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Abstract—As the leading candidate of quantum error correction
codes, surface code suffers from significant overhead, such
as execution time. Reducing the circuit’s execution time not
only enhances its execution efficiency but also improves fidelity.
However, finding the shortest execution time is NP-hard.

In this work, we study the surface code mapping and scheduling
problem. To reduce the execution time of a quantum circuit, we
first introduce two novel metrics: Circuit Parallelism Degree and
Chip Communication Capacity to quantitatively characterize
quantum circuits and chips. Then, we propose a resource-adaptive
mapping and scheduling method, named Ecmas, with customized
initialization of chip resources for each circuit. Ecmas can
dramatically reduce the execution time in both double defect and
lattice surgery models. Furthermore, we provide an additional
version Ecmas-ReSu for sufficient qubits, which is performance-
guaranteed and more efficient. Extensive numerical tests on
practical datasets show that Ecmas outperforms the state-of-
the-art methods by reducing the execution time by 51.5% on
average for double defect model. Ecmas can reach the optimal
result in most benchmarks, reducing the execution time by up to
13.9% for lattice surgery model.

Index Terms—Surface Code, Compilation, Execution Time

I. INTRODUCTION

Quantum algorithms offer exponential speedup over classical
algorithms in various fields such as machine learning [14],
[18], [30], simulation [11] and cryptography [31]. One of the
obstacles to achieving such advantages is the inevitable errors
of quantum hardware. The error rate of the state-of-the-art
superconducting quantum devices is around 10−3 per operation
[2], [13], [37], which falls far short of meeting the demands
of practical applications [12]. One approach to handle these
errors is quantum error correction (QEC), which establishes
the fault-tolerant computational framework [32]. Surface code
[5], [7], [22] currently stands as the most promising QEC
code, highlighting a threshold error rate of up to 10−2. Its
natural 2-D nearest-neighbor structure makes it well-suited for
implementation on superconducting chips.

Applying surface code to protect a quantum circuit involves
converting the circuit into an encoded form. Unlike the
circuit transformation typical in the NISQ (Noisy Intermediate-
Scale Quantum) era, surface code transformation necessitates
mapping a single logical qubit to a cluster of physical qubits,
known as tiles [19]. As a result, the conditions for executing
logical operations differ significantly. For instance, a CNOT
gate no longer requires physical qubits to be adjacent on
the chip. Instead, it can be implemented by establishing a
non-intersecting path between two distinct tiles, called qubit

communication. These requirements call for developing an
efficient and specialized transformer to transform a quantum
circuit into a surface-code-encoded circuit.

The transformation process has two stages: initialization and
scheduling. In the initialization stage, the transformer needs
to allocate tiles for each logical qubit and allocate channels
for communication. In the scheduling stage, the transformer
determines the specific execution schemes for each operation.
Most operations can be performed within the tiles [10], except
T gate and CNOT gate, which are the most resource-consuming
logical operations. The substantial overhead of T gates stems
from their inability to be fault-tolerantly executed, thereby
necessitating the use of supplementary magic state distillation
circuits [4]. Through extensive research efforts [8], [26], this
overhead has been considerably reduced. However, the time
delay induced by CNOT gates is severe, particularly in circuits
where quite a lot of CNOT gates can be executed in parallel,
such as Ising circuits [20], [29] and the QDNN circuits [34].
This significantly influences the fidelity of the execution result
of the surface code circuit. With the same physical error rates
and the code distance, a shorter execution time yields higher
result fidelity. Thus, an essential goal of transformation is to
reduce the execution time of the circuit. However, finding the
shortest execution time of a circuit is NP-hard (as proved in
Theorem 1), which makes it a non-trivial task for finding an
effective result efficiently.

Executing CNOT gates can be simplified as constructing a
path between the two involved tiles, regardless of the specific
encoding scheme, i.e., double defect model [10] or lattice
surgery model [3]. Logical qubits are represented as small
boxes in Fig. 1, and channels are the residual regions used to
establish the paths (depicted by the lines). CNOT gates can be
completed within one clock cycle, regardless of the path length.
Simultaneous execution of CNOT gates requires non-intersect
corresponding paths.

Many works focus on the paths of CNOT gates to reduce
the latency caused by path conflicts [3], [17], [19]. Braidflash
[19] reduces the latency of CNOT gates on the critical path
by assigning priority to CNOT gates to reduce the delay of
the conflicts. AutoBraid [17] identifies specific patterns to find
non-intersecting paths and EDPCI [3] draws inspiration from
the concept of edge-disjoint paths. However, they have all
overlooked a crucial aspect: within the context of surface code,
the communication resources on the chip are software-defined.
We use bandwidth to represent the width of the channel, with
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which we can adaptively adjust communication resources for
varying circuits.

Figure 1: Motivation example: a logical quantum circuit and
its corresponding surface code encoded circuit.

Motivation Example: As shown in Fig. 1, five independent
gates are ready to be executed. Each gate’s path requires a
certain width of physical qubits during execution. Due to the
lack of quantitative analysis on the channels, the path occupies
the entire channel in the scheduling process of previous works.
As a result, no five disjoint paths allow these gates to be
executed simultaneously. However, in the optimal case, one
clock cycle is enough to execute the circuit with the same chip
and tile placement by better allocating the channel resource.

In this paper, we study the surface code circuit mapping
and scheduling problem. We propose resource-adaptive trans-
forming methods Ecmas which reduce the execution time of
circuits on target chips by customizing channel resources for
each circuit. The main idea is to characterize the circuit and
the chip and then schedule communication resources based on
the circuit’s requirements. Our contributions are summarized
as follows:

• We formulate the surface code circuit mapping and
scheduling problem and analyze the computational com-
plexity of double defect model.

• We define Circuit Parallelism Degree and Chip Communi-
cation Capacity to quantitatively characterize circuits and
chips. Further, we introduce bandwidth to customizing
channel resources for each quantum circuit.

• We propose resource-adaptive mapping and scheduling
methods that can be applied to both double defect
and lattice surgery models. With sufficient physical
qubits, Ecmas offers Ecmas-ReSu which can provide
performance-guaranteed results efficiently.

