)

MB NB KB * BS

Tensor slice size accessed by single-core kernel MSBN = MB * MSN NSBN = NB * NSN KSBN = KB * KSN

Tensor slice size accessed by multi-core kernel M = MB * MSN * MPN
= MB * MPSN

N = NB * NSN * NPN
= NB * NPSN

K = KB *KSN * KPN
= KB * KPSN

Parallel loop mpi = 0, MPN, 1 {
Parallel loop npi = 0, NPN, 1 {

Loop msi = 0, MSN, 1 {
mpsi = mpi * M/MPN + msi;
C’[0:NSN, 0:MB, 0:NB] = 0;
Loop ksi = 0, KSN, BS {

Loop nsi = 0, NSN, 1 {
npsi = npi*N/NPN + nsi;
A_addr[0..BS] = &A[mpsi:1, ksi:0..BS, 0:MB, 0:KB];
B_addr[0..BS] = &B[ksi:0..BS, npsi:1, 0:NB, 0:KB];

C’[npsi:1,0:MB, 0:NB] += Batch_reduce_gemm
(A_addr[0..BS], B_addr[0..BS],Batch = BS);

}
}
C[mpsi:1, npi:NSN, 0:MB, 0:NB] = C’[0:NSN, 0:MB, 0:NB];

}
}

}

single-core
kernel

micro
kernel

multi-core
kernel

Tensor is described with a Tensor name followed by index and size for each dimension. Tensor A[0:M, 0:K] refers to 2 dimensions tensor starting from the position [0,0] with size
[M, K]. A[0:MB, 0:KB] refers to a tensor slice containing a subset of A tensor elements, starting from position 0 to MB-1 along the m dimension, and 0 to NB-1 along the n
dimension. The pseudo-code uses a blocked layout for A, B, and C. C[0:MPSN, 0:NPSN, 0:MB, 0:NB] denotes the full C tensor C[0:M, 0:N] reordered with a blocked layout. C[mps:1,
np:NSN, 0:MB, 0:NB] denotes a tensor slice which “slice” the C tensor in the first 2 dimensions starting from position “mps” and “np” with size “1” and “NSN”. A_addr[0..BS]
denotes an array with BS elements from A_addr[0] to A_addr[BS-1]. A[mps:1, ks:0..BS, 0:MB, 0:KB] denotes an array of BS tensor slices from A[mps:1, ks:0, 0:MB, 0:KB] to
A[mps:1, ks:BS-1, 0:MB, 0:KB].

Fig. 2. Microkernel based template for Tunable OP

IV. TEMPLATE WITH ANCHORS FOR FUSED OP LOWERING

oneDNN Graph Compiler combines a Tunable op with
multiple adjacent Fusible ops to a Fused op and lowers it to a
nested loop using the Fused OP template. The template contains
placeholders, known as anchors, at the beginning and the end of
each loop level for the input and output tensors. The Graph IR
fusion optimization decides whether it is profitable to fuse a
Fusible op to a Tunable op and which anchor point is assigned
to the Fusible op. The Fused OP lowering pass retrieves anchors
for Fusible ops and directly inserts its corresponding Tensor IR
at the anchor.

Fig. 3 illustrates the anchors within a template and the
associated tensor slices for each anchor.
The anchors preceding the microkernel are referred to as pre-op
anchors, while those following the microkernel are termed post-
op anchors. The right table in Fig. 3 shows the tensor slice
working set size for each anchor point which describes the
memory size accessed by the fused operation at the anchor point
on a single core. It also shows the formula to compute how many
times the fused op is invoked within a single-core kernel and
how many total tensor element memory accesses are needed for
each anchor point. The concrete number can be deduced when
the template is instantiated with the parameters for a Tunable op.

The fusion optimization uses a heuristic to decide which
anchor to choose. The heuristic evaluates the cost of a single-
core kernel between all possible anchors and the option of not
fusing, and then it chooses the one with the lowest estimated
cost. The commit anchors inside the innermost loop work on the
smallest tensor slice, which provides a low per-access cost as the
data is in the fastest cache. So the post-op usually finds the first
anchor point toward the innermost loop the best choice.
However, for pre-op, the Fused OP lowering considers both the
computation and temporary buffer size introduced by pre-op
fusion. The anchors at inner loop bodies require smaller

temporary buffer size but may have redundant computations
which can be avoided by careful selection of anchor points.

 Fig. 4 shows a pseudo-code for fusing data layout reorder
and ReLU (rectified linear unit) ops to an instantiated GEMM
op. The first reorder op is inserted as pre-op fusion at anchor #4,
which converts from a plain layout tensor A to a blocked layout
A’ with blocking factors MB and KB. The fused reorder op
works on the tensor slice of A’, denoted as A’[mpsi:1, ksi:BS,
0:MB, 0:KB], which starts from the position A’[mpsi, ksi, 0, 0]
and has a slice with the size of [BS, MB, KB]. It also fuses two
post-ops, a ReLU op followed by a reorder op. Both operations
are inserted at the post-op anchor #1. The reorder op changes the
memory layout of the C tensor from the blocking factor of MB
and NB to MB2 and NB2.

