
A Case Study of Using HCI Methods to Improve Tools for Programmers

Andrew Faulring, Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{faulring, bam}@cs.cmu.edu

Yaad Oren, Keren Rotenberg
Technology & Innovation Platform BU

SAP Labs Israel Ltd.
Ra'anana, Israel

{yaad.oren, keren.rotenberg}@sap.com

Abstract—For more than five years, researchers at Carnegie
Mellon University have been collaborating with several SAP
teams to improve the usability of SAP’s developer tools and
programming APIs. Much research has shown that HCI tech-
niques can improve the tools that developers use to write soft-
ware. In a recent project, we applied HCI techniques to a SAP
developer tool for the SAP NetWeaver Gateway product. The
SAP team building this tool uses agile software development
processes, which allowed them to quickly improve the tool’s
usability based upon the evaluations.

Keywords-APIs; heuristic evaluation; cognitive walkthrough;
agile software development; REST; OData; SAP NetWeaver
Gateway; natural programming

I. INTRODUCTION
The field of human-computer interaction (HCI) has de-

veloped a wide variety of techniques for the design and eval-
uation of user interfaces (UIs). The Natural Programming
project [1] at Carnegie Mellon University (CMU) has repeat-
edly demonstrated that many of the these techniques can be
adapted to improve the effectiveness of the tools and lan-
guages used by developers. For example, we have applied
them to the user interfaces of integrated development envi-
ronments (IDEs) [2, 3], debuggers [4], programming lan-
guages [5], and APIs (application programming interfaces)
[6–10]. Many HCI techniques are applicable, and we have
used contextual inquiry, heuristic evaluation, cognitive walk-
through, ethnography, and controlled lab studies. Improving
the usability of developer tools can allow developers to work
more efficiently and enable more people to become develop-
ers. This in turn should improve the quality of the resulting
programs since more iterations can be made and more people
can be involved in the development process.

For more than five years, our group at CMU has been
collaborating with several teams at SAP to improve the usa-
bility of their developer tools. Members of our group have
helped with the redesign of a business process rules engine
called SAP BRFplus [11], and proposed improvements to
SAP’s eSOA (enterprise Service Oriented Architectures)
web services [6, 10].

II. SAP NETWEAVER GATEWAY
The SAP Business Suite provides customers with a set of

business applications and tools for managing their supply
chains, supplier relations, human resources, accounting, and

so forth. SAP’s software enables developers to create and
customize new processes according to their company’s busi-
ness needs. SAP provides the core software, sometimes with
industry-specific functionality, and then developers, who are
often consultants, customize the software for each customer,
often by writing code. SAP provides a range of programming
and software management tools to support the customization
process. Developers use SAP’s ABAP programming lan-
guage to write programs that interoperate with Business
Suite systems.

Recognizing the growing market demand of exposing
SAP services to non-SAP UI environments, such as mobile
devices, the web, and social media applications, SAP created
the NetWeaver Gateway 1 product, which provides a web
services interface for applications to consume data stored
inside a Business Suite system. SAP recognized that many
mobile and web application developers were familiar with
new web technologies such as REST [12], but did not have
experience with SAP’s ABAP language. So SAP developed
the NetWeaver Gateway product to facilitate the consump-
tion of SAP services by non-SAP developer communities.
The NetWeaver Gateway provides an OData-based API for
consuming services. OData2

As part of the NetWeaver Gateway product, SAP devel-
oped the “SAP NetWeaver® Gateway developer tool for
Visual Studio®” (hereafter “Gateway VS tool”) that helps
developers create “starter kit” applications for the ASP.NET
framework. The Gateway VS tool provides a wizard-style
user interface in which developers design a basic version of
their application. The developer selects a Gateway service,

 builds upon the HTTP REST
architecture by adding a model for the data exchanged be-
tween client and server. Data is modeled as typed objects,
called entities, such as a sales order or a customer. Entity sets
are collections of entities of the same type, such as a set of
sales orders. Links define relationships between entities,
such as the customer of a sales order. OData uses the HTTP
REST methods (GET, PUT, POST, DELETE) for exchang-
ing the messages. There are OData libraries for common
mobile programming languages (Objective-C, Java, .NET),
and also for the Microsoft ASP.NET framework when an
HTML-based user interface is desired. These programming
languages enable applications to target the web and most
mobile devices.