• We evaluate Ecmas for circuits from IBM Qiskit [29],
QASMbench [24], etc. With the same chip resource
configuration, Ecmas eliminates 51.5% of the execution

time on average and 67.3% at most compared with
Autobraid [17] for double defect model. Ecmas could
find the optimal result for most benchmarks for lattice
surgery model. Compared with EDPCI [3], Ecmas can
achieve optimizations up to 13.9%.

The rest of this paper is organized as follows. We intro-
duce the background in Section II and then formulate the
surface code mapping and scheduling problem in Section III.
We describe our methods in Section IV and evaluate their
performance in Section V. Related works and conclusion are
given in Section VI and Section VII.

II. BACKGROUND

In this section, we present a brief overview of quantum error
correction and surface code model.

A. Quantum Error Correction

Quantum programs can be described by the quantum circuit
model, which consists of a sequence of quantum gates per-
formed upon a collection of qubits. Qubits are the fundamental
units in quantum computing which can be represented by a
normalized vector. Quantum gates are unitary operations that
operate on qubits.

However, quantum computing suffers from the inevitable
noise of interactions with the environment and imprecise
operations. QEC codes are necessary to build fault-tolerant
quantum computing. It encodes a logical qubit with multiple
physical qubits, improving reliability. The noise of the quantum
system appears not only in the communication process but also
in the computation process. Therefore, the quantum circuit
must run under the protection of QEC. QEC codes should
detect and correct errors periodically during the execution.

B. Surface Code

Among various QEC codes, surface code is a prominent
candidate for achieving fault-tolerant quantum computation in
superconducting implementations. It has a high threshold of
around 1% and alignment with 2D architectures, making it a
feasible error correction code for practical demonstrations on
real machines [1], [23], [39].

As shown in Fig. 2, surface code is realized on a 2D
lattice of physical qubits, including data and measurement
qubits. Data qubits store quantum states, while measurement
qubits identify error occurrences. Based on the measurement
circuit, measurement qubits are categorized as X-stabilizers
and Z-stabilizers. During the execution, measurement circuits
are periodically executed to detect the errors. The time for
executing one measurement circuit is called a surface code
cycle. Surface code can be classified as double defect [10] and
lattice surgery [3] based on the different approaches to creating
logical qubits.

1) Double Defect Model: In double defect model, a logical
qubit is created by turning off two defects of the same type.
According to the type of defects, the logical qubit is initialized
into X-cut or Z-cut, as shown in Fig. 2b and Fig. 2c. Code
distance d determines the number of errors that surface code
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Figure 2: (a) Surface code implementation on 2-D lattice,
the white circles are data qubits and the gray circles are
measurement qubits, (b) X-cut tile, (c) Z-cut tile.

can detect and correct. All single-qubit gates can be executed
in software or locally, only involving physical qubits around its
two defects under the assumption in [19] that a steady supply
of magic state qubits is at the location of the data. We denoted
these physical qubits as tiles and the rest of the qubits on the
chip as channels.

CNOT gate requires communication between the control
and target qubit, achieved by performing braiding operations
in the channels. A braiding operation turns off the involved
measurement qubits on the braiding path. It follows the
topological rules: the braiding paths are equivalent as long as
the starting and ending tiles are the same. Braiding operations
of any length can be executed within 2d surface code cycles,
equivalent to one clock cycle. The braiding operation can only
be performed between logical qubits with different cut types.
In practice, each tile contains two double-defect logical qubits,
one for computation and one for ancilla. There are two ways
to perform a CNOT gate with qubits of the same cut type. One
is to use three braiding operations with ancilla qubit, as shown
in Fig. 3a. The other is to modify the cut type of the tile and
then perform the braiding operation, as shown in Fig. 3b. They
require three cycles and four cycles, respectively.
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Figure 3: CNOT gate between logical qubits of same cut type:
(a) three braiding operations without cut type changing, (b)
changing the cut type and executing the CNOT gate.

2) Lattice Surgery Model: Lattice surgery eliminates the
holes within tiles and uses the rotated surface code (as shown
in Fig. 5b) to reduce the requirement of qubit resources for
surface code with the same code distance. CNOT gates in lattice
surgery are attained by conducting ZZ measurements between
neighboring tiles. A straightforward approach for a CNOT gate
at a distance k involves continuously swapping logical qubits

until they are adjacent, requiring a minimum of k × d surface
code cycles to complete. Another method involves constructing
Bell states using ancilla qubits for execution, achievable within
2× d surface code cycles i.e. one cycle as shown in Fig. 4.
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Figure 4: The CNOT gate implementation in lattice surgery
model by constructing Bell states.

1/2d

2d

d

d

d

1/2d

(a)

2d

2d

(b)

Figure 5: Simplified tile models: (a) double defect model, (b)
lattice surgery model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formally define the surface code mapping
and scheduling problem for both double defect and lattice
surgery models and demonstrate the complexity of the problem
under double defect model.
Quantum circuit: We consider an input quantum circuit P
with n logical qubits (Fig. 6a). Since single-qubit gates can be
implemented by software or locally in tile, we only consider
CNOT gates in this work. Generally, P can be represented as a
directed acyclic graph (DAG) GP , as shown in Fig. 6b. In GP ,
each node is a CNOT gate, and edges indicate the dependency
between gates. The critical path length of GP is the circuit
depth, denoted as α. The communication graph GC is another
representation of a quantum circuit, as shown in Fig. 6c, where
each vertex is a logical qubit, and edges indicate CNOT gates
between the qubits, and the weight of the edge is the number
of the corresponding CNOT gates.
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Figure 6: Three representations of quantum circuit: (a) original,
(b) DAG, (c) communication graph.

