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Abstract—With the rapid development of deep learning models 
and hardware support for dense computing, the deep learning 
(DL) workload characteristics changed significantly from a few 
hot spots on compute-intensive operations to a broad range of 
operations scattered across the models. Accelerating a few 
compute-intensive operations using the expert-tuned 
implementation of primitives doesn’t fully exploit the 
performance potential of AI hardware. Various efforts have been 
made to compile a full deep neural network (DNN) graph. One of 
the biggest challenges is to achieve high-performance tensor 
compilation by generating expert-level performance code for the 
dense compute-intensive operations and applying compilation 
optimization at the scope of DNN computation graph across 
multiple compute-intensive operations. 

We present oneDNN Graph Compiler, a tensor compiler that 
employs a hybrid approach of using techniques from both 
compiler optimization and expert-tuned kernels for high-
performance code generation of the deep neural network graph. 
oneDNN Graph Compiler addresses unique optimization 
challenges in the deep learning domain, such as low-precision 
computation, aggressive fusion of graph operations, optimization 
for static tensor shapes and memory layout, constant weight 
optimization, and memory buffer reuse. Experimental results 
demonstrate significant performance gains over existing tensor 
compiler and primitives library for performance-critical DNN 
computation graphs and end-to-end models on Intel® Xeon® 
Scalable Processors.  

Index Terms—Deep Learning Compiler, Code Generation and 
Optimization, High-Performance Library 

I. INTRODUCTION 

With the rapid development of AI applications, deep 
learning software stacks and hardware are rapidly evolving. 
Data scientists are continuously exploring new deep neural 
network (DNN) models to improve the accuracy of the models 
by increasing the model parameters, using larger training 
datasets, and exploring innovative DNN structures and 

operations. Deep learning frameworks, like TensorFlow [3] and 
PyTorch [4], have been developed to support the development 
and deployment of deep learning models. While supporting Data 
scientists to develop new models, DL frameworks also need to 
efficiently use hardware resources to meet the huge computing 
needs of deep learning. Meanwhile, various types of hardware 
support for deep learning have been introduced, including 
adding matrix operation units on GPU and CPU, and hardware 
accelerators dedicated to deep learning computation.  

Deep learning (DL) frameworks provide a rich set of deep 
neural network (DNN) operations for developers to describe a 
DNN model and use primitives libraries by default to offload the 
most performance-critical operations to CPU and GPU 
[1][2][20]. Most of the execution time of DL applications is 
spent on the DNN model. DL frameworks represent the DNN 
models internally as a computation graph of DNN operations. 
After performing high-level graph optimizations, the graph is 
traditionally executed operation by operation. On top of their 
own implementation of DNN ops, DL frameworks use third-
party primitives libraries to offload the most performance-
critical DNN operations. 

Primitives library offers a simple and effective way to 
offload deep learning computation. However, with the fast 
evolution of AI software and hardware, the DL workload 
characteristics have been shifted from a few hot spots of 
concentrated compute-intensive operations to many scattered 
DNN operations, and the percentage of memory-bound 
operations is becoming significantly larger. Multiple sources 
contribute to the increasing time percentage of memory-bound 
operations. First, the deep neural networks used for natural 
language processing [19] and recommendation systems [18] 
have smaller input data and overall lower compute intensity 
compared to computer vision models [22][23]. Second, instead 
of supporting each innovative activation function with a 
complex DNN operation, DL Frameworks tend to compose 
multiple existing fine-grain operations, to maintain a balance of 

 



scalability and usability. Lastly, hardware acceleration usually 
focuses on accelerating the dense computation of low-precision 
data types and relies on the software to optimize memory-bound 
operations.  

This performance characteristic shift drives the development 
of low-level graph compilers in the deep learning domain, also 
known as tensor compilers [5][6][7][10][15][17]. DL 
frameworks like TensorFlow and PyTorch capture and optimize 
users’ input DNN graph and lower it to a low-level DNN graph 
with a reduced set of basic operations. The tensor compilers take 
the low-level DNN graph as input and focus on generating 
highly efficient code with optimization techniques specific to 
deep learning. Tensor compilers view DNN operations as tensor 
computation,  internally represented as nested multi-level loops 
with the innermost loop body processing each tensor element. 
They use compiler loop transformation techniques to parallelize, 
vectorize, reorder, and merge the nested loops. XLA [5] fuses 
consecutive memory-intensive operations into one function and 
generates the code as one kernel. Triton [6] provides a tile-based 
programming model and focuses on compiling tile programs to 
efficient GPU code.   

It has been a hot research area on how to automatically 
generate code for DNN computation graphs containing both 
compute-intensive and memory-intensive operations and 
achieve high-performance implementation. Tensor 
Comprehensions [9] provided a high-level language describing 
a DNN operation’s mathematics and a polyhedral JIT 
compilation approach. Stripe [28] uses a Nested Polyhedral 
Model to enable automatic code generation for DNN operations. 
Various compiler techniques for loop parallelization and 
transformation trying to reach performance parity with the 
expert-tuned implementation have been explored using MLIR as 
an internal representation [6] [14] [21], with the goal of trying 
to reach performance parity with the expert-tuned 
implementation. Due to the inherent complexity of nested loop 
transformation, some tensor compiler researchers use 
autotuning methods to search for an optimal solution in a large 
search space [16] [25][27]. Performance library developers tend 
to use analytical models or cost model based heuristics to 
determine optimal tuning parameters for generating high-
performance primitives [12]. The tensor compiler is mainly used 
in specific use cases where the expert-tuned primitives library 
can’t offer the required performance and/or the users are willing 
to spend extra resources to find a better solution, very often via 
autotuning. 

TVM [7] adopts Halide’s approach to separate compute and 
schedule to represent DNN operations. The compute describes 
the nested multi-level loop, and the schedule represents possible 
transformations like loop tiling and reordering to find the best 
implementation on a target device. The optimization includes 
tensorization that maps instruction sequences or innermost loops 
to hardware-specific matrix instructions. TVM has developed an 
automated schedule optimizer that iteratively evaluates loop 
schedule proposals until an optimal one is found. Both TVM and 
oneDNN Graph Compiler take a DNN computation graph as 
input, perform both graph-level and operator-level optimization, 
and generate highly efficient low-level code for compute-

intensive operations and fusion with neighboring memory-
intensive operations.   

oneDNN Graph Compiler is an open-source tensor compiler 
that automates the code generation for a DNN computation 
graph and is implemented as an embedded compiler component 
of oneDNN performance library. The goal of providing 
acceleration on top of existing deep learning frameworks and 
compilers has driven the major design decisions about 
optimizations and supporting IRs. In order to achieve the same 
level of computing efficiency for compute-intensive operations 
as primitives library implementation [1], oneDNN Graph 
Compiler develops target-specific templates and microkernels to 
generate expert-level kernels and fuse neighboring operations. 
Since the hardware type is limited, we believe it is a reasonable 
design choice that sacrifices some generality on kernel 
algorithm description in exchange for more direct control to 
achieve the best performance on a specific hardware device.  

