
ar
X

iv
:1

90
3.

06
03

9v
1 

 [
cs

.S
E

] 
 1

4 
M

ar
 2

01
9

What Makes Research Software Sustainable? An

Interview Study With Research Software Engineers.

Mário Rosado de Souza∗, Robert Haines†, Markel Vigo†, Caroline Jay†

∗University of Lavras, Lavras, 37200000, Brazil
†University of Manchester, Manchester, M13 9PL, UK

Email: caroline.jay@manchester.ac.uk

Abstract—Software is now a vital scientific instrument, provid-
ing the tools for data collection and analysis across disciplines
from bioinformatics and computational physics, to the human-

ities. The software used in research is often home-grown and
bespoke: it is constructed for a particular project, and rarely
maintained beyond this, leading to rapid decay, and frequent
‘reinvention of the wheel’. Understanding how to develop sus-
tainable research software, such that it is suitable for future
reuse, is therefore of interest to both researchers and funders,
but how to achieve this remains an open question. Here we
report the results of an interview study examining how research
software engineers – the people actively developing software in
an academic research environment – subjectively define soft-
ware sustainability. Thematic analysis of the data reveals two
interacting dimensions: intrinsic sustainability, which relates to
internal qualities of software, such as modularity, encapsulation
and testability, and extrinsic sustainability, concerning cultural
and organisational factors, including how software is resourced,
supported and shared. Research software engineers believe an
increased focus on quality and discoverability are key factors in
increasing the sustainability of academic research software.

I. INTRODUCTION

“Software turns a theoretical model into quantitative predic-

tions; software controls an experiment; and software extracts

from raw data evidence supporting or rejecting a theory”

(p.1) [1]. This statement highlights the central role of software

in modern scientific discovery. Significant effort goes into the

development of research software, and substantial resources

(either human, financial, administrative or infrastructural) are

devoted to ensuring its success. Research software has some

peculiarities that make it different from enterprise software:

it is built in a collaborative fashion by individuals who

have temporarily aligned interests (i.e. specialists in a field

teaming up with software engineers) [2]; and it is developed

using time-limited resources — such as a research grant —

placing severe constraints on its lifespan and threatening rapid

obsolescence [3]. Software decays relatively quickly if it is

not maintained and this is especially true for software used in

research [2].

Research into what makes software sustainable is a growing

field [4]–[6]. Software sustainability covers a broad range of

concepts, related to both environmental sustainability [4], and

the longevity of a codebase [7], [8]. In this paper we consider

only the latter, within the context of research, where it is

of particular importance given the centrality of software to

the scientific process [9]. The issue of software sustainability

is particularly relevant to ensuring a rigorous application of

the scientific method in general, and to guaranteeing the

fundamental principles of comparability, replicability and re-

producibility in particular, which are at risk if software is

not fully accessible and functional. In order to preserve these

qualities, we must understand how to build software to last

beyond the time-frame determined by the duration of a project,

and how to increase its visibility, accessibility and findability

so that it continues to be used, tested and extended by others.

Surveys of software engineers in industry have shown that

software characteristics such as security, usability, reliability

and maintainability [7] and functional correctness, availability,

and interoperability [10] are considered important for sustain-

ability. Sustainability remains a relatively nebulous concept,

however, with few software engineers demonstrating a solid

grasp of what it entails [11].

Here we examine sustainability from the perspective of

research software produced in an academic environment, in-

terviewing research software engineers (RSEs) to determine

whether there is a shared understanding of what sustainability

means. Our results suggest that whilst there is some consensus

as to the general meaning of the concept, there are a variety

of views about the best way of achieving it. In particular,

RSEs recommend paying attention to software quality — an

issue identified for improving the sustainability of all types

of software — as well as actions more specific to research

software, including improving discoverability through building

a community around a project, and raising awareness of the

importance of software curation.

II. METHODS

Data was collected over two phases. During phase one,

interviews were conducted with nine developers at a single

UK university. The preliminary results from this study were

reported in a short non-archival workshop paper [12]. Here we

combine this data with interviews conducted with ten further

developers from four institutions: the original university, two

additional UK universities and a UK Government-funded

research facility.