Quantum chip: We assume that the topology of a quantum
chip is the 2D lattice of the physical qubit, where each qubit
is associated with four adjacent qubits, except the qubit on the



chip’s boundary. We use Lm1×m2
to denote the 2D chip with

m1 rows and m2 columns of physical qubits.
Surface Code Encoded Circuit: The encoded circuits PS

should satisfy the following two constraints. First, the execution
scheme should be equivalent to the logical circuit, i.e., all gates
are scheduled, and the scheduling order is consistent with the
topological sort of gates in GP . Second, the CNOT paths of the
gates executed in one cycle do not intersect. The execution time
of a circuit is ∆× 2d× τ , where ∆ is the cycle number and τ
is the execution time of each surface code cycle. Since d and
τ have the same effect on different mapping and scheduling
methods, we simplify the execution time as cycle number ∆.
Surface Code mapping and scheduling Problem: Given
an input quantum circuit P , a specific quantum chip Lm1×m2

and the required code distance d find an initial mapping and
the execution scheme that satisfy the surface code circuit
constraints with the cycle number of circuit ∆PS be minimized.

Next, we will refine the models for double defect and lattice
surgery approaches. We further provide detailed descriptions
of each model and offer formal problem definitions.

A. Double Defect Model

Tile: A tile is a square array of 5d × 5d physical qubits, as
shown in Fig. 5a, each tile contains two logical qubits, one for
mapping logical qubits and one for ancilla. We use (Ta,b, Cuti)
to denote tile Ti, where (a, b) is the position of the upper left
corner of the tile and Cuti is its cut type.
Channel: Channel is used to perform braiding operations.
Each braiding path requires a width of 2.5d physical qubits.
We consider the occupation of a braiding path within a channel
as a lane. We introduce bandwidth to characterize the number
of lanes in each channel. The bandwidth of a channel Ci is
⌊ Wi

2.5d⌋, where Wi is the number of physical qubits in the width
of the channel Ci. Then, we consider the minimum bandwidth
of channels within the chip as the chip’s bandwidth.

Fig. 7 illustrates the process of surface code transformation
for the double defect model. We present the formal description
as follows.

q1

q2

q3

q4

q5

g1

g3

g4g2

gg4

gg1

gg2

gg3

q1 q2 q3

q4 q5 q6

g1

q1 q2 q3

q4 q5 q6

g2

g3

q1 q2 q3

q4 q5 q6

g4

1st – 3rd clock cycle 4th clock cycle 5th clock cycle

Bandwidth = 2

q2

q1
q5

q4
q3

1

1

1
1

Figure 7: A five-step execution scheme for the quantum circuit
in Fig.6a using the double defect model, where the gray boxes
are for X-cut tiles and the white boxes are for Z-cut tiles.

Problem 1: Initialization Problem for Double Defect.
Input: An input logical circuit P , a 2D lattice chip Lm1×m2

,
the required code distance d and a natural number k.
Output: Whether there is an initial tile mapping Tmapping =
{qi → (Ta,b, Cuti)} such that the number of cycles of the
optimal surface code encoded circuit PS

OPT is upper bounded
by α+ k, namely, ∆PS

OPT < α+ k.

Problem 2: Scheduling Problem for Double Defect.
Input: An input logical circuit P , a 2D lattice chip Lm1×m2

and an initial tile mapping Tmapping .
Output: A surface code encoded circuit PS with its number
of cycles ∆PS

minimized.
Hardness:

Theorem 1: The surface code tile initialization problem for
double defect model is NP-hard.

Proof sketch:
We reduce the Initialization Problem for double defect

model into a 3-SAT problem. For more details, please refer to
Appendix A.

B. Lattice Surgery Model
Tile: As shown in Fig. 5b, each small box represents a tile that
can be mapped as a logical qubit, with ⌈

√
2d⌉×⌈

√
2d⌉ physical

qubits. We denote tile Ti by Ta,b, where (a, b) represents the
upper left position of this tile.
Channel: Each channel is composed of tiles, which are ancilla
logical qubits to generate Bell states for communication. Since
both logical qubits and channels are constructed from tiles,
the width of a path and a tile are the same, consisting of d
physical qubits. The bandwidth of the channels Ci is given by
⌊ Wi

⌈
√
2d⌉⌋. The chip’s bandwidth is the minimal bandwidth of

its channels.
Fig. 8 shows the process of surface code transformation

for the lattice surgery model. Below, we present the formal
depiction of these problems.
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Figure 8: A three-step execution scheme for the quantum circuit
in Fig. 6a using the lattice surgery model.

Problem 3: Initialization Problem for Lattice Surgery
Input: An input logical circuit P , a 2D lattice chip Lm1×m2

,
the required code distance d and a natural number k.
Output: Whether there is an initial tile mapping Tmapping =

{qi → Ta,b} such that ∆PS
OPT < α+ k, namely, the number

of cycles of the optimal surface code encoded circuit PS
OPT is

upper bounded by α+ k.
Problem 4: Scheduling Problem for Lattice Surgery.

Input: An input logical circuit P , a 2D lattice chip Lm1×m2

and an initial tile mapping Tmapping .
Output: A surface code encoded circuit PS with its number
of cycles ∆PS

minimized.
Hardness: Herr et al. [15] demonstrated that the complexity
of surface code mapping and transforming problem is NP-
complete for lattice surgery model.

IV. SYSTEM DESIGN

It is a non-trivial task to optimize circuit mapping and
scheduling on limited qubit resources. To address the problem,



firstly, we introduce two novel metrics: Circuit Parallelism
Degree and Chip Communication Capacity (Section. IV-A) to
characterize quantum circuits and chips. Then, we propose
resource-adaptive algorithms Ecmas (Section. IV-B) with
customized initialization of chip resources for each circuit.
Further, with sufficient physical qubits on the chip, Ecmas-
ReSu can have a shorter transforming time and performance-
guaranteed result. An overview of our comprehensive toolflow
is shown in Fig. 9.
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Figure 9: Overview of Ecmas.

A. Pre-processing

1) Quantum Circuit Profiling: Different quantum circuits
may have various demands on communication resources. We
introduce Circuit Parallelism Degree (denoted as PM) to
characterize the maximum demand of communication resources
of a circuit.