The contributions of the paper are the following: 

 We propose a tensor compiler design with two level IR. 
Graph IR supports graph transformation like low-precision 
computation transformation, constant weigh preprocessing, 
layout propagation, and fine-grain fusion region formation. 
Tensor IR supports parallel-for loop generation for fine-
grain fusion, merging of multiple Fused OP to one parallel 
loop for coarse-grain fusion, and memory buffer 
optimization.  

 We introduce a template-based lowering for compute-
intensive operations, which implements the best-known 
algorithm learned from expert-tuned kernel. The template 
uses microkernel and blocked layout and avoids lengthy 
and difficult compiler transformation passes to generate 
expert-level primitives.  

 We introduce fused operation template to generate efficient 
code for fine-grain fusion. The template provides multiple 
anchor points for fusions so the compiler can choose the 
best places and assemble a parallel-for loop merged with 
loops representing neighboring fusible ops. It allows a 
broad set of flexible fusions including reduction and 
reordering operations without the complexity of parallel 
loop merging at low-level IR using traditional compiler 
techniques.  

oneDNN Graph Compiler applies domain-specific expert 
knowledge that was distilled from the expert-tuned kernel 
development process to an automated compilation process and 
achieves comparable performance   [1][11][12][13]. It combines 
compiler and kernel library techniques and focuses on domain-
specific optimization problems. With expert-tuned microkernels 
and two levels of compiler IR, oneDNN Graph Compiler 
addresses domain-specific optimization challenges, such as 
generating efficient code with blocked data layouts specialized 
for static tensor shapes, constant weight optimization, 
aggressive fusion, and memory buffer reuse. On top of that, it 
further explores more advanced optimization at the graph level, 
such as optimizing the whole Multilayer Perception (MLP) 
network construct containing multiple matrix multiplication 
operations. Experimental results show that oneDNN Graph 



Compiler delivers significant performance gains over primitive-
based optimization for performance-critical DNN computation 
graph on CPU. 

II. HIGH-LEVEL DESIGN 

A few important design choices allow us to replicate the 
performance of expert-tuned kernels and further attain superior 
graph-level performance with a manageable development effort. 
First, instead of lowering graph IR to a general nested loop 
representation and applying advanced loop transformations 
using compiler techniques, we use templates to mechanically 
generate code for compute intensive kernels and fusion with 
neighbor memory intensive operations. Second, instead of using 
multiple level IRs and gradual lowering, we choose two level 
IRs: Graph IR, and Tensor IR. Graph IR keeps OP semantics 
and supports graph optimizations, and Tensor IR abstracts 
hardware targets and supports low level optimization. Third, we 
use the microkernel to hide implementation details of the best-
performant matrix instruction sequence. The templates and 
microkernel inherit the algorithm and implementation from the 
expert-tune kernel, and Graph and Tensor IR support graph-
level optimization and potential reuse for other hardware targets.   

Fig 1. provides a high-level view of oneDNN Graph 
Compiler design. The input DNN computation graph is 
internally represented as Graph IR. The Graph IR optimization 
module performs a number of transformations that optimize and 
group the computation graph as a sequence of fused operations. 
Graph IR is further lowered to Tensor IR. The Tensor IR doesn’t 
preserve DNN operation semantics and is close to the C program 
semantics. The data structure it operates on is multidimensional 
arrays, representing tensor buffers in physical memory. Tensor 
IR is then further lowered to LLVM IR and intrinsic calls to 
Microkernels.  

Using templates and microkernels greatly simplifies the 
compiler design. Just like implementing high-performance 
primitives using C language, the templates implement the best-
known algorithm and can be instantiated with parameters and 
lowered to Tensor IR-based high-performance primitives. Since 
oneDNN Graph Compiler also uses templates to support fusing 
with neighboring operations, it doesn’t require any sophisticated 
loop transformation and supporting loop IRs like MLIR Affine 
and Linalg dialects. Besides, by using microkernels, oneDNN 
Graph Compiler avoids developing low-level optimization 
techniques to generate efficient code at the instruction level.  

Graph IR increases the optimization scope from individual 
primitives to a larger subgraph with multiple compute-intensive 
operations. As Graph IR retains the DNN OP semantics, most 
domain-specific optimizations are done at this level. The DNN 
OP semantics are implemented by the templates, which directly 
guide the decisions of parallel task decomposition, loop 
scheduling and tiling, tensor memory layout, and how to fuse 
with neighbor operations. Graph IR uses graph, logical tensor, 
and OP to describe a computation graph. A graph contains a set 
of OPs and logical tensors. Each OP represents an operation in 
a computation graph. A logical tensor represents the tensor’s 
metadata, like the element’s data type, shape, and memory 
layout. OP has kind, category, attributes, and logical tensors for 
inputs and outputs.  

Graph IR optimization module first decomposes complex 
OPs into basic DNN OPs. The complex DNN OPs are OPs with 
complex semantics which could be composed of simple 
fundamental operations like addition and multiplication. They 

are introduced by DL frameworks to support high-level DNN 
OP semantics for ease of programming, such as batchnorm, 
quantize, gelu, and many activation operations. The basic DNN 
OPs are categorized to be either Tunable OP or Fusible OP. 
Tunable OPs describe DNN operations that use tunable 
parameters to instantiate a pre-defined template to generate the 
best-performing code. The examples include compute-intensive 
operations like matmul. Fusible OP refers to operations that can 
be fused to Tunable OPs, such as element-wise operations, 
broadcast, reduction, and data movement operations.  

The decomposition of complex DNN operations simplifies 
the Graph IR optimization module so it only needs to handle 
basic DNN operations. Besides the general compiler 
optimizations like common subexpression elimination (CSE), 
dead code elimination, and constant folding, it includes domain-
specific optimizations like low-precision conversion, tensor 
memory layout propagation, constant weight preprocessing, and 
fusion. The fusion optimization pass decides whether it is 
profitable to fuse two operations and keeps fusing OPs to form 
a subgraph, which is represented as a Fused OP. The Graph IR 
is transformed into a graph of Fused OPs and then lowered into 
Tensor IR.  