Altogether, nineteen research software engineers (3 female,

16 male) were recruited through purposive and snowball

sampling. The participants had worked on a variety of projects

within different research groups and had between 18 months

and 20 years of software engineering experience.

http://arxiv.org/abs/1903.06039v1


The semi-structured interviews, which were conducted ei-

ther face-to-face or via video-conferencing, used the following

schedule (probing questions in italics): From your point of

view, what is sustainability in terms of software? (What are

the attributes or features of the software that lead you to

believe that it is sustainable?); Regarding the software you’ve

developed: was sustainability a consideration? (If yes, at what

point in time did it become a consideration? If no, why not?);

Have you worked on any projects that were not sustainable?

(Were there any consequences of it not being sustainable?).

Prior to each interview, participants were provided with

an information sheet, and written informed consent was ob-

tained. The mean interview time was nine minutes and thirty

three seconds. The interviews were recorded, transcribed, and

uploaded to the qualitative data analysis software, Dedoose

4.122. All interviews were treated as a single dataset, i.e.,

we did not distinguish between the two collection phases

as there was no methodological reason to do so, and the

numbers were sufficiently small that comparison between

institutions would not have been appropriate. Transcripts were

thematically analysed in an open coding fashion following

established analysis methods: (1) familiarisation with the data;

(2) generating the initial codes; (3) searching for themes; and

(4) iteratively reviewing themes [13]. The complete dataset

was coded by two researchers independently (one of whom

did not participate in the study design). Inter-coder agreement

was measured by computing Cohen’s Kappa for whether the

coders both noted that a theme was reported by a partici-

pant. A coefficient of 0.82 indicated substantial agreement.

Disagreements were resolved via discussion. The full dataset

is archived on Zenodo [14].

III. RESULTS

Section III-A summarises participants’ views on what sus-

tainability encompasses with illustrative quotations, where the

code in brackets after each quotation indicates the participant

identifier and study phase in which the data was collected (for

example, P3-S1 refers to participant 3, study phase 1). The

results of a thematic analysis, which classifies sustainability

concerns as intrinsic or extrinsic are reported in Section III-B.

A. Conceptual Understanding of Sustainability

Eighteen participants recognised sustainable software as that

that was reusable, either in its original project, or another

project in the future: ‘it means someone should be able

to build, run, and understand your software, say one year,

five years, or ten years after you’re finished with it, and

without having to come and ask you how to build it, or why

you did things in a certain way’ (P9-S2); ‘sustainability is

basically making sure that software works overtime. So even

if development stops on a particular software product, a couple

of years down the line you can still download it and it would

work’ (P7-S1). One participant had not heard the term used in

relation to software before, but was familiar with the concept

when it had been explained, and recognised it as desirable.

Nine participants said unequivocally that sustainability was

a consideration: ‘Yeah always has been. We try and keep the

software sustainable in the hope that either it will get more

funding to continue it, or if we don’t get funding it would be

a shame to see it all die and disappear so it would be nice if

it was in a state that someone else could pick it up and use it’

(P9-S1). Two participants said sustainability was sometimes a

consideration, and one was not sure. Six participants said it

was becoming more important, and three of these identified

their current projects coming to an end as a reason for this: ‘I

don’t think it was a primary consideration, but it is becoming

more important now that a lot of our projects are coming to

an end, and we need to make a plan for them to be maintained

in the future’ (P5-S1). One said he had not thought about it

consciously, but that his manager may have done.

Ten participants said they considered sustainability at the

beginning of a project, and seven said it was considered after

some time: ‘I don’t think it was a consideration at the start, I

think at the start it was more about getting things done, getting

things ready, so yeah it’s more of a thing that’s come about

as the project has come along’ (P3-S1). ‘I’ve worked here for

quite a few years so I’m used to this whole funding cycle and,

you know you’re paid for three years and then after two and

a half years things start getting a bit hairy and you’re hoping

for more funding, so you know, with that in mind, we try and

keep the software sustainable’ (P2-S1).

Fourteen participants reported that they had worked on

software that was not sustainable. The remaining six said they

did not think so, or it was hard to say, although it should

be noted that they were not claiming that all software they

had produced still worked, but rather that they considered the

software to be sustainable when they stopped working on it.