1 http://www.sdn.sap.com/irj/sdn/gateway
2 http://www.odata.org/

978-1-4673-1824-2/11/$26.00 c© 2011 IEEE CHASE 2012, Zurich, Switzerland556

chooses the types of entities and the entity properties to be
displayed, and specifies the navigation between entities. The
Gateway VS tool then generates code, which implements the
UI, and proxies, which connect to the SAP system. The de-
veloper can inspect and modify the generated code, and the
code also serves as an example to help the developer learn
how to consume Gateway services using the ASP.NET li-
braries. Similar tools and plug-ins for IDEs have also been
developed for Eclipse and Adobe Flash Builder.

III. USABILITY EVALUATIONS
The CMU team consulted for six months with the SAP

NetWeaver Gateway Product Team. The CMU and SAP
teams were not collocated, so we communicated electroni-
cally and held weekly teleconferences. As part of our consul-
tation, SAP provided to us an early version of the Gateway
VS tool, which had not yet been released to the market, and
we performed two evaluations to find usability problems. In
the first evaluation, we performed a heuristic evaluation [13]
of the Gateway VS tool. In the second evaluation, we per-
formed a cognitive walkthrough [14] of the Gateway VS tool
by building an application for a common business use case
that SAP had identified.

A. Heuristic Evaluation
The heuristic evaluation technique [13] helps to identify

usability problems by having an expert examine the user
interface with respect to heuristics that describe high-level
behaviors that applications should have. Nielson developed
an initial set of heuristics such as “speak the user’s language:
… the terminology in user interfaces should be based on the
users’ language and not on system-oriented terms” (p. 123 in
[13]) and provide good error messages that use clear lan-
guage and “constructively help the user solve the problem”
(pp. 142–3 in [13]). We examined the tool’s user interface to
find where it might violate the heuristics. We identified usa-
bility gaps relating to the button labels, screen organization,
error messages, inconsistent workflow, lack of warning mes-
sages, and so forth. We discussed these issues during our
weekly teleconferences and later summarized all the issues in
an internal report documenting the problems and suggesting
ways to improve the user interface.

The SAP team developing this software uses the agile
software development process 3

The heuristic evaluation that was conducted by the CMU
team provided valuable input to the SAP NetWeaver Gate-
way Product team from the point of view of a non-SAP de-
veloper who would like to interact with SAP services from
their own native environment. The CMU team’s internal
report revealed how ASP.NET developers might approach

. The quick iteration cycle
allowed them to improve the software based upon our feed-
back. We were often given new versions to evaluate that
incorporated changes in response to issues we had recently
reported. After about three months from when we delivered
our report, SAP released an updated version of the Gateway
VS tool to market, which incorporated several of our sug-
gested changes.

3 http://www.agilealliance.org/

the Gateway VS tool and what their expectations might be
about how the user interface should work.

The SAP NetWeaver Gateway Product Team reviewed
the internal report and prioritized the issues that it raised into
different severity levels. As is accustomed in agile software
development methodologies, there was a clear need to turn
the evaluations into product specifications of tangible fea-
tures for the next release. Hence, the CMU findings that were
identified as “important” and “very important” were added to
the next Gateway VS tool release development plan.

B. Cognitive Walkthrough
In contrast to heuristic evaluation, which takes a more

holistic view, the cognitive walkthrough technique evaluates
how well a user interface supports one or more specific tasks
[14, 15]. The SAP team developed a common business use
case for a typical application that would consume SAP
NetWeaver Gateway services. The CMU team then attempt-
ed to build such an application using the Gateway VS tool
and the documentation provided by SAP. As we worked to
build the application we carefully documented the issues that
we encountered. For this evaluation, we used the updated
Gateway VS tool, which had already fixed several of the
important problems that we had reported based on our heu-
ristic analysis.