Definition 1: Circuit Parallelism Degree: Given a quantum
circuit P , GP = (V,E). A partition π is to divide nodes v ∈ V
into ∆GP

disjoint set V1, V2, ..., V∆GP
, such that for u ∈ Vi and

v ∈ Vj , if (u, v) ∈ E, then i > j. PM = minπ max
∆GP
i=1 |Vi|

Finding PM is equivalent to given n tasks and their
precedence constraints, minimizing the number of machines
used while the whole schedule is of minimum length. Finke
[9] has proved that this is NP-complete.

We propose a heuristic algorithm (Algorithm Para-Finding)
to find the circuit’s estimate Circuit Parallelism Degree P̃M
and the corresponding execution order. Our methods use layers
to keep track of the execution order of gates, where layer1
represents the operations to be performed in the first time
cycle. For any gate i, we record two values, the highest and
lowest layers, that the gate can be scheduled. Layers are
determined by the gate’s parents and children nodes, denoted
as parenti and childi. Lowi = maxj∈parenti Lowj + 1 and
Highi = minj∈childi

Highj − 1. Then, we calculate the
difference between the gates’ high and low values and choose
the gate with the smallest difference. For this gate, we schedule
it to the layer with the fewest gates to execute in all the possible
layers. After that, we update the low value of its child nodes
and the high value of its parent node. We repeat this process
until all the gates are scheduled. The maximum number of
gates per layer is P̃M of this circuit.

2) Quantum Chip Analyzing: We define the Chip Communi-
cation Capacity to characterize the number of parallel CNOT
gates supported by a chip, denoted as C. According to [17],
any three CNOT gates can be executed simultaneously. As we
refine the chip model, we generalize the previous theorem to
the case that any ⌊ b−1

2 ⌋+3 braiding operations can be executed
simultaneously where b is the chip’s bandwidth.

Definition 2: Chip Communication Capacity: Given a quan-
tum chip, C is the max number u that for any u independent
CNOT gates with an arbitrary placement of tiles, there exists
a simultaneous path schedule for all CNOT gates.

Theorem 2: For a chip with bandwidth b, given an arbitrary
placement of the operand qubits, there exists a simultaneous
paths schedule for ⌊ b−1

2 ⌋+ 3 gates.
Proof: According to Autobraid [17], any three CNOT opera-
tions must be able to execute simultaneously on a chip with
bandwidth 1. The path of the additional CNOT gate has to
intersect with others if and only if one involved tile is inside
a ring and the other is outside. A ring is composed of paths
and fully occupied channels. Increasing the bandwidth of each
channel on the chip by two would break this ring and enable
a path connecting two arbitrary tiles on the chip. Therefore,
when the chip’s bandwidth is b, paths exist for ⌊ b−1

2 ⌋ + 3
CNOT operations to be executed in parallel.

B. Transforming

1) Initial Mapping: To generate a preferred tile location
mapping, we employ the following three steps (Line1-3 in
Algorithm1):
Shape Determining. First, we determine the shape of the
logical tile array, i.e., whether to initialize it as a 3× 3 array
or a 2× 4 array for a circuit with eight logical qubits when
both schemes are available on the chip. Then, We select an
array shape with the minimum perimeter. As shown in Fig.
10a, we choose the 3× 3 tile array.
Mapping Establishing. Secondly, We map each logical qubit to
its corresponding logical tile according to communication cost,
as shown in Fig. 10b. The communication cost is calculated
by cost function f =

∑
i,j γi,j × li,j , where li,j represents the

Manhattan distance between the two tiles Ti and Tj , and γi,j
is the number of CNOTi,j in the circuit. Mapping qubits that
frequently communicate together can effectively reduce the
communication cost. Here, we employ the Metis [21] method,
an iterative graph partitioner, to generate mappings based on
the qubit communication graph GC and tile array. Due to the
stochastic steps in the mapping generation, we generate multiple
mappings and select the one with minimal communication cost
as our final result.
Bandwidth Adjusting. Finally, we assign the rest of the qubit
resources to each channel based on their occupancy status, as
illustrated in Fig. 10c. We pre-execute each gate in the circuit to
record its shortest path without considering the non-intersecting
restrictions. Then, we increase the bandwidth for channels that
perform the most paths. In most cases, this process effectively
reduces the wait caused by channel resource occupation.

2) Scheduling: Considering the qubit resources on the target
chip may be limited or sufficient, we design two algorithms to
maximize the utilization of resources.
Scheduling for limited Resources. When the resources of
physical qubits are limited, i.e., when P̃M > ⌊ b−1

2 ⌋+3, it may
be difficult to find non-intersecting paths to execute all current
executable gates. However, the number of children in gates of
currently executable gates varies. We assign priorities to these
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Figure 10: Tile location mapping process: (a) Shape determin-
ing, (b) mapping establishing, (c) bandwidth adjusting.

Algorithm 1: Scheduling for Limited Resources
Input: Quantum Circuit P and Chip Lm1×m2

Output: Encoded Circuit PS

1 tile array = Tile shaping(Lm1×m2
);

2 Mappings = Metis(GC);
3 M location = Select(Mappings,cost function);
4 if double defect model then
5 M cut = bipartite(GP );
6 end
7 while GP not empty do
8 gates=GP .front gate
9 gates pri = priority(gates);

10 for gi(qa, qb)← gates pri.begin() to
gates pri.end() do

11 if Cuta ̸= Cutb or model = lattice surgery then
12 PS .add(path(gate, chip now));
13 else
14 Ma = Mta + θMsa;
15 Mb = Mtb + θMsb;
16 min value,min index = min(Ma,Mb);
17 if min value < 0 then
18 PS .add(Cutmin index modification);
19 else
20 PS .add(path(gate, chip now));
21 end
22 end
23 end
24 end
25 return PS , M location

nodes, effectively reducing latency at the bottleneck (Line 7
- 12 in Algorithm 1). The priority of a gate is determined by
the remaining gates number (how many gates depend on it)
and criticality (the length of the critical path of the remaining
gates). Gates with higher criticality are prioritized. When two
CNOT gates have the same criticality, we select the gate with
more remaining gates to allow more gates to execute earlier
to utilize non-congested cycles better.