B. Features of sustainability

A thematic analysis of the data indicates that sustainability

must be considered from two perspectives: intrinsic sustain-

ability and extrinsic sustainability.

The intrinsic sustainability of software concerns charac-

teristics of the software artefact itself, and includes factors

relating to how the code is written and documented. The

themes that emerged for intrinsic sustainability are described

below. Table I lists each theme and the frequency with which

it was mentioned. It should be noted that whilst the themes

have been reported as distinct, they are often interrelated.

Documented: Participants largely agreed that code must be

well documented for sustainability to be possible: ‘. . . there are

some additional steps that you have to do, like you make sure

you have documentation, you make sure that the source code

is in one place’ (P8-S1); ‘It needs to be well-documented’

(P5-S1). ‘I remember spending a couple of months writing

documents, analysing every single module and itemising [. . . ],

doing reverse documentation [. . . ] just to demonstrate to the

management whether this software was usable or not’ (P4-S2).

Testable: Several developers stated that testing is important:

‘It’s a lot of test automation and continuous integration testing,



and I think that helps a lot with keeping it sustainable’ (P2-

S1); ‘Software tests as well. Yes, absolutely’ (P7-S1).

Readable: There was a general belief that if code is

easy to read it will be more sustainable, because it will be

more straightforward for someone else to pick up: ‘. . . if he

(someone other than the original developer) finds my code,

and found that the effort of learning to use my code is going

to be more difficult than the actual benefit it gave him, he’d

probably throw it away and write his own stuff’ (P1-S1).

Modular: Breaking software up into component parts with

well defined interfaces was viewed as making it easier for

others to reuse the software as a whole, or a subset of

its constituent parts: ‘It turned out that the software was

impossible for anyone to actually deploy in full, and it would

only work if all the pieces were deployed. Funny, that didn’t

work’ (P4-S1). ‘People don’t appreciate how encapsulation is

really a good sustainable practice because it means things are

more understandable, you know for somebody who’s new to

the software’ (P8-S2).

Standardized: Two developers made it clear that “reinvent-

ing the wheel” should be avoided, particularly when support

is often good for libraries that have a large user base. ‘It’s im-

portant to [use] technologies that people generally understand,

reusing as much as you can, so don’t write your own things,

[when] there’s good solutions already’ (P6-S1).

Useful: If the software is fulfilling its purpose in an effective

way, people will be motivated to sustain it. ‘. . . it’s coupled to

the software doing something useful, which either there isn’t

an alternative for, or that it is much better in its niche than the

alternatives’ (P4-S1). Alternatively, if the code does not fulfill

the purpose precisely, ‘they think, “OK, I will take the idea,

but I will write my own stuff”’(P3-S1).

Scalable: Making code scalable was thought to help future-

proof it. This ensures ‘. . . it’s also going to be usable long term,

because if it’s just the simple cases, people go, “yeah that’s

a really nice idea”, and then as soon as they start using it in

anger, a lot blows up because it doesn’t scale’ (P1-S1). ‘the

cost of adding new features should not increase exponentially,

as it does in some codes’ (P1-S2).

Whilst intrinsic sustainability concerns the application code,

extrinsic sustainability concerns the environment in which the

software is developed and/or used. Extrinsic factors can be

separated into the following broad, interrelated themes.

Openly available: Sharing research software in an open

repository after the project ends increases the chance it will be

found and reused. ‘Usually I would look online in a repository

for libraries and I would see when it was last updated . . . if

it’s in version control then it’s a good start’ (P9-S1).

Shared/co-owned: If the software is developed by a team,

this increases the chances of it remaining active. ‘[It’s impor-

tant] that there is some community around it. You need to have

more than one person involved, right? If it’s a one man project

and that guy is hit by a bus or just decided to do something

else, work at Google or something, then it just dies’ (P8-S1).

‘Whether that community is composed of volunteers or people

that are actually paying for your product it doesn’t matter. But

basically you do need to have a community, or at least you

have to have a very dedicated individual’ (P3-S2).

Resourced: This is one of the aspects that developers were

most concerned about. ‘. . . a lot of our projects are coming to

an end and we need to make a plan for them to be maintained

in the future’ (P3-S1). ‘You see it in a lot of research, I mean

the [removed for anonymity] stuff I did – [it’s] completely just

gone. The minute I left it, still sitting on GitHub but no one

even looked at it’ (P1-S1).