Fig. 3. Fused OP template with anchors and cost table

Anchor Tensor slice’s working
set size per core

Access times
per core

Total memory access per
core

pre_op_anchor#1 A’ [MSN, KSN, MB, KB]
B’ [KSN,NPSN, NB, KB]

1 MSN* MB * KSN * KB
NPSN * NB * KSN * KB

pre_op_anchor#2 A’ [MSN, KSN, MB, KB]
B’ [KSN,NSN, NB, KB]

1 MSN* MB * KSN * KB
NSN * NB * KSN * KB

pre_op_anchor#3 A’ [KSN, MB, KB]
B’ [KSN, NSN, NB, KB]

MSN MSN * MB * KSN * KB
MSN * NSN * NB * KSN * KB

pre_op_anchor#4 A’ [BS, MB, KB]
B’ [BS, NSN, NB, KB]

MSN *
KSN/BS

MSN * MB * KSN * KB
MSN * NSN * NB * KSN * KB

pre_op_anchor#5 A’ [BS, MB, KB]
B’ [BS, KB, NB]

MSN * NSN
* KSN/ BS

MSN * MB * KSN * KB *NSN
MSN * NSN * NB * KSN * KB

post_op_anchor#1 C[MB, NSBN] MSN MSBN*NSBN

post_op_anchor#2 C[MSBN, NSBN] 1 MSBN*NSBN

post_op_anchor#3 C[MSBN, N] 1 MSBN * N

Parallel loop mpi = 0, MPN, 1 {
pre_op_anchor#1 : A[mpi*MSN:MSN, 0:KSN, 0:MB, 0:KB];
pre_op_anchor#1 : B[0:KSN, 0:NPSN, 0:NB, 0:KB];
Parallel loop npi = 0, NPN, 1 {

pre_op_anchor#2 : A[mpi*MSN:MSN, 0:KSN, 0:MB, 0:KB];
pre_op_anchor#2 : B[0:KSN,npi*NSN:NSN, 0:NB, 0:KB];
Loop msi = 0, MSN, 1 {

mpsi = mpi * M/MPN + msi;
pre_op_anchor#3 : A[mpsi:1, 0:KSN, 0:MB, 0:KB];
pre_op_anchor#3 : B[0:KSN,npi*NSN:NSN, 0:NB, 0:KB];
C’[0:NSN, 0:MB, 0:NB] = 0;
Loop ksi = 0, KSN, BS {

pre_op_anchor#4 : A[mpsi:1, ksi:BS, 0:MB, 0:KB];
pre_op_anchor#4 : B[ksi:BS, npi*NSN:NSN, 0:NB, 0:KB];
Loop nsi = 0, NSN, 1 {

npsi = npi*N/NPN + nsi;
pre_op_anchor#5 : A[mpsi:1, ksi:BS, 0:MB, 0:KB];
pre_op_anchor#5 : B[ksi:BS, npsi:1, 0:NB, 0:KB];
A_addr[0..BS] = &A[mpsi:1, ksi: 0..BS, 0:MB, 0:KB];
B_addr[0..BS] = &B[ksi:0..BS, npsi:1, 0:NB, 0:KB];
C’[nsi:1,0:MB, 0:NB] += Batch_reduce_gemm

(A_addr[0..BS], B_addr[0..BS],Batch = BS);
}

}
C[mpsi:1, npi:NSN, 0:MB, 0:NB] = C’[0:NSN, 0:MB, 0:NB];

post_op_anchor#1 : C[mpsi:1, npi:NSN, 0:MB, 0:NB];
}

post_op_anchor#2 : C[mpi*MSN:MSN, npi*NSN:NSN, 0:MB, 0:NB];
}
post_op_anchor#3 : C[mpi*MSN:MSN, 0:NPSN, 0:MB, 0:NB];

}

The template has predefined anchors as placeholders to fuse pre-ops and
post-ops. Each anchor point is associated with a tensor slice for the pre-ops
and post-ops to work on. Once the blocking parameters are decided, the
tensor slice size and access times can be deduced to support the fusion
decision. The fusion optimization pass chooses anchor points for groups of
pre-ops and post-ops according to the estimated computation cost.

Parallel loop mp i= 0, MPN, 1 {
Parallel loop npi = 0, NPN, 1 {

Loop msi = 0, MSN, 1 {
mpsi = mpi * M/MPN + ms;
C’[0:NSN, 0:MB, 0:NB] = 0;
Loop ksi = 0, KSN, BS {

Reorder(A, [1, 1], A’[mpsi:1, ksi:BS, 0:MB, 0:KB],
[MB, KB], from=[mpsi, ksi]);

Loop nsi = 0, NSN, 1 {
npsi = npi * N/NPN + nsi;
A’_addr[0:BS] = &A’[mpsi, ksi:BS, 0, 0];
B_addr[0:BS] = &B[ksi:BS, npsi, 0, 0];
C’[nsi:1,0:MB, 0:NB] += Batch_reduce_gemm

(A’_addr[0:BS], B_addr[0:BS],Batch = BS);
}

}
C’’[mpsi:1, npsi:NSN, 0:MB, 0:NB] = C’[0:NSN, 0:MB, 0:NB];
C’’’[mpsi:1, npi:NSN, 0:MB, 0:NB]) =

Relu(C’’[mpsi:1, npi:NSN, 0:MB, 0:NB]);
Reorder(C’’’[mpsi:1, npi:NSN, 0:MB, 0:NB], [MB, NB],

C, [MB2, NB2], to=[mpsi, npi]);
}

}
}

Fig. 4. Pseudo code for Fused OP

V. GRAPH IR OPTIMIZATION

 oneDNN Graph Compiler Graph IR optimization
transforms the graph to use low-precision computation and
preprocessed constant tensors, and then prepares the graph as a
sequence of Fused ops for optimized code generation. The
Graph IR is first decomposed into a graph of basic DNN
operations to simplify the optimization passes, and clustered to
form fine-grain Fused ops, and then lowered to Tensor IR using
the Fused OP templates.