Tensor IR supports mechanically lowering Fused OP to 
simple loops, without complex nested loop analysis and 
transformation. Tensor IR optimization mainly focuses on 
tensor buffer optimization and supports low-level code 
generation. Just like the C program, Tensor IR supports 
function, statement, expression, and intrinsic functions. The 
Tensor IR module, lowered from a Graph IR graph, contains 
multiple functions, each of which represents a lowered Fused 
OP. The Tensor IR module has an entry function that contains a 
sequence of calls to other functions lowered from Fused OPs. A 
Tensor IR function contains multiple statements build on 
expressions, which operate on constants, variables, and tensors. 
Constants and variables represent individual data elements, used 
to represent scalar data like loop index, tensor shape, address, 
and offset to tensor buffer. Tensors represent multi-dimension 
arrays backed by a data buffer. The intrinsic function is used to 
represent a microkernel, which is carefully hand-tuned and 
fulfills a subtask of a DNN OP with data in the fastest cache on 
a single CPU core.  

 Fig. 1. oneDNN Graph Compiler IR and Optimization 



III. MICROKERNEL-BASED TEMPLATE FOR TUNABLE OP 

LOWERING 

Automating the high-performance code generation for 
Tunable OPs is the foundation of a tensor compiler. oneDNN 
Graph Compiler took an approach inherited from the 
performance library development, which first creates the code 
templates for a given Tunable OP and then instantiates it with 
parameters decided by a heuristic. The parameters are decided 
based on the input data tensor shape and hardware sizes of the 
microarchitecture.  

The template shown in Fig 2. is for a matmul op that does 
matrix multiplication over A[M, K] and B[K, N] and produces 
C[M, N].  The template is applied to a common deep learning 
use case where the computation uses multiple cores, and the size 
of input and output tensor fits within the cache system. The outer 
parallel loops divide the kernel into multiple subtasks for multi-
cores. Each subtask is assigned to one single core, named single-
core kernel, which is represented by the inner loops which call a 
microkernel in the innermost loop body.   

The microkernel and the single-core kernel operate on a 
tensor slice that represents a subset of tensor elements. For 
example, the original tensor is represented as A[0:M, 0:N], 
where the subscription represents starting offset and size for 
each dimension. The tensor slice is represented as A[0:MB, 
0:NB], where MB and NB refer to the tile size of the tensor slice 
along m and n dimensions. A submatrix is a special case of a 2-
dimension tensor slice. In the template above, the microkernel 
produces a small submatrix C[0:MB, 0:NB], and the single-core 
kernel outputs a larger submatrix C[0:MSN, 0:NSN].   

The microkernel is an important element for the oneDNN 
Graph Compiler to achieve comparable performance to expert-
tuned primitives. oneDNN Graph Compiler uses the 
microkernel named batch-reduce GEMM [8][24]. The 
microkernel has two inputs, both representing a batch of 2D 
matrices. It first applies matrix multiplication with each batch 
element to produce a batch of immediate 2D matrices and then 
sums them to a final 2D matrix output. This interface can be used 
for many variants of matmul and convolution op in both 

inference and training use cases and was adopted by both 
oneDNN primitives and oneDNN Graph Compiler. 

The microkernel is fine-tuned to maximize the compute 
efficiency by fully utilizing the compute function unit and the 
high bandwidth provided by registers and the L1 cache. It 
abstracts the ISA difference so oneDNN Graph Compiler doesn't 
need to deal with different vector or matrix instructions provided 
by different CPUs. However, the oneDNN Graph Compiler 
needs to choose the input submatrix sizes for the microkernel so 
that they are usually multiples of register sizes used by the vector 
and matrix function units. Also, it needs to choose the batch size 
for the microkernel so that the whole input and output 
submatrices fit within the L1 cache.  To further streamline the 
cache access, the input and output tensors are blocked. To 
simplify the implementation, the input and output tensors are 
blocked using the submatrix sizes [MB, NB, KB].  So, each 
microkernel accesses a contiguous memory buffer. 

The parameters for lowering a matmul op refer to the 
variable values in the template above: MPN, NPN, MB, NB, 
KB, BS, and ordering of loops indexed by msi, ksi, and nsi. The 
other parameters can be derived from the parameters above. 
oneDNN Graph Compiler uses an expert-tuned heuristic to 
decide these parameters. For a given output matrix size, it first 
proposes single-core kernel size options, a set of [MPN, NPN], 
which can use all cores with good load balance. It further 
proposes microkernel size options, a set of [MB, NB, KB, BS], 
which ensure good microkernel performance. Then the heuristic 
picks a pair of these sizes, which has the best overall kernel 
performance for the entire system with all cores. It iteratively 
searches for the best parameters, based on a cost model which 
considers multi-core load balancing and single-core kernel 
efficiency. Heuristic also reports the loop ordering of the inner 
loops which it assumes when computing the single-core kernel 
efficiency during the search process.  

oneDNN Graph Compiler developed multiple templates for 
different uses. One Tunable OP can have multiple templates 
depending on the use cases. For example, for inference cases, 
sometimes the use case only processes one data sample with 
multiple cores so that the template may have to apply “k-slicing” 
to extract additional parallelism from the reduction axis.  

 

m n k

Index of single-core kernel within multi-core kernel mpi npi kpi

Number of single-core kernels within multi-core kernel MPN NPN KPN

Index of microkernel within single-core kernel msi nsi ksi

Number of microkernel within single-core kernel MSN NSN KSN/BS

Index of microkernel within multi-core kernel mpsi npsi kpsi

Number of microkernel within multi-core kernel MPSN NPSN KPSN/BS

Tensor size M N K

Tensor block size MB NB KB

Tensor slice size accessed by Microkernel size (batch 
size = BS)

MB NB KB * BS

Tensor slice size accessed by single-core kernel MSBN = MB * MSN NSBN = NB * NSN KSBN = KB * KSN

Tensor slice size accessed by multi-core kernel M = MB * MSN * MPN
=  MB * MPSN 

N = NB * NSN * NPN
= NB * NPSN

K = KB *KSN * KPN
= KB * KPSN

Parallel loop mpi = 0, MPN, 1 {
Parallel loop npi = 0, NPN, 1 {

Loop msi = 0, MSN, 1 { 
mpsi = mpi * M/MPN + msi; 
C’[0:NSN, 0:MB, 0:NB] = 0;
Loop ksi = 0, KSN, BS {

Loop nsi = 0, NSN, 1 {
npsi = npi*N/NPN + nsi; 
A_addr[0..BS] = &A[mpsi:1, ksi:0..BS, 0:MB, 0:KB];
B_addr[0..BS] = &B[ksi:0..BS, npsi:1, 0:NB, 0:KB];

C’[npsi:1,0:MB, 0:NB] += Batch_reduce_gemm
(A_addr[0..BS], B_addr[0..BS],Batch = BS); 

} 
}
C[mpsi:1, npi:NSN, 0:MB, 0:NB] = C’[0:NSN, 0:MB, 0:NB];

}
}

}

single-core 
kernel

micro
kernel

multi-core 
kernel 

Tensor is described with a Tensor name followed by index and size for each dimension. Tensor A[0:M, 0:K] refers to 2 dimensions tensor starting from the position [0,0] with size 
[M, K]. A[0:MB, 0:KB] refers to a tensor slice containing a subset of A tensor elements, starting from position 0 to MB-1 along the m dimension, and 0 to NB-1 along the n 
dimension. The pseudo-code uses a blocked layout for A, B, and C. C[0:MPSN, 0:NPSN, 0:MB, 0:NB] denotes the full C tensor C[0:M, 0:N] reordered with a blocked layout. C[mps:1, 
np:NSN, 0:MB, 0:NB]  denotes a tensor slice which “slice” the C tensor in the first 2 dimensions starting from position “mps” and “np” with size “1” and “NSN”. A_addr[0..BS] 
denotes an array with BS elements from A_addr[0] to A_addr[BS-1]. A[mps:1, ks:0..BS, 0:MB, 0:KB] denotes an array of BS tensor slices from A[mps:1, ks:0, 0:MB, 0:KB] to 
A[mps:1, ks:BS-1, 0:MB, 0:KB]. 