The time complexity of this algorithm is O(g ∗m1 ∗m2),
where g is the number of CNOT gates in the quantum circuit.
The algorithm searches for paths for at most O(g) gates, and
the maximum time required to find a path for each CNOT gate
is O(m1 ∗ m2). Here, O(m1 ∗ m2) is the number of nodes
available for path selection on the chip, which is m1∗m2/d∗d,
where d is the code distance and the side length of each tile.

Algorithm 2: Scheduling for Sufficient Resources
Input: Execution Scheme E
Output: Encoded Circuit PS , initialization

1 now step = 0;
2 while i < E.length() do
3 while G is bipartite graph do
4 for gate← E[i].begin() to E[i].end() do
5 G.add edge(gate);
6 end
7 i++;
8 Mc = bipartite(G);
9 end

10 if having mapping then
11 PS .add(change mapping to Mc);
12 else
13 initialization = Mc

14 end
15 for j ← now step to i do
16 find braiding path(E[j]);
17 PS .add(E[j]);
18 end
19 now step = i;
20 end
21 return PS , initialization

Scheduling for Sufficient Resources. When ⌊ b−1
2 ⌋+3 ≥ P̃M,

an execution scheme can be rapidly derived from Algorithm
Para-Finding and Theorem 2. Algorithm Para-Finding provides
P̃M for this quantum circuit and a CNOT gate order scheme that
achieves P̃M. This scheme indicates which gates are executed
in each time cycle. Since the number of gates executed in
each cycle is smaller than ⌊ b−1

2 ⌋+ 3, employing the methods
outlined in Proof 2 to determine the corresponding paths for
these gates becomes feasible.

C. Optimizations for Double Defect Model

Previous works Braidflash [19] and Autobraid [17] do not
consider the cut type by assuming all tiles have the same cut
type. However, cut type is critical in transforming for double
defect model, providing a significant opportunity to reduce the
time on the table. For a CNOT gate, it takes three cycles to
be executed if two involved tiles are of the same cut type, but
only one cycle when cut types are different.

1) Cut Type Initialization:
The goal of the cut type initialization is to enable the

execution of as many CNOT gates as possible within a single
cycle. If the qubit communication graph is bipartite, we assign
the same cut type to the logical qubits in the same set. This is
the optimal cut type initialization, with which all CNOT gates
can be implemented in one cycle.

However, for circuits whose qubit communication graph is
not bipartite, find the optimal cut type initialization is NP-
hard, according to Theorem 1. We propose a greedy algorithm
that satisfies the requirement of cut type for gate executed



earlier. To end this, firstly, we construct a sub-graph of the
qubit communication graph where each vertex corresponds to a
logical qubit. Then, we add the gates with no precursor in the
current dag into the sub-graph. Next, we remove these gates
in the DAG. Repeat these two steps until the newly added
edges make the sub-graph no longer bipartite. The logical
qubits belonging to the same set in this bipartite sub-graph are
initialized to the same cut type.

2) Scheduling: When involving two tiles of a CNOT gate
are of the same cut type, we estimate the impact of modifying
cut type by calculating the M-value of each tile, specifically
M-value = Mt + θ × Ms. Mt is the impact on time. It
takes three cycles to execute the operation directly and four
cycles with modification. If this tile is idle previously, the
modification operation can be performed earlier to reduce
the time cost. Ms is the impact of the occupation of the
channel. CNOT gate needs two braiding operations between
the tiles without changing the cut type but only needs one after
modification. We adopt the look-forward strategy considering
the impact of this modification on the children gates of this
gate. The parameter θ is used to determine the weights of
the two factors, Mt and Ms, in the current situation, where
θ = (|ready gate| × 2)/bandwidth× n. We choose to modify
the type of the tile when the M-value is greater than 0 (Line
14 - 23 in Algorithm 1).

3) Sufficient Scheduling: When physical qubit resources are
sufficient, we adopt the methods in Section IV-B2 to determine
the tile location mapping and gate schedule scheme. The key
idea for cut type initialization and scheduling is to make all
CNOT gates execute in one cycle by remapping the cut type.

We propose the cut type scheduling algorithm Algorithm 2,
whose execution flow is as follows. Firstly, we construct the
qubit communication graph by sequentially adding edges from
the execution scheme until it is no longer bipartite. Then, we
use this bi-partition graph to initialize the cut type for executing
this sub-circuit. When the operand tiles of CNOT gate are of
the same cut type, our methods spend three cycles to modify
the cut type to the new mapping found in the same way above.
These two steps are iterated over until all the gates have been
scheduled. We provide the cut type scheduling algorithm with
5
2 -approximation guarantee (as shown in Theorem 3).

Lemma 1: The qubit communication graph generated by any
two layers of gates is bipartite.
Proof: Since logical qubits can participate in at most one
CNOT gate in each layer, the qubit communication sub-graph
generated by the 2-layer circuit has a maximum degree of two,
and the two edges connected by a vertex must belong to two
different layers. A graph with a maximum degree of two can
only consist of lines or rings. A ring must be an even ring
since two edges must be connected by a vertex in the odd
ring that belongs to the same layer. As a result, this graph is
bipartite since the qubit communication sub-graph can only
consist of lines and even rings.

Theorem 3: Algorithm 2 is 5
2 -approximation.

Proof: For every two cycles of gates in the execution scheme
given by Algorithm Para-Finding, the optimal cases must

take two braiding cycles to execute since the gates with gate
dependencies cannot be executed simultaneously. According to
Lemma 1, our method requires at most five braiding cycles to
execute these two layers of gates, three cycles for modifying
to optimal cut type mapping, and two cycles for performing
braiding operations. Thus, our algorithm is 5

2 -approximation.

V. PERFORMANCE EVALUATION

In this section, we first compare the performance of our
methods to several state-of-the-art methods, AutoBraid [17]
for double defect model and EDPCI [3] for lattice surgery
model. Then we evaluate the performance of Ecmas as
the communication resources increased. The details of our
evaluation results are shown in Section V-B and we highlight
our key findings as follows:

• For double defect model, Ecmas outperforms Autobraid
[17], reducing the cycle of the transformed circuit by
67.3% at most, on average 51.5%.

