
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Accounting for socio-technical resilience in

software engineering

Tamara Lopez

School of Computing&Communications

The Open University

Milton Keynes, UK

tamara.lopez@open.ac.uk

Melanie Langer

Department of Psychology

Lancaster University

Lancaster, UK

m.langer@lancaster.ac.uk

Yijun Yu

School of Computing&Communications

The Open University

Milton Keynes, UK

yijun.yu@open.ac.uk

Helen Sharp

School of Computing&Communications

The Open University

Milton Keynes, UK

helen.sharp@open.ac.uk

Mark Levine

Department of Psychology

Lancaster University

Lancaster, UK

m.levine@lancaster.ac.uk

Bashar Nuseibeh

The Open University, Milton Keynes,

UK &

Lero, Limerick, Ireland

bashar.nuseibeh@open.ac.uk

Michel Wermelinger

School of Computing &

Communications

The Open University

Milton Keynes, UK

michel.wermelinger@open.ac.uk

Caroline Jay

School of Engineering

Manchester University

Manchester, UK

caroline.jay@manchester.ac.uk

Abstract— Resilience engineering (RE) is most commonly

applied at the organisational level, and has historically been

associated with safety-critical industries such as nuclear,

medical or aviation. This paper explores the application of RE

frameworks within software engineering, and investigates

resilient performance of the socio-technical system that

supports the creation of software. We present a preliminary

study based on a secondary analysis of data from previous

ethnographic studies of commercial software practice. This

analysis uses an RE framework devised for small team practice

in safety critical settings. We present and discuss three salient

episodes of software practice that illustrate the application of

RE principles to software engineering, and suggest how this

kind of analysis may benefit software engineering. We present

challenges and opportunities based on our experience and

propose future research directions.

Keywords— resilience engineering, change, ethnography

I. INTRODUCTION

Software development operates within an uncertain
business environment, one that has been characterised as
VUCA (volatile, uncertain, complex and ambiguous [11]). In
the face of endemic change, resilience is key [39], and
although determining the impact of change on software teams
is critical for business it is also vital to support the well-being,
and hence productivity, of software engineers [28].

The term “resilience” is often used in the context of
software engineering but usually it refers to a technical
quality. In contrast, our work takes a socio-technical
perspective and focuses on resilient practices of individuals
and small teams tasked with creating software, an activity
where social factors are particularly key [4]. To do this we
draw on methods and techniques associated with resilience
engineering [15] (RE), a field that regards resilient
performance as inherently socio-technical. RE principles have
been applied in some areas of software engineering, such as
error handling [22] and outages in internet-facing systems
[10], but not on software creation. The paper has two aims:

(1) To illustrate whether and how concepts from RE may be
applied to data from software development practice to
characterise resilient performance. This is achieved

through a secondary analysis of ethnographic data sets
using an RE framework designed for use in a small team
context. Three salient episodes from this data that have
the potential to demonstrate resilient performance are
presented and discussed.

(2) To explore the potential benefits and challenges of
performing such an analysis. This is achieved through a
set of reflections on the experience of applying RE to
ethnographic data on software practice. We conclude that
applying RE principles to software creation presents
opportunities but is not straightforward.

Section II outlines literature that defines resilience within
software engineering and introduces resilience engineering in
safety science. Section III describes the preliminary study
conducted to meet our first aim. Section IV addresses the
paper’s second aim by presenting a series of reflections and
future directions. Section V concludes the paper.

II. BACKGROUND

A. Resilience in Software Engineering

Resilience is often characterised within software
engineering in terms of fault-tolerance, i.e. the ability for
technical systems to continue to operate in the event of
component failure. This focus on managing an undesirable
outcome means that the phenomena contributing to the failure
of technical systems are often ignored [20]. However, with the
growth in scale and complexity of systems, Laprie argued that
resilience is increasingly aligned with the expectation that
software systems will remain dependable in the face of
continuous changes [20]. These changes have both social and
technical aspects and are dynamic: they can be functional,
environmental, involve hardware and software, be foreseen or
unforeseen, and may manifest in the short term, for example,
during adaptations made within software as it runs, or in the
long-term, as in the combination and recombination of
existing systems of hardware and software [20].