Fig. 2. Microkernel based template for Tunable OP 



IV. TEMPLATE WITH ANCHORS FOR FUSED OP LOWERING 

oneDNN Graph Compiler combines a Tunable op with 
multiple adjacent Fusible ops to a Fused op and lowers it to a 
nested loop using the Fused OP template. The template contains 
placeholders, known as anchors, at the beginning and the end of 
each loop level for the input and output tensors. The Graph IR 
fusion optimization decides whether it is profitable to fuse a 
Fusible op to a Tunable op and which anchor point is assigned 
to the Fusible op. The Fused OP lowering pass retrieves anchors 
for Fusible ops and directly inserts its corresponding Tensor IR 
at the anchor.   

Fig. 3 illustrates the anchors within a template and the 
associated tensor slices for each anchor.  
The anchors preceding the microkernel are referred to as pre-op 
anchors, while those following the microkernel are termed post-
op anchors. The right table in Fig. 3 shows the tensor slice 
working set size for each anchor point which describes the 
memory size accessed by the fused operation at the anchor point 
on a single core. It also shows the formula to compute how many 
times the fused op is invoked within a single-core kernel and 
how many total tensor element memory accesses are needed for 
each anchor point. The concrete number can be deduced when 
the template is instantiated with the parameters for a Tunable op. 

The fusion optimization uses a heuristic to decide which 
anchor to choose. The heuristic evaluates the cost of a single-
core kernel between all possible anchors and the option of not 
fusing, and then it chooses the one with the lowest estimated 
cost. The commit anchors inside the innermost loop work on the 
smallest tensor slice, which provides a low per-access cost as the 
data is in the fastest cache. So the post-op usually finds the first 
anchor point toward the innermost loop the best choice. 
However, for pre-op, the Fused OP lowering considers both the 
computation and temporary buffer size introduced by pre-op 
fusion. The anchors at inner loop bodies require smaller 

temporary buffer size but may have redundant computations 
which  can be avoided by careful selection of anchor points.   

 Fig. 4 shows a pseudo-code for fusing data layout reorder 
and ReLU (rectified linear unit) ops to an instantiated GEMM 
op. The first reorder op is inserted as pre-op fusion at anchor #4, 
which converts from a plain layout tensor A to a blocked layout 
A’ with blocking factors MB and KB. The fused reorder op 
works on the tensor slice of A’, denoted as A’[mpsi:1, ksi:BS, 
0:MB, 0:KB], which starts from the position A’[mpsi, ksi, 0, 0] 
and has a slice with the size of [BS, MB, KB]. It also fuses two 
post-ops, a ReLU op followed by a reorder op. Both operations 
are inserted at the post-op anchor #1. The reorder op changes the 
memory layout of the C tensor from the blocking factor of MB 
and NB to MB2 and NB2.  

Fig. 3. Fused OP template with anchors and cost table 

Anchor Tensor slice’s working 
set size per core

Access times 
per core

Total memory access per 
core

pre_op_anchor#1 A’ [MSN, KSN, MB, KB]
B’ [KSN,NPSN, NB, KB] 

1 MSN* MB * KSN * KB
NPSN * NB * KSN * KB

pre_op_anchor#2 A’ [MSN, KSN, MB, KB]
B’ [KSN,NSN, NB, KB] 

1 MSN* MB * KSN * KB
NSN * NB * KSN * KB

pre_op_anchor#3 A’ [KSN, MB, KB]
B’ [KSN, NSN, NB, KB] 

MSN MSN * MB * KSN * KB
MSN * NSN * NB * KSN * KB

pre_op_anchor#4 A’ [BS, MB, KB]
B’ [BS, NSN, NB, KB]

MSN * 
KSN/BS

MSN * MB * KSN * KB
MSN * NSN * NB * KSN * KB

pre_op_anchor#5 A’ [BS, MB, KB]
B’ [BS, KB, NB]

MSN * NSN 
* KSN/ BS

MSN * MB * KSN * KB *NSN
MSN * NSN * NB * KSN * KB 

post_op_anchor#1 C[MB, NSBN] MSN MSBN*NSBN

post_op_anchor#2 C[MSBN, NSBN] 1 MSBN*NSBN

post_op_anchor#3 C[MSBN, N] 1 MSBN * N

Parallel loop mpi = 0, MPN, 1 {
pre_op_anchor#1 : A[mpi*MSN:MSN, 0:KSN, 0:MB, 0:KB]; 
pre_op_anchor#1 : B[0:KSN, 0:NPSN, 0:NB, 0:KB]; 
Parallel loop npi = 0, NPN, 1 {

pre_op_anchor#2 : A[mpi*MSN:MSN, 0:KSN, 0:MB, 0:KB]; 
pre_op_anchor#2 : B[0:KSN,npi*NSN:NSN, 0:NB, 0:KB]; 
Loop msi = 0, MSN, 1 { 

mpsi = mpi * M/MPN + msi; 
pre_op_anchor#3 : A[mpsi:1, 0:KSN, 0:MB, 0:KB];  
pre_op_anchor#3 : B[0:KSN,npi*NSN:NSN, 0:NB, 0:KB]; 
C’[0:NSN, 0:MB, 0:NB] = 0;
Loop ksi = 0, KSN, BS {

pre_op_anchor#4 : A[mpsi:1, ksi:BS, 0:MB, 0:KB];  
pre_op_anchor#4 : B[ksi:BS, npi*NSN:NSN, 0:NB, 0:KB];  
Loop nsi = 0, NSN, 1 {

npsi = npi*N/NPN + nsi; 
pre_op_anchor#5 : A[mpsi:1, ksi:BS, 0:MB, 0:KB];  
pre_op_anchor#5 : B[ksi:BS, npsi:1, 0:NB, 0:KB];  
A_addr[0..BS] = &A[mpsi:1, ksi: 0..BS, 0:MB, 0:KB];
B_addr[0..BS] = &B[ksi:0..BS, npsi:1, 0:NB, 0:KB];
C’[nsi:1,0:MB, 0:NB] += Batch_reduce_gemm