• For lattice surgery model, Ecmas reaches the optimal
solution in most of the test benchmarks, reducing the cycle
of the transformed circuit by 13.9% at most compared
with EDPCI [3].

• Compared with the result in the minimum viable chip,
when the chip size increases 4x, Ecmas reduces the
execution time by 10.8% and 30.9% in the double defect
model and lattice surgery model respectively.

• Ecmas exhibits excellent scalability, effectively reducing
the execution time of circuits as the chip size increases,
while maintaining linear growth in compilation time.

A. Evaluation Setting

Metrics. We use the number of cycles to represent the
communication time, which is used to measure the effectiveness
of the compilation results.
Baselines. For double defect and lattice surgery models,
we select the state-of-the-art algorithms AutoBraid [17] and
EDPCI [3] as our baselines.
Chip Configuration. We evaluate our mapping and scheduling
algorithm on three resource configurations Ll×l: minimum
viable, 4x, and sufficient qubits. For minimum viable qubits,
l = ⌈

√
n⌉×5d for double defect model and l = ⌈

√
n⌉×⌈

√
2d⌉

for lattice surgery model, which is the smallest square grid chip
that provides enough qubits. The 4x resource for lattice surgery
is a chip with l = ⌈

√
n⌉ × 5d. And the l for Ecmas-ReSu on

sufficient resources depends on PM of the circuit.
Benchmarks. We use the quantum circuit from the previous
works, including IBM Qiskit [29], ScaffCC [20], QUEKO [35],
QASMbench [24] and random circuits with certain parallelism
degree.
Evaluation Platform. Our experiments are performed on
Intel(R) Xeon(R) CPU 6248R 96vCores 3.00GHz, with 256GB
DDR4 memory. The operating system is Ubuntu 20.04.

B. Experiment Results

1) Double Defect Model: We evaluate the performance of
Ecmas with two chip configurations: 1) minimum viable



Table I: Overview of Experiment Results

Circuit n α g1 Autobraid Ecmas-dd EDPCI Ecmas-ls
Min Min ReSu Min 4X Min 4X

dnn n8 8 48 192 147 48 48 48 53 48 48
grover 9 110 132 330 166 140 110 110 110 110
qpe n9 9 42 43 126 70 54 42 42 42 42
BV 10 10 5 5 15 5 5 5 5 5 5

QFT 10 10 93 105 279 165 96 93 93 93 93
adder n10 10 55 65 165 78 82 55 56 55 55
ising n10 10 20 90 60 20 20 20 20 24 20
sat n11 11 204 252 612 336 339 204 204 204 204

square root n4 11 221 294 663 379 389 221 225 221 221
multiplier n15 15 133 222 399 232 244 133 134 133 133

qf21 n15 15 112 115 336 197 130 112 112 112 112
dnn n16 16 48 384 198 71 48 79 53 68 52

square root n18 18 644 898 1932 1047 1133 644 645 644 644
ghz state n23 23 22 22 66 22 22 22 22 22 22
multiplier n25 25 381 670 1143 659 717 383 385 381 381
swap test n25 25 63 96 201 89 99 67 65 63 63

wstate n27 27 28 52 84 28 28 28 28 28 28
BV 50 50 27 27 81 27 27 27 27 27 27

QFT 50 50 2363 2435 7089 4633 2366 2363 2363 2363 2363
ising n50 50 4 98 15 10 4 6 6 9 7

quantum walk 11 14104 14372 42312 20188 19669 14104 14104 14104 14104
shor 12 13412 13838 40248 22978 20315 13412 13414 13414 13412

1 n is the number of the qubits, α is the depth of the circuit, g is the CNOT gate of the circuit.

chip, and 2) sufficient resources. As shown in Table I,
Ecmas outperforms AutoBraid methods with a reduction by
67.3% at most in the number of cycles, on average 51.5%. In
Ecmas-ReSu, 40.9% of the circuits are further reduced in the
number of cycles. Compared with AutoBraid, the average cycles
are reduced by 57.1%. Increasing communication resources
addresses the latency caused by braiding congestion. Thus, only
the circuits suffering braiding congestion can benefit from the
increase in bandwidth. The greater the parallelism, the more
the time decreases as the bandwidth increases. Ecmas-ReSu is
not always the best among these results. The reason is that
the Ecmas-ReSu schedules gates have more strict limits for
performance guarantee.

2) Lattice Surgery: For most circuits, our approach obtains
the optimal solution as well as EDPCI in Table I. For circuits
with higher PM, Ecmas achieving better results reduction
cycle of up to 13.9% compared with EDPCI. Since the Ecmas-
ReSu for the lattice surgery model is guaranteed to yield the
optimal solution (as described in Section IV-B2 ), we did not
evaluate its performance here. Due to the absence of specialized
optimizations in our approach for circuits with specific patterns,
it falls EDPCI on the circuit ising n10 on the minimum viable
chip, whose CNOT gates are adjacent in the snake mapping.
However, the absence of an effective initial mapping hampers
EDPCI capacity to capitalize on the increased physical qubit
resources. Our approach can leverage additional chip resources
to reduce circuit depth. All results on the 4x resources are
superior to or equal to the minimal viable chip.

C. Sensitivity Study

In this section, we conduct sensitivity studies to investigate
the impact of our strategies, i.e., location and cut type
initialization, gate prioritizing, and cut type scheduling. We
also analyze the scalability of circuit parallelism and chip
size. These results demonstrate that our method outperforms
baselines on most quantum application circuits, especially those
with medium to high parallelism. Moreover, our algorithm
effectively utilizes the redundant physical qubit resources on
the chip to reduce the circuit cycle.

1) Initialization Method: We examine the impact of initial-
ization on the execution time in location and cut type. These
evaluations and the subsequent scheduling experiments are
conducted on the minimum viable chip.
Location: As illustrated in Table II, our method consistently
shows superior performance in most circuits. We compared
the influence of tile location selection on circuit depth with
the trivial mapping in EDPCI [3] and the Metis mapping [21].
The trivial method refers to a twisting layout of logical qubits,
where the qubits in the first row are placed from left to right,
followed by the qubits in the second row placed from right
to left, and repeated until all logical qubits are fully mapped.
The shortcomings on the Ising circuit primarily result from the
absence of specialized optimization targeting specific patterns.
Nevertheless, the overall performance trend underscores our
approach’s robustness across diverse scenarios.
Cut type: In most cases, our method outperforms the baseline
methods, as shown in Table III. We compare our cut type
initialization algorithm with the random and max-cut algorithms.
The random method assigns tiles with a random cut type.