Actively maintained: Developers are wary of software not in

current usage, due to the potential for out-of-date dependen-

cies and modules that no longer work because the platform

has evolved. ‘Physically the software lies there . . . you find

software to do something, [you think] OK that looks good,

and then you look – last updated three years ago. Most

people won’t touch it’ (P1-S1). ‘So it’s about having this kind

of momentum to the project, so that it keeps moving. That

you have further development, even if you have maintenance

mode—that is, not many new buttons being added—but at

least there is someone [keeping] it alive (P2-S1). ‘I guess it is

around sort of maintainability, the fact that codebases, if you

don’t sort of keep them up-to-date and keep developing them,

they tend to go stale’ (P6-S2).

Independence from infrastructure: Sustainability can be

related to where the software runs; if the infrastructure is not

maintained, is the software capable of running outside that

environment? ‘[Removed for anonymity] did most of that, and

it’s one of these things that will probably stay alive for as

long as the server that it’s on stays alive, and if that server

crashes they will probably not bother rebuilding it into another

machine’ (P1-S1). ‘One would be that the code should run on

hardware for the next foreseeable future. So that means, that

it’s sufficiently portable’ (P1-S2).

Supported: Sustainable software usually has some sort of

user facing support from the team who is developing or

maintaining it, which is helpful to both external developers and

end-users. This is directly related to the project being active:

‘So this tends to mean things like e-support, or automated

tools of various kinds’ (P4-S1).

Version-Control: Managing changes to source code in an

organized fashion is a desirable feature of software that is sus-

tainable. This enables developers to restore previous versions

of the software as well as understanding what happened to the

code over time and tracking bugs. ‘I would say sustainability

is partly about you know this use of re-usability of research

. . . to keep track of, your developments because you want to

see exactly which version of the code produced what results

that went into some application’ (P8-S2).

IV. DISCUSSION

The results of the study indicate that the Software Sus-

tainability Institute’s view that sustainable software ‘will be

available—and continue to be improved and supported—in

the future’ is, understood by developers, and considered to be

meaningful. It is not clear that the working definition used by

most developers is an exact match, however. To end users,



TABLE I
FREQUENCIES OF THEMES PER STUDY PHASE

Phase 1 Phase 2 Total

Intrinsic sustainability

Documented 8 6 14
Testable 5 2 7

Readable 5 7 12
Modular 2 3 5

Standardized 2 - 2
Useful 2 2 4

Scalable 1 1 2

Extrinsic sustainability

Openly available 6 6 12
Shared/co-owned 3 4 7

Resourced 6 4 10
Actively maintained 6 7 13

Independent of infrastructure 1 6 7
Supported 4 - 4

Version-controlled - 4 4

the Software Sustainability Institute’s definition essentially

means a software application that they can continue to use,

but the research software engineers in our study considered

sustainability to be a much broader concept. In particular,

there was a significant focus for many developers on trying to

ensure some aspect of the code itself is usable in the future,

regardless of whether that use occurs in the same application,

or contributes to a different one.

Although there is no concrete guidance on how to achieve

sustainability in research software engineering [15], many of

the factors that developers consider to be important for sustain-

ing research software have also been noted as important for

sustaining enterprise software products [3] and for successful

Free/Libre Open Source Software (FLOSS) development [16].

We therefore suggest that from the perspective of research

software, a broad view is helpful: in simple terms sustain-

ability can be considered at the level of a software product

delivered by a particular project. For example, a project could

provide software with a certain amount of functionality and a

sustainability specification along with it.

Other works converge on the themes we have identified

as contributing to more sustainable software. Chue Hong &

Voss (2008) and Seacord et al. (2003) suggest that building an

“ecosystem” around the software can generate an environment

where it can thrive [2], [3]. This points to the necessity of

paying attention to extrinsic factors affecting the software, as

well as the social context in which it is developed.

Seacord et al. (2003) highlights the importance of the

modernization and change potential of a software application.