(A_addr[0..BS], B_addr[0..BS],Batch = BS); 
} 

}
C[mpsi:1, npi:NSN, 0:MB, 0:NB] = C’[0:NSN, 0:MB, 0:NB];

post_op_anchor#1 : C[mpsi:1, npi:NSN, 0:MB, 0:NB]; 
}

post_op_anchor#2 : C[mpi*MSN:MSN, npi*NSN:NSN, 0:MB, 0:NB]; 
}
post_op_anchor#3 : C[mpi*MSN:MSN, 0:NPSN, 0:MB, 0:NB]; 

}

The template has predefined anchors as placeholders to fuse pre-ops and 
post-ops.  Each anchor point is associated with a tensor slice for the pre-ops 
and post-ops to work on. Once the blocking parameters are decided, the 
tensor slice size and access times can be deduced to support the fusion 
decision. The fusion optimization pass chooses anchor points for groups of 
pre-ops and post-ops according to the estimated computation cost. 

Parallel loop mp i= 0, MPN, 1 {
Parallel loop npi = 0, NPN, 1 {

Loop msi = 0, MSN, 1 { 
mpsi = mpi * M/MPN + ms; 
C’[0:NSN, 0:MB, 0:NB] = 0;
Loop ksi = 0, KSN, BS {

Reorder(A, [1, 1], A’[mpsi:1, ksi:BS, 0:MB, 0:KB], 
[MB, KB], from=[mpsi, ksi]); 

Loop nsi = 0, NSN, 1 {
npsi = npi * N/NPN + nsi; 
A’_addr[0:BS] = &A’[mpsi, ksi:BS, 0, 0];
B_addr[0:BS] = &B[ksi:BS, npsi, 0, 0];
C’[nsi:1,0:MB, 0:NB] += Batch_reduce_gemm

(A’_addr[0:BS], B_addr[0:BS],Batch = BS); 
} 

}
C’’[mpsi:1, npsi:NSN, 0:MB, 0:NB] = C’[0:NSN, 0:MB, 0:NB];
C’’’[mpsi:1, npi:NSN, 0:MB, 0:NB]) = 

Relu(C’’[mpsi:1, npi:NSN, 0:MB, 0:NB]);
Reorder( C’’’[mpsi:1, npi:NSN, 0:MB, 0:NB], [MB, NB],

C, [MB2, NB2], to=[mpsi, npi]);       
}

}
}

  
Fig. 4. Pseudo code for Fused OP 



V. GRAPH IR OPTIMIZATION 

 oneDNN Graph Compiler Graph IR optimization 
transforms the graph to use low-precision computation and 
preprocessed constant tensors, and then prepares the graph as a 
sequence of Fused ops for optimized code generation. The 
Graph IR is first decomposed into a graph of basic DNN 
operations to simplify the optimization passes, and clustered to 
form fine-grain Fused ops, and then lowered to Tensor IR using 
the Fused OP templates.   

Fig. 5 illustrates these optimization passes with a quantized 
multilayer perceptron (MLP) example. The input DNN 
quantized MLP in Fig5.1 contains two matmul ops, and the 
activation ops are omitted for simple illustration. Each FP32 
matmul op is surrounded by two dequantize ops and a quantize 
op, denoted by DQ and Q. The dequantize converts an Int8 data 
type tensor to FP32 and the quantize op does the reverse. It uses 
the asymmetric quantization scheme, so the first dequantize op 
scales A input tensor by a_s and then offset by a_z to adjust the 
zero point, and the other dequantize op scales the weight matrix 
B with b_s. The optimized DNN Graph in Fig5.2 shows the 
effect of low-precision conversion optimization. It first breaks 
down the quantize and dequantize op to be simple addition and 
multiply ops and transform the graph to be a mathematically 
equivalent form that uses Int8 matmul op. The low-precision 
conversion brings significant speedup as it reduces both the 
computation and memory bandwidth required to compute a deep 
learning model.  

Fig 5.2 also illustrates the effects of constant weight 
preprocessing optimization, which recognizes the constant 
weight tensor and its related computation and builds a special 
initial function that preprocesses the constant weight and reuses 
the preprocessed weight at the runtime. For the static 
quantization inference use case, the weight tensors and 
quantization parameters are constant, so the computation over 
constant weight, scale, and zero point can be avoided completely 
at runtime. As the weight data buffer might not be available 
during the compilation, so the compiled code needs to generate 

an function to preprocess the constant weight at the execution 
time when it first arrives. The quantization parameters, a_s, b_s, 
c_s, and c_z are constants passed as dequantize op’s attribute, 
which can be folded to the generate code when lowering to 
Tensor IR.   

The fine-grain fusion optimization clusters the graph to fine-
grain graph regions and encapsulates them as Fused ops. It first 
considers the immediate succeeding ops of the Tunable op as 
post-op candidates and keeps growing the Fused OP region. The 
post-op could be elementwise, broadcast, reduction, and reorder 
ops, and multiple post-ops may be added to a Fused OP region. 
For example, the activation and normalization ops after matmul 
op are broken down to basic ops and added to the Fused OP 
region. The region stops growing when a limit is reached, say, 
the post-op sequence can only have one reorder, one reduction, 
certain number of total ops, or total size of additional inputs. 
Then it looks for preceding ops as pre-op candidates. The pre-
op fusion only supports limited cases like reorder and transpose 
operations and only be used at the entry point of the graph. For 
a Fusible op between two Tunable ops, it is typically more 
profitable to fuse as post-op of the first Tunable op, so the fusion 
optimization first adds post-op and then pre-op to Fused OP 
region.   

The layout propagation optimization exploits extra 
performance benefits cross Tunable ops by allowing Tunable op 
to use the most desired blocked layout. As Tunable op relies on 
the blocked layout to achieve the best performance on the CPU, 
very often the best-performed blocked layout might be different 
between two Tunable ops. It allows the Tunable ops within a 
graph to use a blocked layout but keep the graph input/output 
tensor as a plain layout. It first inserts reorder operations at the 
graph boundary to ensure the entry and exit points using the 
plain layout. Then it iterates the DNN computation graph and 
inserts reorder operation between two Tunable ops if they use 
different blocked layouts. It first queries a Tunable op for its 
desired blocked layouts, if none of the desired blocked layouts 
is consistent with the current layout, it inserts a reorder op before 
the Tunable op.  Fig. 5.3 illustrates the fine-grain fusion region 

Fig. 5. Graph IR optimization  



and newly inserted reordered ops at the boundary of graph and 
internally between Tunable ops. The reorder op between two 
Tunable ops is added to the end of the Fusion OP region of the 
previous Tunable op. The reorder for the input constant weights 
is converted to a preprocess weight, named prepacked weight, 
using the constant weight preprocessing optimization.  