Table II: Comparision of location initialization methods

Circuit name n α g Trivial Metis Ours

dnn n8 8 192 48 48 72 48
grover 9 132 110 112 110 110
qpe n9 9 42 43 42 42 42

ising n10 10 90 20 20 36 20
adder n10 10 65 55 55 55 55
QFT 10 10 105 93 95 93 93

multiply n13 13 40 23 25 24 23
square root n18 18 898 644 644 644 644
ghz state n23 23 22 22 22 22 22
swap test n25 25 63 96 63 63 63

ising n50 50 98 4 4 11 9

The max-cut method maximizes the number of CNOT gates
with different cut types. We use the one exchange method in
NetworkX to implement the max-cut partition. For specific
circuits such as ghz state n23, our initialization algorithm can
significantly reduce the number of cycles. This is because
the max-cut method aims to reduce the overall number of
CNOT gates with different cut types. However, the cut type of
tiles is dynamic since it can be modified during the execution.
The initialization method should emphasize the front part of
the quantum circuit.

Table III: Comparision of cut type initialization methods

Circuit name n α g Random Max-cut Ours

dnn n8 8 48 192 64 48 48
grover 9 110 132 173 172 166
qpe n9 9 42 43 73 76 70

ising n10 10 20 90 37 29 20
adder n10 10 55 65 85 82 78
QFT 10 10 93 105 171 173 165

multiply n13 13 23 40 39 37 35
square root n18 18 644 898 1052 1053 1047
ghz state n23 23 22 22 48 40 22
swap test n25 25 63 96 120 94 89

ising n50 50 4 98 11 10 10

2) Scheduling Strategy: We investigate our methods from
two perspectives: gate scheduling and cut-type scheduling.
Gate scheduling: According to the results in Table IV, our
method achieves optimal solutions in most benchmarks. We
compare our gate scheduling method with the circuit-order
approach in lattice surgery model, where circuit-order denotes
scheduling gates based on their appearance in the circuit.
Compared with circuit-order, our method optimizes up to 23%
of the execution time.
Cut type scheduling: As shown in Table V, our algorithm
outperforms the best baseline strategies on these benchmarks,
achieving an average reduction of 25% and up to a maximum
of 50%. We compared the cycle number of our methods with
the other two strategies: Time-first and Channel-first. These
two strategies determine whether to modify the cut type when
dealing with a CNOT gate with different cut types. The former
chooses the operations that make the CNOT gate complete
as soon as possible, while the latter minimizes the channel

Table IV: Comparison of different gate scheduling algorithms

Circuit name n α g Circuit-order Ours

dnn n8 8 48 192 66 54
grover 9 110 132 112 114
qpe n9 9 42 43 42 42

ising n10 10 20 90 26 20
adder n10 10 55 65 55 55
QFT 10 10 93 105 93 93

multiply n13 13 23 40 24 23
square root n18 18 644 898 644 644
ghz state n23 23 22 22 22 22
swap test n25 25 63 96 63 63

ising n50 50 4 98 9 9

occupation of this CNOT gate. Our optimization is caused
by our strategy of adaptively adjusting the weights of time
and channel based on resource conditions, making our strategy
perform well in most scenarios.

Table V: Comparison of different cut type scheduling

Circuit name n α g Channel-first Time-first Ours

dnn n8 8 48 192 48 48 48
grover 9 110 132 166 174 110
qpe n9 9 42 43 70 96 42

ising n10 10 20 90 20 20 20
adder n10 10 55 65 78 88 55
QFT 10 10 93 105 165 120 93

multiply n13 13 23 40 35 41 23
square root n18 18 644 898 1047 1117 644
ghz state n23 23 22 22 22 22 22
swap test n25 25 63 96 89 102 63

ising n50 50 4 98 8 8 4

3) Scalability: We explore the effectiveness of Ecmas on
various input quantum circuits and chip sizes. Determining
the parallelism of a given quantum circuit is challenging,
but generating quantum circuits with specified parallelism is
feasible. Inspired by QUEKO [35], we generate 50 random
quantum circuits (as a test group) with 49 qubits, 50 depth, and
parallelism ranging from 1 to 21. We use the average number
of cycles in each group as the result.
Scalability of Circuit Parallelism Degree: In lattice surgery
model, our approach generally outperforms the performance of
EDPCI for most circuits, particularly in circuits with parallelism
3 to 13. Our method’s performance is slightly less effective for
circuits with high PM than that of EDPCI. This is due to our
algorithm more likely to get trapped in local optima in these
cases. In double defect model, the optimization ratio increased
from 43% to 62.9% when Circuit Parallelism Degree increasing
from 1 to 21, as shown in Fig. 11b. This is mainly attributed
to our scheduling strategy for the cut type, which effectively
leverages the waiting time due to path conflicts. We save
significant channel resources by adjusting the cut type when
the tile cut types are the same.
Scalability of Chip Size: Fig. 12 illustrates the trends of
Ecmas’s performance (cycles) and efficiency (compiling time
ratio) as the chip size increases. The compiling time ratio is
τ(i,j)/τ(i,min) where τ(i,min) is compiling time of circuits with
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parallelism i at minimum viable chip and τ(i,j) is compiling
time of circuits with parallelism i at chip size j. We use
this metric to fairly compare the scalability among the three
algorithms Ecmas, Autobraid, and EDPCI were programmed
in Python, C++, and Julia. The chip is a square with the average
bandwidth per channel from 1 to 5. The result demonstrates that
our methods’ circuit cycles decrease as the chip size increases.
The execution time of the circuits with PM = 21 can be
decreased by 10.8% for double defect model and decreased by
30.9% in lattice surgery model when the average bandwidth
of the chip rises from 1 to 2.