This evaluation focused on modifying the “starter kit”
application code that the Gateway VS tool generates. We
discovered several problems with the generated code. Since
the NetWeaver Gateway was still under development, this is
not unexpected. While we were able to work around the bugs
in the generated code, we encountered problems with the
server that prevented us from completing the common busi-
ness use case. We also received error messages that we did
not fully understand and found a few additional issues with
the user interface of the tool itself. We discussed these prob-
lems during the weekly teleconferences and summarized
them in a final report, which carefully documented the usa-
bility problems and functional errors with the Gateway VS
tool, the generated code, and the server.

Just as in the previous phase, SAP’s use of the agile
software development method enabled them to fix the bugs
and provide us with updated versions of both the Gateway
VS tool and the Gateway server. We were then able to con-
tinue to work on the use case from the point where we had
previously become stuck. With the bugs fixed, we were able
to complete the common business use case and write a sum-
mary report. In this final report, we noted some of the diffi-
culties we had modifying the code due to our lack of famili-
arity with the ASP.NET libraries. Since SAP plans to target
this tool to developers who do have experience using that
library, our findings highlight the need for the tool’s docu-
mentation to clearly state what pre-requisite knowledge a
developer should have and to provide suggestions for obtain-
ing information about third-party tools when needed.

IV. AGILE DEVELOPMENT AND HCI TECHNIQUES
As have others [16], we found the agile development and

HCI techniques to work well together. The agile process
splits the development effort into a series of sprints, each

557

lasting a pre-defined number of weeks. Each sprint begins
with a planning meeting in which the product owner explains
the product requirements to the team. The team then drills
into each requirement to create tasks and provide effort esti-
mates, and reports back to the product owner to commit to
the requirements that can fit into the sprint. The HCI evalua-
tion techniques can be used to quickly evaluate the latest
version of the software, generating requirements to be ad-
dressed in upcoming sprints. The rapid, iterative nature of
both these processes work well together.

The sprint ends in a review meeting where the team
shows the product owner the improvements made during the
sprint. In addition, the product owner can decide after the
review meeting to release the product to the market or only
to small a group of people, such as to the CMU evaluators,
according to the product’s stability, maturity, and so forth.

V. CONCLUSIONS
Our collaboration has demonstrated that HCI techniques

can be applied to improve the usability of software develop-
ment tools. When combined with agile software develop-
ment methodology, HCI techniques can yield quick im-
provements to such tools.

SAP NetWeaver Gateway Product team has been con-
stantly engaging with different non-SAP development com-
munities in order to create a product that makes it easier to
consume the SAP services from any UI environment. The
collaboration with CMU had corroborated the importance of
evaluating how non-SAP developers would interact with
SAP services and of identifying the gaps in expectations,
especially when compared to a more SAP-savvy developer.
The applicability of CMU findings extends beyond the
Gateway VS tool. Based on the reports, several product spec-
ifications were also incorporated for the next release of SAP
NetWeaver Gateway plug-in for Eclipse. In October 2011
SAP NetWeaver Gateway, including the developer tools,
was released for general availability in the market.

Looking into the future, the SAP NetWeaver Gateway
Product team has been inspired to continue to utilize human-
centered approaches when creating tools for software devel-
opers, through close engagement with the different developer
communities. This will enable those developers to consume
services from their SAP systems in an easy-to-use, con-
trolled, and effective way. Meanwhile, the CMU team is now
collaborating with a different group at SAP, to further evalu-
ate and adapt HCI methods to improve many different forms
of APIs and programmer tools.

ACKNOWLEDGMENT
We thank SAP Labs for funding this research, in particu-

lar Ralf Ehret, Paul Hofmann and Ike Nassi. Opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect those of SAP.