Fig. 5 illustrates these optimization passes with a quantized
multilayer perceptron (MLP) example. The input DNN
quantized MLP in Fig5.1 contains two matmul ops, and the
activation ops are omitted for simple illustration. Each FP32
matmul op is surrounded by two dequantize ops and a quantize
op, denoted by DQ and Q. The dequantize converts an Int8 data
type tensor to FP32 and the quantize op does the reverse. It uses
the asymmetric quantization scheme, so the first dequantize op
scales A input tensor by a_s and then offset by a_z to adjust the
zero point, and the other dequantize op scales the weight matrix
B with b_s. The optimized DNN Graph in Fig5.2 shows the
effect of low-precision conversion optimization. It first breaks
down the quantize and dequantize op to be simple addition and
multiply ops and transform the graph to be a mathematically
equivalent form that uses Int8 matmul op. The low-precision
conversion brings significant speedup as it reduces both the
computation and memory bandwidth required to compute a deep
learning model.

Fig 5.2 also illustrates the effects of constant weight
preprocessing optimization, which recognizes the constant
weight tensor and its related computation and builds a special
initial function that preprocesses the constant weight and reuses
the preprocessed weight at the runtime. For the static
quantization inference use case, the weight tensors and
quantization parameters are constant, so the computation over
constant weight, scale, and zero point can be avoided completely
at runtime. As the weight data buffer might not be available
during the compilation, so the compiled code needs to generate

an function to preprocess the constant weight at the execution
time when it first arrives. The quantization parameters, a_s, b_s,
c_s, and c_z are constants passed as dequantize op’s attribute,
which can be folded to the generate code when lowering to
Tensor IR.

The fine-grain fusion optimization clusters the graph to fine-
grain graph regions and encapsulates them as Fused ops. It first
considers the immediate succeeding ops of the Tunable op as
post-op candidates and keeps growing the Fused OP region. The
post-op could be elementwise, broadcast, reduction, and reorder
ops, and multiple post-ops may be added to a Fused OP region.
For example, the activation and normalization ops after matmul
op are broken down to basic ops and added to the Fused OP
region. The region stops growing when a limit is reached, say,
the post-op sequence can only have one reorder, one reduction,
certain number of total ops, or total size of additional inputs.
Then it looks for preceding ops as pre-op candidates. The pre-
op fusion only supports limited cases like reorder and transpose
operations and only be used at the entry point of the graph. For
a Fusible op between two Tunable ops, it is typically more
profitable to fuse as post-op of the first Tunable op, so the fusion
optimization first adds post-op and then pre-op to Fused OP
region.

The layout propagation optimization exploits extra
performance benefits cross Tunable ops by allowing Tunable op
to use the most desired blocked layout. As Tunable op relies on
the blocked layout to achieve the best performance on the CPU,
very often the best-performed blocked layout might be different
between two Tunable ops. It allows the Tunable ops within a
graph to use a blocked layout but keep the graph input/output
tensor as a plain layout. It first inserts reorder operations at the
graph boundary to ensure the entry and exit points using the
plain layout. Then it iterates the DNN computation graph and
inserts reorder operation between two Tunable ops if they use
different blocked layouts. It first queries a Tunable op for its
desired blocked layouts, if none of the desired blocked layouts
is consistent with the current layout, it inserts a reorder op before
the Tunable op. Fig. 5.3 illustrates the fine-grain fusion region

Fig. 5. Graph IR optimization

and newly inserted reordered ops at the boundary of graph and
internally between Tunable ops. The reorder op between two
Tunable ops is added to the end of the Fusion OP region of the
previous Tunable op. The reorder for the input constant weights
is converted to a preprocess weight, named prepacked weight,
using the constant weight preprocessing optimization.

The coarse-grain optimization happens at the final stage of
optimizations, where the graph is converted to a list of Fused ops
in topological order and lowered to a sequence of parallel-for. It
merges multiple parallel-for loops lowered form Fused ops
together to one parallel-for loop. The mechanism of merging of
multiple parallel-for is supported at the Tensor IR level, but the
merging decision is done at the Graph IR level as part of
lowering. The coarse-grain optimization greatly improves data
locality across two Fused ops and can be applied to many graph
patterns. For example, as the two matmul ops in MLP use the
same batch, the lowered two nested parallel loops have the same
outermost loop iterating the batch dimension, which can be
further merged as one parallel loop. When the heuristic chooses
the parameters for a Fused op, it tries to choose the outermost
loop blocking factor best aligned with core numbers, so the
instantiated fused op likely has the same blocking factors as its
neighbor. When the coarse-grain fusion optimization decides to
merge two fused ops, it marks the two nested loops in Tensor IR
as “mergeable” during the lowering process. Then Tensor IR
merges two nested loops mechanically as guided by the Graph
IR optimizations.