VI. RELATED WORK

Most existing quantum compilers [25], [33], [38], [40] focus
on the physical qubit level compilation designed for NISQ
circuits with 50 to 200 qubits, which is not fault-tolerant. These
works focus on converting a logical circuit into a hardware-
dependent physical circuit with respect to CNOT gates applied
to physical qubits connected in the hardware.

Fault-tolerant compilation primarily focuses on architectures
based on surface code, as it is the most promising error-
correcting code in superconducting quantum computers. The
fundamental difference between compiling a surface code cir-
cuit and a NISQ circuit is separating communication resources
(channels) and computational resources (tiles). The resources
are software-defined and can be specialized for specific circuits.
The execution of CNOT gates is no longer achieved by moving
the data to the two physically adjacent physical qubits. Instead,
it takes place within the channel, using exclusive access
to communication resources. Depending on the method of
constructing logical qubits, surface code can be divided into
double defect [10] and lattice surgery [16] with different logical
operation implementation strategies. Double defect employs
the braiding technique to perform CNOTgates. Braidflash [19]
abstracts the constraints of CNOT gates implementation into
braiding path disjoint. Autobraid [17] further discovers the
local parallelism pattern and designs a stack-based search
algorithm that enables efficient search for as many parallel
CNOT gates as possible. Lattice surgery is a novel entrant
in surface code approaches, employing a reduced number of
physical qubits for encoding a logical qubit. It utilizes ZZ
measurements for CNOT gate [26]. EDPCI [3] achieves long-
range CNOT gates by utilizing ancilla tiles to construct Bell
states. This approach requires a fourfold increase in physical
qubits but enables the completion of CNOT gates at arbitrary
distances within 2d surface code cycles. However, this approach
does not account for the impact of initial mapping. Disregarding
the circuit communication requirements with a trivial initial
mapping results in a paradoxical situation where the circuit’s
performance worsens as chip resources increase.

Other works on fault-tolerant quantum compilation have
focused on synergy with chip characteristics. Wu et al. [36]
proposes a lattice encoding method for superconducting chips,
which adapts the various chip structures to the surface code’s
2D lattice. Previous works [6], [27] involve adapting the
surface code to hexagonal chips, reducing chip connectivity
to improve the accuracy of physical qubits. Some efforts [27]
focus on utilizing operations with lower error rates during the
compilation process to enhance circuit accuracy. Preskill et
al. [28], on the other hand, centers on concatenating surface
code and high-rate code, like quantum LDPC encoding, to
address the challenges of low code rate and limited scalability
in surface code implementations.

VII. CONCLUSION

In this paper, we study the surface code mapping and
scheduling problem for the lattice surgery and double defect
models. We formalize the problems in both models and
establish the problem’s complexity, particularly highlighting
challenges in the double defect model. We introduce Circuit
Parallelism Degree and Chip Communication Capacity to
quantitatively analyze quantum circuits and quantum chips.
Our mapping and scheduling methods, named Ecmas, feature
algorithms for scenarios with sufficient and limited qubit
resources. Extensive evaluations show that Ecmas provides



significant reduction over the state-of-the-art approaches by
reducing the execution time by 33.3% to 67.3% for double
defect model and reducing by up to 13.9% for lattice surgery
model.

Limitation and future work: As Circuit Parallelism De-
gree and Chip Communication Capacity are critical parameters
for our mapping and scheduling methods, we still lack effective
algorithms to obtain accurate results. In addition, our cost
function to determine the importance of the current gate
shows less effectiveness for high-parallel circuits compared to
circuits with lower parallelism. Our investigation anticipates
dynamic transforming strategies modifying mappings during the
transforming process. Moreover, the complexity of scheduling
problems and the bounds of chip communication capacity are
still open problems.
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APPENDIX A
PROOF OF THEOREM 1

We prove that any instance of a 3-SAT problem can be
reduced to an instance of a surface code initialization problem
in polynomial time. We can construct the corresponding
quantum circuit for any n-clause 3-SAT problem that the 3-SAT
problem can be satisfied if and only if an initialization exists
to execute this circuit no more than 10 + 3n cycles. Here, we
assume that the bandwidth of the channel is sufficient. The
quantum circuit, as shown in Fig.13e, is constructed in the
following way:

For each three-literal clauses Ci construct a sub-circuit with
8 qubits, qia, qib, qic represent three literals a, b, c in the clause,
qia′ , qib′ , qic′ are the ancilla qubits respectively, and qiT , qiF
represent the logical qubits initialized into X-cut tile and Z-
cut tile. If the clause’s first literal a is positive, we add a
CNOT gate between q1a and q1T , otherwise between q1a and
q1F . Then we add a CNOT gate between q1T and q1F . After
that we add two ancilla CNOT gates between q1b and q1b′ , as
well as q1c and q1c′ . For the second and third literals b and
c, the circuit is constructed in the same way as above. For
example, the sub-circuits corresponding to clauses (a∨¬b∨ c)
are shown in Fig.13a. If the clause is true, a tail mapping exists,
allowing the depth of this sub-circuit to be no more than 10.
The cut type of each tile is mapped one-to-one with the true
and false values of this literal. Here, the black gates are used
for placeholders so that the tiles do not have time to change
their tile type within 10 cycles.

Each three-literal clause generates a corresponding sub-
circuit, which we connect in parallel, and the depth of it
is no more than 10 if and only if all the clauses are True.
Next, we must ensure that the same literal in different clauses
corresponds to the same cut type. This is achieved through sub-
circuit in Fig.13b. We declare an ideal literal and let the literal
in different clauses perform CNOT gates with it. The circuit
can achieve its shortest depth only if they are of different types
to the ideal literal. Here, the black gate is used for placeholder
operations if a tile modifies its tile type and to supplement the
circuit so that the shortest depths corresponding to different
literals are n. For the ideal True and False, we require an
additional n-depth sub-circuit in Fig.13c that makes their cut
types different. Sub-circuit Fig.13d ensures that the ideal literal
does not modify its cut type while waiting for the clauses
sub-circuit to execute.
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Problem
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