REFERENCES
[1] B. A. Myers, A. J. Ko, and M. M. Burnett, “Invited research

overview: end-user programming,” in Proc. ACM Conference
Extended Abstracts on Human Factors in Computing Systems
(CHI'06), Montreal, Canada, 2006, pp. 75–80.

[2] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers, “Calcite:
completing code completion for constructors using crowds,” in Proc.
IEEE Symp. on Visual Languages and Human-Centric Computing
(VL/HCC'10), Leganés-Madrid, Spain, 2010, pp. 15–22.

[3] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Proc.
IEEE Symp. on Visual Languages and Human-Centric Computing
(VL/HCC'11), Pittsburgh, PA, 2011, pp. 117–124.

[4] A. J. Ko and B. A. Myers, “Debugging reinvented: asking and
answering why and why not questions about program behavior,” in
Proc. ACM/IEEE Int. Conference on Software Engineering
(ICSE'08), Leipzig Germany, 2008, pp. 301–310.

[5] J. F. Pane, B. A. Myers, and L. B. Miller, “Using HCI techniques to
design a more usable programming system,” in Proc. IEEE 2002
Symposia on Human Centric Computing Languages and
Environments (HCC'02), Arlington, VA, 2002, pp. 198–206.

[6] J. Beaton, S. Y. Jeong, Y. Xie, J. Stylos, and B. A. Myers, “Usability
challenges for enterprise Service-Oriented Architecture APIs,” in
Proc. IEEE Symp. on Visual Languages and Human-Centric
Computing (VL/HCC'08), Herrsching am Ammersee, Germany, 2008,
pp. 193–196.

[7] D. S. Eisenberg, J. Stylos, A. Faulring, and B. A. Myers, “Using
association metrics to help users navigate API documentation,” in
Proc. IEEE Symp. on Visual Languages and Human-Centric
Computing (VL/HCC'10), Leganés-Madrid, Spain, 2010, pp. 23–30.

[8] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving API
documentation using API usage information,” in Proc. IEEE Symp.
on Visual Languages and Human-Centric Computing (VL/HCC'09),
Corvallis, OR, 2009, pp. 119–126.

[9] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving API
documentation using usage information,” in Proc. ACM Conference
Extended Abstracts on Human Factors in Computing Systems
(CHI'09), Boston, MA, 2009, pp. 4429–4434.

[10] B. A. Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J.
Karstens, A. Efeoglu, and D. K. Busse, “Studying the documentation
of an API for enterprise Service-Oriented Architecture,” JOEUC: The
Journal of Organizational and End User Computing, vol. 22, pp. 23–
51, Jan–Mar 2010.

[11] J. Stylos, D. K. Busse, B. Graf, C. Ziegler, R. Ehret, and J. Karstens,
“A case study of API design for improved usability,” in Proc. IEEE
Symp. on Visual Languages and Human-Centric Computing
(VL/HCC'08), Herrsching am Ammersee, Germany, 2008, pp. 189–
192.

[12] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, Information and Computer
Science, Univ. of California, Irvine. 2000.

[13] J. Nielsen, Usability Engineering. Boston, MA: Academic Press,
1993.

[14] M. H. Blackmon, P. G. Polson, M. Kitajima, and C. Lewis,
“Cognitive walkthrough for the web,” in Proc. ACM Conference on
Human Factors in Computing Systems (CHI'02), Minneapolis, MN,
2002, pp. 463–470.

[15] C. Lewis, P. G. Polson, C. Wharton, and J. Rieman, “Testing a
walkthrough methodology for theory-based design of walk-up-and-
use interfaces,” in Proc. ACM Conference on Human Factors in
Computing Systems (CHI'90), Seattle, WA, 1990, pp. 235–242.

[16] M. Budwig, S. Jeong, and K. Kelkar, “When user experience met
agile: a case study,” in Proc. ACM Conference Extended Abstracts on
Human Factors in Computing Systems (CHI'09), Boston, MA, 2009,
pp. 3075–3084.

558