VI. TENSOR IR OPTIMIZATION

Tensor IR is the lowest intermediate representation in the
oneDNN Graph Compiler. At the Tensor IR level, the DNN
computation graph is lowered to a C-like program, which
includes function, statement, expression, and intrinsic functions.
The Fused op is lowered as a function, which contains nested
loops. A complex statement describes a structure like a loop, and
a simple statement does computation. Var and Tensor represent
scalar variables and multi-dimension arrays respectively.

Tensor IR supports Graph IR optimization by merging loops
as instructed by Graph IR. Fig. 6 shows the example of Tensor
IR for the pseudo-code in Fig. 4. In the Tensor IR, the
computation on the tensor slices is represented by either a nested
loop or a function call to the microkernel. The inserted pre-op
and post-op are lowered to nested loops. The two post-op, ReLU
and reorder ops, are merged as one nested loop using the hint
passed by Graph IR.

The main optimizations on Tensor IR are tensor size
optimization and memory buffer optimization. Tensor size
optimization tries to reduce the tensor size of each temporary
tensor. The temporary tensors are introduced in the pre-op and
post-op fusion process. The temporary tensor was initially
introduced as a full-size tensor in the lowering process and then
reduced by the tensor size optimization. In the example code of
Fig. 6, the post-ops are fused into one loop nest in the Tensor IR.
Since the accesses of the temporary tensors, C’’ and C’’’, are
local to the innermost loop body, the temporary tensor could be
replaced by a scalar variable for a smaller memory footprint and
better cache locality. The temporary tensor introduced by pre-op
fusion can be reduced similarly by analyzing the scope of the
tensor usage. For example, A’[MSN, BS, MB, KB] could be

reduced to A’ [BS, NB, KB], since the producer of A’ and
consume are within the “msi” loop, so there is no need to save
the result along the 2nd dimension of A’.

After tensor size optimization, the multiple-dimension
tensor representation is flattened to a one-dimensional array to
represent the memory buffer. The memory buffer optimization
tries to reuse the memory buffer of temporary tensors to have a
minimum overall temporary buffer size for the compiled code
and tries to improve the locality of the temporary buffer use.
The main target of memory buffer optimization is to reuse the
memory buffer created for the temporary tensors between fused
op. In the inference use case, the output tensor is only consumed
by the next fused op, and so the buffer could be reclaimed once
the next fused op completed execution. Since the input tensor
size is known to the compilation process, the internal memory
buffer usage can be calculated at the compile time and optimized
to improve efficiency.

Memory buffer optimization uses life span analysis like
traditional compiler analysis for register allocation based on the
def-use chain. The algorithm considers both reusing the hot
memory and reducing the overall peak memory. At each point,
when an intermediate buffer is needed, it tries to reuse the free
intermediate buffers, which are already allocated but not used
anymore. Among multiple choices of reusable memory buffers,
it chooses the one that was used most recently, so likely the data
is still in the cache system.

Var Const MPN, NPN, MSN, NSN, BS, KSN, MB, NB;
Tensor FP32[M, K] A;
Tensor FP32[M/MB, K/KB, MB, KB] A';
Tensor FP32[K/KB, N/NB, NB, KB] B;
Tensor FP32[NSN, MB, NB] C';
Tensor FP32[M/MB,N/NB, MB, NB] C'', C''';
Tensor FP32[M/MB2, N/NB2, MB2, NB2] C;
Var int* A_addr[BS], B_addr[BS];
Var Index mp, np, ms, ks, ns, nps, mps;
Parallel loop mp i= 0, MPN, 1 {
 Parallel loop npi = 0, NPN, 1 {
 Loop msi = 0, MSN, 1 {
 mpsi = mpi * M/MPN + msi;
 Loop nsi = 0, NSN, 1 {
 Loop mbi = 0, MB, 1 {
 Loop nbi = 0, NB, 1 {
 C’[0:NSN, 0:MB, 0:NB] = 0;
 } } }
 Loop ksi = 0, KSN, BS {
 Loop bsi = 0, BS, 1 {
 ksbi = ksi * BS + bsi;
 Loop mbi = 0, NB, 1 {
 Loop kbi = 0, KB, 1 {
 A’[mpsi, ksbi, mbi, kbi]
 = A[mpsi*MB + mbi, ksbi*KB+kbi];
 } } }
 Loop nsi = 0, NSN, 1 {
 npsi = npi * N/NPN + nsi;
 Loop bsi = 0, BS, 1 {
 A’_addr[bsi] = &A’[mpsi, ksi, 0, 0];
 B_addr[bsi] = &B [ksi, npsi, 0, 0];
 }
 C'_addr = &C’[nsi,0, 0] ;
 Batch_reduce_gemm(A’_addr, B_addr,
 C'_addr, MB, NB, KB, Batch = BS);
 }
 } //end of loop ksi
 Loop nsi = 0, NSN, 1 {
 npsi = npi * N/NPN + nsi;
 Loop mbi = 0, MB, 1 {
 Loop nbi = 0, NB, 1 {
 C’’[mpsi, npsi, mbi, nbi] = C’[nsi, mbi, nbi];
 C’’’[mpsi, npsi, mbi, nbi]= max(C’’[mpsi, npsi, mbi, nbi], 0);
 C[(mpsi*MB+mbi)/MB2, (npsi*NB+nbi)/NB2,
 (mpsi*MB+mbi)%MB2, (npsi* NB+nbi)%NB2]
 = C’’’[mpsi, npsi, mbi, nbi];
 } } } // end of loop nsi
 } // end of loop msi
} } // end of parallel loop mpi, npi
 Fig. 6. Example of Tensor IR