This potential is the differential between the actual properties

of the system and the desired properties [3]. Even if attention

is paid to intrinsic aspects of the artefact, these cannot provide

a measure of sustainability alone. The amount of time a team

(or individual) would need to spend to bridge that gap must

also be taken into account.

Calero et al. (2013) proposes four characteristics of software

and digital objects within the e-Research environment which

help them to ultimately be sustainable, and can be mapped to

our dimensions of sustainability as detailed below [4]:

1) Understanding of the requirements of the current and

potential users of the object (useful)

2) Improvement of the object to increase the potential

number of users (supported, actively maintained)

3) Identification and dissemination of research outputs

which have resulted from the use of the object (openly

available)

4) Increase in the community involvement around the ob-

ject (shared/co-owned)

Following good development practices is a concept widely

identified in the literature in the form of system architecture,

design documentation and test scripts [3]. In the absence of

infinite resources, however, projects — and the software they

produce — are going to remain of a fixed term nature. In this

case, the route to sustainability is likely to be via software

reuse in future projects.

Acknowledgements

This work was funded by Brazil’s Science without Borders

programme, and EP/N006410/1, EP/S021779/1.

REFERENCES

[1] C. Pradal, G. Varoquaux, and H. P. Langtangen, “Publishing scientific
software matters,” J. Comp. Sci., vol. 4, pp. 311–312, sep 2013.

[2] N. P. C. Hong and A. Voss, “Why good software sometimes dies and
how to save it,” in IEEE 4th International Conference on eScience, 2008.

[3] R. C. Seacord, J. Elm, W. Goethert, G. A. Lewis, D. Plakosh, J. Robert,
L. Wrage, and M. Lindvall, “Measuring software sustainability,” ICSM,
2003.

[4] C. Calero, M. F. Bertoa, and M. A. Moraga, “A systematic literature
review for software sustainability measures,” GREENS, pp. 46–53, 2013.

[5] C. Venters, L. Lau, M. Griffiths, V. Holmes, R. Ward, C. Jay, C. Dibs-
dale, and J. Xu, “The blind men and the elephant: Towards an empirical
evaluation framework for software sustainability,” J. Open Research

Software, vol. 2, no. 1, 2014.
[6] S. Aljarallah and R. Lock, “An exploratory study of software sustainabil-

ity dimensions and characteristics: End user perspectives in the kingdom
of Saudi Arabia,” ESEM, ACM, 2018.

[7] A. Aldabjan, R. Haines, and C. Jay, “How should we measure the
relationship between code quality and software sustainability?,” in
WSSSPE4, 2016.

[8] S. Alhozaimy, R. Haines, and C. Jay, “Forking as a tool for software
sustainability: An empirical study,” in WSSSPE5.1, 2017.

[9] S. Crouch, N. C. Hong, S. Hettrick, M. Jackson, A. Pawlik, S. Sufi,
L. Carr, D. De Roure, C. Goble, and M. Parsons, “The Software Sus-
tainability Institute: Changing research software attitudes and practices,”
Computing in Science and Engineering, vol. 15, no. 6, pp. 74–80, 2013.

[10] N. Condori-Fernandez and P. Lago, “Characterizing the contribution of
quality requirements to software sustainability,” Journal of Systems and

Software, vol. 137, pp. 289 – 305, 2018.
[11] I. Goher and R. Weinreich, “An interview study on sustainability

concerns in software development projects,” in SEAA, 2017.
[12] M. Rosado de Souza, R. Haines, and C. Jay, “Defining sustainability

through developers’ eyes: Recommendations from an interview study,”
in WSSSPE2, 2014.

[13] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006.

[14] M. R. de Souza, R. Haines, M. Vigo, and C. Jay, “What makes
research software sustainable? Anonymized interview transcripts,” in
10.5281/zenodo.1345066, 2019.

[15] A. Raturi, B. Penzenstadler, B. Tomlinson, and D. Richardson, “De-
veloping a sustainability non-functional requirements framework,” in
GREENS, 2014.

[16] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre open-
source software development: What we know and what we do not know,”
ACM Comput. Surv., vol. 44, pp. 7:1–7:35, Mar. 2008.


	I Introduction
	II Methods
	III Results
	III-A Conceptual Understanding of Sustainability
	III-B Features of sustainability

	IV Discussion
	References