The coarse-grain optimization happens at the final stage of 
optimizations, where the graph is converted to a list of Fused ops 
in topological order and lowered to a sequence of parallel-for. It 
merges multiple parallel-for loops lowered form Fused ops 
together to one parallel-for loop. The mechanism of merging of 
multiple parallel-for is supported at the Tensor IR level, but the 
merging decision is done at the Graph IR level as part of 
lowering. The coarse-grain optimization greatly improves data 
locality across two Fused ops and can be applied to many graph 
patterns.  For example, as the two matmul ops in MLP use the 
same batch, the lowered two nested parallel loops have the same 
outermost loop iterating the batch dimension, which can be 
further merged as one parallel loop. When the heuristic chooses 
the parameters for a Fused op, it tries to choose the outermost 
loop blocking factor best aligned with core numbers, so the 
instantiated fused op likely has the same blocking factors as its 
neighbor. When the coarse-grain fusion optimization decides to 
merge two fused ops, it marks the two nested loops in Tensor IR 
as “mergeable” during the lowering process. Then Tensor IR 
merges two nested loops mechanically as guided by the Graph 
IR optimizations.    

VI. TENSOR IR OPTIMIZATION 

Tensor IR is the lowest intermediate representation in the 
oneDNN Graph Compiler. At the Tensor IR level, the DNN 
computation graph is lowered to a C-like program, which 
includes function, statement, expression, and intrinsic functions. 
The Fused op is lowered as a function, which contains nested 
loops. A complex statement describes a structure like a loop, and 
a simple statement does computation. Var and Tensor represent 
scalar variables and multi-dimension arrays respectively.  

Tensor IR supports Graph IR optimization by merging loops 
as instructed by Graph IR. Fig. 6 shows the example of Tensor 
IR for the pseudo-code in Fig. 4. In the Tensor IR, the 
computation on the tensor slices is represented by either a nested 
loop or a function call to the microkernel. The inserted pre-op 
and post-op are lowered to nested loops.  The two post-op, ReLU 
and reorder ops, are merged as one nested loop using the hint 
passed by Graph IR.  

The main optimizations on Tensor IR are tensor size 
optimization and memory buffer optimization. Tensor size 
optimization tries to reduce the tensor size of each temporary 
tensor. The temporary tensors are introduced in the pre-op and 
post-op fusion process. The temporary tensor was initially 
introduced as a full-size tensor in the lowering process and then 
reduced by the tensor size optimization. In the example code of 
Fig. 6, the post-ops are fused into one loop nest in the Tensor IR. 
Since the accesses of the temporary tensors, C’’ and C’’’, are 
local to the innermost loop body, the temporary tensor could be 
replaced by a scalar variable for a smaller memory footprint and 
better cache locality. The temporary tensor introduced by pre-op 
fusion can be reduced similarly by analyzing the scope of the 
tensor usage. For example, A’[MSN, BS, MB, KB] could be 

reduced to A’ [BS, NB, KB], since the producer of A’ and 
consume are within the “msi” loop, so there is no need to save 
the result along the 2nd dimension of A’.  

After tensor size optimization, the multiple-dimension 
tensor representation is flattened to a one-dimensional array to 
represent the memory buffer.  The memory buffer optimization 
tries to reuse the memory buffer of temporary tensors to have a 
minimum overall temporary buffer size for the compiled code 
and tries to improve the locality of the temporary buffer use.   
The main target of memory buffer optimization is to reuse the 
memory buffer created for the temporary tensors between fused 
op. In the inference use case, the output tensor is only consumed 
by the next fused op, and so the buffer could be reclaimed once 
the next fused op completed execution. Since the input tensor 
size is known to the compilation process, the internal memory 
buffer usage can be calculated at the compile time and optimized 
to improve efficiency.  

Memory buffer optimization uses life span analysis like 
traditional compiler analysis for register allocation based on the 
def-use chain. The algorithm considers both reusing the hot 
memory and reducing the overall peak memory. At each point, 
when an intermediate buffer is needed, it tries to reuse the free 
intermediate buffers, which are already allocated but not used 
anymore. Among multiple choices of reusable memory buffers, 
it chooses the one that was used most recently, so likely the data 
is still in the cache system.  

Var Const MPN, NPN, MSN, NSN, BS, KSN, MB, NB;  
Tensor FP32[M, K] A; 
Tensor FP32[M/MB, K/KB, MB, KB] A';  
Tensor FP32[K/KB, N/NB, NB, KB] B;  
Tensor FP32[NSN, MB, NB] C'; 
Tensor FP32[M/MB,N/NB, MB, NB] C'', C'''; 
Tensor FP32[M/MB2, N/NB2, MB2, NB2] C; 
Var int* A_addr[BS], B_addr[BS];  
Var Index mp, np, ms, ks, ns, nps, mps;  
Parallel loop mp i= 0, MPN, 1 {  
    Parallel loop npi = 0, NPN, 1 {  
        Loop msi = 0, MSN, 1 {  
            mpsi = mpi * M/MPN + msi;  
            Loop nsi = 0, NSN, 1 {  
                Loop mbi = 0, MB, 1 { 
                   Loop nbi = 0, NB, 1 { 
                      C’[0:NSN, 0:MB, 0:NB] = 0;  
            }  }   }    
            Loop ksi = 0, KSN, BS {  
                  Loop bsi = 0, BS, 1 { 
                        ksbi = ksi * BS + bsi;  
                        Loop mbi = 0, NB, 1 { 
                              Loop kbi = 0, KB, 1 { 
                                   A’[mpsi, ksbi, mbi, kbi]  
                                               = A[mpsi*MB + mbi, ksbi*KB+kbi]; 
                   }    }    }    
                   Loop nsi = 0, NSN, 1 {  
                        npsi = npi * N/NPN + nsi;  
                        Loop bsi = 0, BS, 1 { 
                           A’_addr[bsi] = &A’[mpsi, ksi, 0, 0]; 
                           B_addr[bsi] = &B [ksi, npsi, 0, 0]; 
                        } 
                        C'_addr = &C’[nsi,0, 0] ; 
                        Batch_reduce_gemm(A’_addr, B_addr,  
                                       C'_addr, MB, NB, KB, Batch = BS);  
                   }   
            } //end of loop ksi   
            Loop nsi = 0, NSN, 1 { 
                npsi = npi * N/NPN + nsi;     
                Loop mbi = 0, MB, 1 { 
                    Loop nbi = 0, NB, 1 { 
                        C’’[mpsi, npsi, mbi, nbi] = C’[nsi, mbi, nbi]; 
                        C’’’[mpsi, npsi, mbi, nbi]= max(C’’[mpsi, npsi, mbi, nbi], 0);  
                        C[(mpsi*MB+mbi)/MB2, (npsi*NB+nbi)/NB2,  
                             (mpsi*MB+mbi)%MB2, (npsi* NB+nbi)%NB2]  
                                 = C’’’[mpsi, npsi, mbi, nbi]; 
             }  }   } // end of loop nsi 
        } // end of loop msi 
}   }  // end of parallel loop mpi, npi 
   Fig. 6. Example of Tensor IR 