VII. EXPERIMENTAL RESULTS

oneDNN Graph Compiler is built as an embedded
component of oneDNN library to accelerate the DNN
computation subgraphs. oneDNN is the industry-standard best-
performing library implementation and has been integrated into
multiple DL frameworks as the default performance library to
accelerate deep learning on the CPU. Besides primitives API,
oneDNN provides a Graph API, so that DL frameworks or graph
compilers can use it to accelerate the DNN computation
subgraphs. Achieving the best execution efficiency for target DL
workloads requires improvements from both DL frameworks
and oneDNN Graph Compiler. DL framework developers first
profile the execution and identify performance critical DNN
operations and subgraphs. For the cases where oneDNN Graph
Compiler provides performance benefits, DL framework passes
the subgraphs to oneDNN Graph for acceleration. oneDNN
Graph Compiler continuously enhances the templates,
microkernels, heuristics, and fusion capability for the new
subgraphs including adding operations and tuning for a broader
range of data shapes. The current oneDNN Graph Compiler
already provides well-implemented templates for widely used
operators like matmul and convolution which can provide good
performance for a wide range of shapes.

We choose BERT Large and DLRM, representing DNN
models for natural language processing and recommendation
systems, to demonstrate the performance benefit of oneDNN
Graph Compiler for the inference use case with both FP32 and
Int8 data types. There are two performance-critical DNN
computation subgraphs in these two DNN models. The
Multilayer Perceptron (MLP) contains multiple matmul ops
intermixed with activation ops like ReLU. The MLP subgraph
is the basic building block for many deep learning models. The
Multi-Head Attention (MHA) subgraph is the key element to
Transformer based deep learning models like Bert for natural
language processing. The MHA subgraph referred in this paper
focuses on the scaled dot-product attention portion of the whole
MHA graph, which contains two batch matmul ops and a
softmax as well as other binary ops between them.

Table 1 shows the problem sizes and data type we used for
performance evaluation. We select a wide range of batch sizes
and several representative data shapes for weights and input
tensors. The weight sizes for MLP are from the MLPerf DLRM
model, and the sequence length and hidden size choices for
MHA are from Bert models. The Int8 quantization scheme uses
u8 asymmetric quantization for activation and per channel s8

symmetric quantization for weight. The input and output
matrices are in plain layouts. The performance data is collected
on an Intel® Xeon® Platinum 8358 processor with 32 cores.

We construct MLP and MHA tests according to Table 1 and
compare the performance of DNN computation subgraph with
TVM and oneDNN primitives using the best-known method. As
the input workloads are represented as graphs, we make sure to
apply all necessary graph transformations. For TVM, we
constructed a graph using Relay graph op and used an auto-
scheduler and performed autotune for the best result. TVM is
able to fuse memory-intensive operations to the matmul
operation. We also compare with oneDNN expert-tuned
primitives and post-op fusion implementation. oneDNN post-
op API supports fusing matmul op with ReLU in the MLP tests,
and matmul with division and addition ops in the MHA tests.
The tests use low-precision post-op fusion API with prepacked
and preprocessed compensated weight following best-known
practice. For oneDNN Graph Compiler, we use oneDNN Graph
API to construct the MLP and MHA test cases. For oneDNN
Graph Compiler, weight prepacking and compensated weight
preprocessing are done automatically without additional steps,
and there is no need to autotune.

We first compare the individual matmul operation
performance in the MLP tests between three implementations.
Instead of running each individual matmul operation separately,
our methodology is to run the matmul operations consecutively
as an MLP subgraph in the end-to-end DL model, since the
measurement of individual matmul operations does not correlate
to the performance in the real workloads. Running consecutive
matmul operations in the subgraph better emulates the cache
locality effects. We also use TVM auto-scheduler to tune the
matmul in the context of MLP to ensure the best TVM result.
We run oneDNN Graph Compiler with the coarse-grain fusion
disabled so that we can measure each operation separately.

The performance comparison result is presented as
execution speedup over TVM baseline in Fig. 7. For FP32
matmul, we observed that TVM outperforms oneDNN Graph
Compiler in 15 test cases, but its total execution time falls behind
oneDNN Graph Compiler by 1.4x. The 15 test cases have very
small computation sizes and account for less than 5% of the time
of total test cases, so these test cases are less performance critical
in the end-to-end DNN model execution. We identify two
reasons that the oneDNN Graph compiler falls behind TVM.
First, the last 5 test cases are GEMMV operations, which
involve significant overhead for oneDNN Graph Compiler to
pad the input matrix to match the minimum size required by the
microkernel. Second, the kernel built by oneDNN Graph
Compiler is always configured to use all available cores,

test name data type input batch size sequence length hidden size head numbers
MLP-1 Int8, FP32 32, 64, 128, 256, 512 N/A 13x512x256x128 N/A

MLP-2 Int8, FP32 32, 64, 128, 256, 512 N/A 479x1024x1024x512x256x1 N/A
MHA-1 Int8, FP32 32, 64, 128 128 768 8
MHA-2 Int8, FP32 32, 64, 128 128 768 12
MHA-3 Int8, FP32 32, 64, 128 384 1024 8

MHA-4 Int8, FP32 32, 64, 128 512 1024 16

TABLE I．WORKLOAD PARAMETERS

because allowing matmul kernel to use fewer threads brought a
negative performance impact when running end-to-end DNN
models. However, this triggers significant synchronization
overhead when each individual kernel is measured, especially
when the computation size is small. By tuning the number of
threads, we can reduce the gap to within 10% range of TVM
performance.

For Int8 matmul, we observed that oneDNN Graph Compiler
significantly outperforms TVM by 3.8x for the total test
execution time. Compared to oneDNN Graph Compiler’s 3.0x
speedup of Int8 matmul over FP32, TVM’s Int8 matmul
execution time only improves by 11% over FP32. It appears that
TVM’s auto-scheduler can’t find a good schedule to realize the
full performance benefit of Int8 computation. First, the Int8
matrix multiplication is mapped to Int8 VNNI instruction which
requires a special data layout reordering. In addition, it requires
sophisticated blocking since the Int8 data type reduces the
matrix data size by 4x, and fitting the data within L1 cache
makes a significant performance difference. We believe the
performance difference is mainly related to TVM
implementation; however, it is not straightforward to develop
and tune the baseline schedule so that auto-scheduler can search
for the best schedule. Compared to TVM’s schedule approach,
oneDNN Graph compiler’s template is closer to the generated
kernel code, so the developers have better control over what the
kernel looks like.

 oneDNN primitives significantly outperform TVM by 1.4x
for FP32 matmul test cases and 3.6x for Int8. The performance
gain over TVM is mainly due to the design choice of advanced
algorithm, microkernel, and tuned heuristics. oneDNN Graph
Compiler inherits these advantages so both have shown
significant speedup over TVM on individual matmul kernels.
oneDNN Graph compiler and oneDNN primitives performance
are at the same level on the matmul operations in general. For
the specific MLP tests and shapes, oneDNN Graph Compiler
performs 4% worse than primitives on FP32 and 6% better on
Int8 when comparing total execution time. We observe
performance differences for individual kernels and identified
three major reasons. First, oneDNN Graph compiler has the

layout propagation optimization which uses blocked layouts for
the intermediate tensors produced within the subgraph. oneDNN
primitives use the plain layout for these tensors. Second, due to
the MLP-1 tests’ execution time being relatively short, the total
API call overhead takes up to 10% of the execution time. The
API call overhead is reduced by about 3 times for oneDNN
Graph Compiler since the compiled code only needs to be called
once. These two reasons explain oneDNN Graph Compiler’s
performance gains on small kernels. Lastly, the performance
difference is also due to the different choices of parameters made
by heuristics and template algorithms.

Fig. 8 shows the performance speedup of oneDNN Graph
Compiler on MLP and MHA tests. The default configuration has
coarse-grain fusion, and we add an ablation study to understand
its benefit. The performance results show that oneDNN Graph
Compiler demonstrates an average of 2.4x speedup over TVM
on MLP and 6.2x on MHA. Coarse-grain fusion contributes to
an average performance gain of 1.2x on both MLP and MHA
tests. Most of MLP performance gain can be explained by the
kernel performance difference and coarse-grain fusion, MHA
has extra performance gain due to oneDNN Graph Compiler’s
fine-grain fusion optimization. TVM outperforms oneDNN
Graph Compiler for the first MLP_1 test, mainly due to that
TVM has better-performing kernels for this test.

Coarse-grain fusion accounts for 2.0x for Int8 tests and 3%x
for FP32 tests on MLP-1 test, but only 6% for Int8 and 2% for
FP32 on MLP-2 test. For MLP-1 Int8 test, coarse-grain fusion
is able to merge the outermost parallel loops, lowered from 3
matmul ops, into one parallel loop. The coarse-grain fusion
greatly reduces the synchronization overhead and permits the
activation data to be in the fastest cache for the next matmul op.
As the entire activation and weight tensor fit in the L2 cache, so
the coarse-grain fusion gives a much higher speed up for MLP-
1 Int8 tests. Other MLP tests also benefit from the coarse-grain
fusion but to a lesser extent, since coarse-grain fusion is not able
to merge all the loop nests due to the current heuristic limitation.

For the MHA subgraph, the 6.2x performance gain over
TVM is from individual kernel performance, fine-grain fusion,
and coarse-grain fusion. TVM doesn’t fuse the softmax op with

0

2

4

32,
13,
512

64,
13,
512

128,
13,
512

256,
13,
512

512,
13,
512

32,
512,
256

64,
512,
256

128,
512,
256

256,
512,
256

512,
512,
256

32,
256,
128

64,
256,
128

128,
256,
128

256,
256,
128

512,
256,
128

32,
479,
1024

64,
479,
1024

128,
479,
1024

256,
479,
1024

512,
479,
1024

32,
1024,
1024

64,
1024,
1024

128,
1024,
1024

256,
1024,
1024

512,
1024,
1024

32,
1024,
512

64,
1024,
512

128,
1024,
512

256,
1024,
512

512,
1024,
512

32,
512,
256

64,
512,
256

128,
512,
256

256,
512,
256

512,
512,
256

32,
256,

1

64,
256,

1

128,
256,

1

256,
256,

1

512,
256,

1

FP32 Matmul Kernel Performance Comparison (higher is better)