VII. EXPERIMENTAL RESULTS 

oneDNN Graph Compiler is built as an embedded 
component of oneDNN library to accelerate the DNN 
computation subgraphs. oneDNN is the industry-standard best-
performing library implementation and has been integrated into 
multiple DL frameworks as the default performance library to 
accelerate deep learning on the CPU.  Besides primitives API, 
oneDNN provides a Graph API, so that DL frameworks or graph 
compilers can use it to accelerate the DNN computation 
subgraphs. Achieving the best execution efficiency for target DL 
workloads requires improvements from both DL frameworks 
and oneDNN Graph Compiler. DL framework developers first 
profile the execution and identify performance critical DNN 
operations and subgraphs. For the cases where oneDNN Graph 
Compiler provides performance benefits, DL framework passes 
the subgraphs to oneDNN Graph for acceleration. oneDNN 
Graph Compiler continuously enhances the templates, 
microkernels, heuristics, and fusion capability for the new 
subgraphs including adding operations and tuning for a broader 
range of data shapes. The current oneDNN Graph Compiler 
already provides well-implemented templates for widely used 
operators like matmul and convolution which can provide good 
performance for a wide range of shapes. 

We choose BERT Large and DLRM, representing DNN 
models for natural language processing and recommendation 
systems, to demonstrate the performance benefit of oneDNN 
Graph Compiler for the inference use case with both FP32 and 
Int8 data types. There are two performance-critical DNN 
computation subgraphs in these two DNN models. The 
Multilayer Perceptron (MLP) contains multiple matmul ops 
intermixed with activation ops like ReLU. The MLP subgraph 
is the basic building block for many deep learning models. The 
Multi-Head Attention (MHA) subgraph is the key element to 
Transformer based deep learning models like Bert for natural 
language processing. The MHA subgraph referred in this paper 
focuses on the scaled dot-product attention portion of the whole 
MHA graph, which contains two batch matmul ops and a 
softmax as well as other binary ops between them.  

Table 1 shows the problem sizes and data type we used for 
performance evaluation. We select a wide range of batch sizes 
and several representative data shapes for weights and input 
tensors. The weight sizes for MLP are from the MLPerf DLRM 
model, and the sequence length and hidden size choices for 
MHA are from Bert models. The Int8 quantization scheme uses 
u8 asymmetric quantization for activation and per channel s8 

symmetric quantization for weight. The input and output 
matrices are in plain layouts. The performance data is collected 
on an Intel® Xeon® Platinum 8358 processor with 32 cores.  

We construct MLP and MHA tests according to Table 1 and 
compare the performance of DNN computation subgraph with 
TVM and oneDNN primitives using the best-known method. As 
the input workloads are represented as graphs, we make sure to 
apply all necessary graph transformations. For TVM, we 
constructed a graph using Relay graph op and used an auto-
scheduler and performed autotune for the best result.  TVM is 
able to fuse memory-intensive operations to the matmul 
operation. We also compare with oneDNN expert-tuned 
primitives and post-op fusion implementation.  oneDNN post-
op API supports fusing matmul op with ReLU in the MLP tests, 
and matmul with division and addition ops in the MHA tests. 
The tests use low-precision post-op fusion API with prepacked 
and preprocessed compensated weight following best-known 
practice. For oneDNN Graph Compiler, we use oneDNN Graph 
API to construct the MLP and MHA test cases. For oneDNN 
Graph Compiler, weight prepacking and compensated weight 
preprocessing are done automatically without additional steps, 
and there is no need to autotune.   

We first compare the individual matmul operation 
performance in the MLP tests between three implementations. 
Instead of running each individual matmul operation separately, 
our methodology is to run the matmul operations consecutively 
as an MLP subgraph in the end-to-end DL model, since the 
measurement of individual matmul operations does not correlate 
to the performance in the real workloads. Running consecutive 
matmul operations in the subgraph better emulates the cache 
locality effects. We also use TVM auto-scheduler to tune the 
matmul in the context of MLP to ensure the best TVM result. 
We run oneDNN Graph Compiler with the coarse-grain fusion 
disabled so that we can measure each operation separately. 

The performance comparison result is presented as 
execution speedup over TVM baseline in Fig. 7. For FP32 
matmul, we observed that TVM outperforms oneDNN Graph 
Compiler in 15 test cases, but its total execution time falls behind 
oneDNN Graph Compiler by 1.4x. The 15 test cases have very 
small computation sizes and account for less than 5% of the time 
of total test cases, so these test cases are less performance critical 
in the end-to-end DNN model execution. We identify two 
reasons that the oneDNN Graph compiler falls behind TVM. 
First, the last 5 test cases are GEMMV operations, which 
involve significant overhead for oneDNN Graph Compiler to 
pad the input matrix to match the minimum size required by the 
microkernel.  Second, the kernel built by oneDNN Graph 
Compiler is always configured to use all available cores, 

test name data type input batch size sequence length hidden size head numbers 
MLP-1 Int8, FP32 32, 64, 128, 256, 512 N/A 13x512x256x128 N/A 

MLP-2 Int8, FP32 32, 64, 128, 256, 512 N/A  479x1024x1024x512x256x1 N/A 
MHA-1 Int8, FP32 32, 64, 128 128 768 8 
MHA-2 Int8, FP32 32, 64, 128 128 768 12 
MHA-3 Int8, FP32 32, 64, 128 384 1024 8 

MHA-4 Int8, FP32 32, 64, 128 512 1024 16 

TABLE I．WORKLOAD PARAMETERS  



because allowing matmul kernel to use fewer threads brought a 
negative performance impact when running end-to-end DNN 
models. However, this triggers significant synchronization 
overhead when each individual kernel is measured, especially 
when the computation size is small. By tuning the number of 
threads, we can reduce the gap to within 10% range of TVM 
performance.   