TVM oneDNN Primitives oneDNN Graph Compiler

0

2

4

6

32,
13,
512

64,
13,
512

128,
13,
512

256,
13,
512

512,
13,
512

32,
512,
256

64,
512,
256

128,
512,
256

256,
512,
256

512,
512,
256

32,
256,
128

64,
256,
128

128,
256,
128

256,
256,
128

512,
256,
128

32,
479,
1024

64,
479,
1024

128,
479,
1024

256,
479,
1024

512,
479,
1024

32,
1024,
1024

64,
1024,
1024

128,
1024,
1024

256,
1024,
1024

512,
1024,
1024

32,
1024,
512

64,
1024,
512

128,
1024,
512

256,
1024,
512

512,
1024,
512

32,
512,
256

64,
512,
256

128,
512,
256

256,
512,
256

512,
512,
256

32,
256,

1

64,
256,

1

128,
256,

1

256,
256,

1

512,
256,

1

Int8 Matmul Kernel Performance Comparison (higher is better)

TVM oneDNN Primitives oneDNN Graph Compiler

Fig. 7. Matmul kernel execution time comparison between oneDNN primitives, TVM, and oneDNN Graph Compiler

the preceding batch matmul op, while oneDNN Graph Compiler
decomposes softmax op to multiple basic operations and fuses
them to the preceding batch matmul ops with fine-grain fusion
Besides, oneDNN Graph Compiler uses a fast implementation
of softmax, removing a max reduction while not impacting Bert
model accuracy. On top of fine-grain fusion, coarse-grain fusion
merges the two nested loops lowered from two batch matmul
ops.

With coarse-grain fusion and fine-grain fusion optimization,
oneDNN Graph Compiler outperforms oneDNN post-op fusion
for both MLP and MHA tests. For MLP, oneDNN Graph
Compiler is on par with oneDNN post-op fusion for FP32 tests’
total execution time and demonstrates a 23% speedup for Int8.
The coarse-grain fusion helps to recover the kernel performance
difference in FP32 and contributes more to Int8 cases since the
small kernels account for a higher ratio in Int8 test cases. For
MHA, oneDNN Graph Compiler reduces the total execution
time by 2.3x on FP32 and 2.4x on Int8.

To demonstrate the end-to-end model performance, we
perform inference mode benchmarking for BERT Large and
DLRM. We test both Int8 and FP32 data type and tried various
batch sizes. We use Intel Extension for Pytorch [29], which
offloads MHA and MLP to oneDNN Graph Compiler through
oneDNN Graph API. We are not able to show end-to-end model
performance for TVM using the pure TVM compilation
approach due to the excessive auto-scheduler search time. Since
it takes multiple hours to search for optimal kernel
implementation for one subgraph, it is impractical for us to
conduct such an experiment at the DNN model level.

The performance result in Fig. 9 shows oneDNN Graph
Compiler improves BERT_Large throughput by an average of
1.12x and DLRM by 1.15x over oneDNN post-op fusion.
Particularly, oneDNN Graph compiler improves Int8
BERT_Large throughput by 1.18x for batch size 128 and Int8
DLRM by 1.21x for batch size 32.

VIII. CONCLUSION

We propose a hybrid approach to address the unique
challenges of deep learning compilation. It distills key
ingredients of expert-tuned primitives for compute-intensive
DNN operations like matrix multiplication and uses compiler
techniques on the DNN computation graph to fully exploit the
performance opportunity at the graph level. The template uses
an expert-developed microkernel, algorithm, and heuristic, to
ensure compiler-generated code achieves comparable
performance to expert-tuned primitives. The compiler uses two-
level intermediate representations at the level of both DNN op
graph and C program to support domain-specific optimizations
needed for deep learning computation, including low-precision,
constant weight, tensor memory layout, fine-grain fusion,
coarse-grain fusion, and tensor memory buffer reuse.
Performance evaluation shows significant performance gain
over existing tensor compiler and primitives library for
performance critical DNN computation graph and end-to-end
models in CPU inference usage.

Fig. 8. oneDNN Graph Compiler performance evaluation for MLP and MHA subgraph

Fig. 9. End-to-end model speedup by oneDNN Graph Compiler

1.07 1.20 1.07 1.17 1.19 1.21 1.14 1.06

0

0.5

1

1.5

Bert_large
(FP32,
BS=32)

Bert_large
(Int8,

BS=32)

Bert_large
(FP32,

BS=128)

Bert_large
(Int8,

BS=128)

DLRM
(FP32,
BS=32)

DLRM
(Int8,

BS=32)

DLRM
(FP32,

BS=512)

DLRM
(Int8,

BS=512)

End-to-end DNN models performance improvement
(higher is better)

oneDNN primitives + post_op oneDNN Graph Compiler

0.0

2.0

4.0

6.0 MLP peformance comparison FP32 & Int8 Inference on 32-core CPU
(higher is better)

TVM oneDNN Primitives + postops oneDNN Graph Compiler without coarse-grain fusion oneDNN Graph Compiler

0.0

4.0

8.0

12.0
MHA performance comparison FP32 & Int8 Inference on 32-core CPU

(higher is better)

TVM oneDNN Primitives + postops oneDNN Graph Compiler without coarse-grain fusion oneDNN Graph Compiler

REFERENCES

[1] oneDNN. https://github.com/oneapi-src/oneDNN

[2] cuDNN. https://developer.nvidia.com/cudnn

[3] Tensorflow. https://www.tensorflow.org/

[4] Pytorch. https://pytorch.org/

[5] XLA. https://www.tensorflow.org/xla.

[6] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, Oleksandr Zinenko. MLIR: A Compiler Infrastructure for the
End of Moore's Law. CoRR abs/2002.11054 (2020)

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated endto-
end optimizing compiler for deep learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 578–
594, Carlsbad, CA, 2018. USENIX Association.

[8] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst.
LIBXSMM: Accelerating small matrix multiplications by runtime code
generation. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’16,
pages 84:1–84:11, Piscataway, NJ, USA, 2016. IEEE Press.

[9] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR, abs/1802.04730,
2018.

[10] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen
Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, Fan Yang, Mao
Yang, Lidong Zhou, Asaf Cidon, Gennady Pekhimenko. ROLLER: Fast
and Efficient Tensor Compilation for Deep Learning. OSDI 2022: 233-
248

[11] Kazushige Goto, Robert A. van de Geijn. Anatomy of High-Performance
Matrix Multiplication, ACM Transactions on Mathematical Software
Volume 34, Issue 3, May 2008, Article No.: 12. pp 1–25

[12] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, Enrique S. Quintana-
Orti. Analytical Modeling Is Enough for High-Performance BLIS, ACM
Transactions on Mathematical Software Volume 43, Issue 2, June 2017,
Article No.: 12. pp 1–18

[13] Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R.
Hammond, and Field G. Van Zee. Anatomy of High-Performance Many-
Threaded Matrix Multiplication. IPDPS , page 1049-1059. IEEE
Computer Society, (2014)

[14] Navdeep Katel, Vivek Khandelwal, Uday Bondhugula. MLIR-based code
generation for GPU tensor cores. CC 2022: 117-128

[15] Philippe Tillet, H. T. Kung, David Cox. Triton: an intermediate language
and compiler for tiled neural network computations, MAPL 2019:
Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, June 2019, Pages 10–
19

[16] Sanket Tavarageri, Alexander Heinecke, Sasikanth Avancha, Bharat
Kaul, Gagandeep Goyal, Ramakrishna Upadrasta, PolyDL: Polyhedral
Optimizations for Creation of High Performance DL primitives, ACM
Transactions on Architecture and Code Optimization, Volume 18, Issue
1, March 2021, Article No.: 11, pp 1–27

[17] AITemplate: Faster, more flexible inference on GPUs using AITemplate,
a revolutionary new inference engine. https://ai.facebook.com/blog/gpu-
inference-engine-nvidia-amd-open-source/

[18] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. Deep learning recommendation model for personalization
and recommendation systems. CoRR, abs/1906.00091, 2019.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding. NAACL-HLT (1) 2019: 4171-4186

[20] Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel Lowell, Chao Liu,
Michael Melesse, Murali Nandhimandalam, Kamil Nasyrov, Ilya
Perminov, Tejash Shah, Vasilii Filippov, Jing Zhang, Jing Zhou,
Bragadeesh Natarajan, Mayank Daga. MIOpen: An Open Source Library
For Deep Learning Primitives. arXiv:1910.00078v1 [cs.LG]

[21] Nicolas Vasilache, Oleksandr Zinenko, Aart J.C. Bik, Mahesh
Ravishankar, Thomas Raoux, Alexander Belyaev, Matthias Springer,
Tobias Gysi, Diego Caballero, Stephan Herhut, Stella Laurenzo, Albert
Cohen. Composable and Modular Code Generation in MLIR: A
Structured and Retargetable Approach to Tensor Compiler Construction.
arXiv:2202.03293 [cs.PL]

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105

[23] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1492–1500, 2017.

[24] Evangelos Georganas, Dhiraj D. Kalamkar, Sasikanth Avancha,
Menachem Adelman, Cristina Anderson, Alexander Breuer, Narendra
Chaudhary, Abhisek Kundu, Vasimuddin Md, Sanchit Misra,
Ramanarayan Mohanty, Hans Pabst, Barukh Ziv, and Alexander
Heinecke. Tensor processing primitives: A programming abstraction for
efficiency and portability in deep learning workloads. CoRR,
abs/2104.05755, 2021.

[25] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
Joseph E. Gonzalez, Ion Stoica. Ansor: generating high-performance
tensor programs for deep learning. OSDI'20: Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation.
November 2020 Article No.: 49, Pages 863–879

[26] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong
Yang, Zhongzhi Luan, Depei Qian: The Deep Learning Compiler: A
Comprehensive Survey. CoRR abs/2002.03794 (2020)

[27] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau,
Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy. Learning to optimize
tensor programs. NIPS'18: Proceedings of the 32nd International
Conference on Neural Information Processing SystemsDecember 2018
Pages 3393–3404

[28] T. Zerrell and J. Bruestle, “Stripe: Tensor compilation via the nested
polyhedral model,” CoRR, vol. abs/1903.06498, 2019. [Online].
Available: http://arxiv.org/abs/1903.06498

[29] [29] Intel Extension for PyTorch, https://github.com/intel/intel-
extension-for-pytorch