For Int8 matmul, we observed that oneDNN Graph Compiler 
significantly outperforms TVM by 3.8x for the total test 
execution time. Compared to oneDNN Graph Compiler’s 3.0x 
speedup of Int8 matmul over FP32, TVM’s Int8 matmul 
execution time only improves by 11% over FP32. It appears that 
TVM’s auto-scheduler can’t find a good schedule to realize the 
full performance benefit of Int8 computation. First, the Int8 
matrix multiplication is mapped to Int8 VNNI instruction which 
requires a special data layout reordering. In addition, it requires 
sophisticated blocking since the Int8 data type reduces the 
matrix data size by 4x, and fitting the data within L1 cache 
makes a significant performance difference. We believe the 
performance difference is mainly related to TVM 
implementation; however, it is not straightforward to develop 
and tune the baseline schedule so that auto-scheduler can search 
for the best schedule. Compared to TVM’s schedule approach, 
oneDNN Graph compiler’s template is closer to the generated 
kernel code, so the developers have better control over what the 
kernel looks like.  

 oneDNN primitives significantly outperform TVM by 1.4x 
for FP32 matmul test cases and 3.6x for Int8. The performance 
gain over TVM is mainly due to the design choice of advanced 
algorithm, microkernel, and tuned heuristics. oneDNN Graph 
Compiler inherits these advantages so both have shown 
significant speedup over TVM on individual matmul kernels. 
oneDNN Graph compiler and oneDNN primitives performance 
are at the same level on the matmul operations in general. For 
the specific MLP tests and shapes, oneDNN Graph Compiler 
performs 4% worse than primitives on FP32 and 6% better on 
Int8 when comparing total execution time. We observe 
performance differences for individual kernels and identified 
three major reasons. First, oneDNN Graph compiler has the 

layout propagation optimization which uses blocked layouts for 
the intermediate tensors produced within the subgraph. oneDNN 
primitives use the plain layout for these tensors.  Second, due to 
the MLP-1 tests’ execution time being relatively short, the total 
API call overhead takes up to 10% of the execution time. The 
API call overhead is reduced by about 3 times for oneDNN 
Graph Compiler since the compiled code only needs to be called 
once. These two reasons explain oneDNN Graph Compiler’s 
performance gains on small kernels. Lastly, the performance 
difference is also due to the different choices of parameters made 
by heuristics and template algorithms.   

Fig. 8 shows the performance speedup of oneDNN Graph 
Compiler on MLP and MHA tests. The default configuration has 
coarse-grain fusion, and we add an ablation study to understand 
its benefit. The performance results show that oneDNN Graph 
Compiler demonstrates an average of 2.4x speedup over TVM 
on MLP and 6.2x on MHA. Coarse-grain fusion contributes to 
an average performance gain of 1.2x on both MLP and MHA 
tests. Most of MLP performance gain can be explained by the 
kernel performance difference and coarse-grain fusion, MHA 
has extra performance gain due to oneDNN Graph Compiler’s 
fine-grain fusion optimization. TVM outperforms oneDNN 
Graph Compiler for the first MLP_1 test, mainly due to that 
TVM has better-performing kernels for this test. 

Coarse-grain fusion accounts for 2.0x for Int8 tests and 3%x 
for FP32 tests on MLP-1 test, but only 6% for Int8 and 2% for 
FP32 on MLP-2 test.  For MLP-1 Int8 test, coarse-grain fusion 
is able to merge the outermost parallel loops, lowered from 3 
matmul ops, into one parallel loop. The coarse-grain fusion 
greatly reduces the synchronization overhead and permits the 
activation data to be in the fastest cache for the next matmul op. 
As the entire activation and weight tensor fit in the L2 cache, so 
the coarse-grain fusion gives a much higher speed up for MLP-
1 Int8 tests. Other MLP tests also benefit from the coarse-grain 
fusion but to a lesser extent, since coarse-grain fusion is not able 
to merge all the loop nests due to the current heuristic limitation.  

For the MHA subgraph, the 6.2x performance gain over 
TVM is from individual kernel performance, fine-grain fusion,  
and coarse-grain fusion. TVM doesn’t fuse the softmax op with 
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the preceding batch matmul op, while oneDNN Graph Compiler 
decomposes softmax op to multiple basic operations and fuses 
them to the preceding batch matmul ops with fine-grain fusion 
Besides, oneDNN Graph Compiler uses a fast implementation 
of softmax, removing a max reduction while not impacting Bert 
model accuracy. On top of fine-grain fusion, coarse-grain fusion 
merges the two nested loops lowered from two batch matmul 
ops. 

With coarse-grain fusion and fine-grain fusion optimization, 
oneDNN Graph Compiler outperforms oneDNN post-op fusion 
for both MLP and MHA tests. For MLP, oneDNN Graph 
Compiler is on par with oneDNN post-op fusion for FP32 tests’ 
total execution time and demonstrates a 23% speedup for Int8. 
The coarse-grain fusion helps to recover the kernel performance 
difference in FP32 and contributes more to Int8 cases since the 
small kernels account for a higher ratio in Int8 test cases. For 
MHA, oneDNN Graph Compiler reduces the total execution 
time by 2.3x on FP32 and 2.4x on Int8.  

To demonstrate the end-to-end model performance, we 
perform inference mode benchmarking for BERT Large and 
DLRM. We test both Int8 and FP32 data type and tried various 
batch sizes. We use Intel Extension for Pytorch [29], which 
offloads MHA and MLP to oneDNN Graph Compiler through 
oneDNN Graph API. We are not able to show end-to-end model 
performance for TVM using the pure TVM compilation 
approach due to the excessive auto-scheduler search time. Since 
it takes multiple hours to search for optimal kernel 
implementation for one subgraph, it is impractical for us to 
conduct such an experiment at the DNN model level.  

The performance result in Fig. 9 shows oneDNN Graph 
Compiler improves BERT_Large throughput by an average of 
1.12x and DLRM by 1.15x over oneDNN post-op fusion. 
Particularly, oneDNN Graph compiler improves Int8 
BERT_Large throughput by 1.18x for batch size 128 and Int8 
DLRM by 1.21x for batch size 32.  

VIII. CONCLUSION 

We propose a hybrid approach to address the unique 
challenges of deep learning compilation. It distills key 
ingredients of expert-tuned primitives for compute-intensive 
DNN operations like matrix multiplication and uses compiler 
techniques on the DNN computation graph to fully exploit the 
performance opportunity at the graph level. The template uses 
an expert-developed microkernel, algorithm, and heuristic, to 
ensure compiler-generated code achieves comparable 
performance to expert-tuned primitives. The compiler uses two-
level intermediate representations at the level of both DNN op 
graph and C program to support domain-specific optimizations 
needed for deep learning computation, including low-precision, 
constant weight, tensor memory layout, fine-grain fusion, 
coarse-grain fusion, and tensor memory buffer reuse. 
Performance evaluation shows significant performance gain 
over existing tensor compiler and primitives library for 
performance critical DNN computation graph and end-to-end 
models in CPU inference usage. 

  

Fig. 8. oneDNN Graph Compiler performance evaluation for MLP and MHA subgraph 

Fig. 9. End-to-end model speedup by oneDNN Graph Compiler 
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