The growing recognition in software engineering that
dependability must account for the interplay between social
and technical aspects raises questions about the role of human
activity in keeping systems resilient. This has been explored
within software engineering in terms of how developers detect This research was supported by UKRI/EPSRC EP/T017465/1,

EP/R013144/1), and SFI (13/RC/2094_P2).

and recover from errors [23]. Findings in this work expand the
conceptual framework for error handling to include situated
problem solving [23] and establish a connection between
human error and professional growth [22].

Human activity has also been explored in the context of
business-critical systems, where events that threaten
operational status are conceptualized as incidents [6] or
anomalies [10]. Cook [6] describes interventions taken to
resolve undesirable system behaviour in these contexts as
happening “above the line” of code and other technical
artefacts. Problem solving hinges on inferences or hypotheses
[10] based on representations that appear on screens and
displays, and draws on mental models formed over time of
how underlying parts of the system work [6]. The
professionals that intervene in such problems include
engineers who design and write code, people who build and
deploy the code, and operations teams that monitor technical
systems in operation. The argument for resilience made within
this area of software engineering is that it is the adaptive
capacity of people, their cognitive activity, and their ability to
coordinate with one another during incidents that resolves
operational problems before they cause service outages [39].

Although software operations teams and error handling
have been viewed through a socio-technical lens, the activities
of software design and creation have not been examined for
evidence of resilient performance.

Fig. 1. Rasmussen’s space of possibilities [29].

B. Resilience Engineering in Safety Science

Within RE, resilience is regarded as socio-technical; it
works on three levels: operationally in the individuals and
teams that work on tasks; in organisational efforts to
coordinate, support and manage operations; and within the
industrial system which designs and produces technologies
that are used in work [25]. RE, which emerged out of studies
in safety science, provides techniques and frameworks for
documenting and understanding how organisations and
individuals learn about, monitor and respond to changes,
disturbances, or opportunities in everyday situations.
According to RE, the potential for resilience [9, 13] lies within
the recognition and promotion of these capabilities, rather than
in managing risk.

At the task level, workers are said to contribute to resilient
performance through adaptations that meet immediate
situational demands [29], and compensation mechanisms that
address imperfect circumstances [9]. Within the space of

possibilities (Fig. 1), these adjustments are self-directed, but
are constrained by individual capacity, the plans, policies, and
cultural norms for doing things within organisations and
professions, and available resources (including technologies).

Resilience manifests through the combination of plans and
processes put into place to make systems work, plus the
performance of workers in the moment [40]. These two are in
tension; some actions taken by workers to meet situational
demands result in errors or failure, or break policies or
procedures for how work “should” be done. However, such
adjustments are recognised within resilience engineering to be
acceptable or even necessary as a part of meeting
commitments to safety or other goals for resilient performance
[36]. In software engineering, examples of adaptation and
compensation could include the way agile development
practices are implemented within an organisation or reflect
covert [40] or shadow tactics [17] that come into use when
organizational security policies intersect with demands for
engineering productivity [21].

C. Applying Resilience Engineering

The elements of a RE analysis [13] include understanding
how work is done, identifying indicators of resilient
performance within that practice, knowing the goals for the
future status of the system, and determining how resilient
performance can be maintained when changes are made.
Analyses centre around events that include instances of
adaptation or compensation, and are guided by an
understanding of what “resilient performance” means in this
work context. For example resilient performance is often
defined in relation to performance goals [39].

RE frameworks have been developed to model or
represent aspects of resilience at the functional level [14] and
can be used to assess organisational resilience [13]. Furniss et
al. [9] created a framework for systematically identifying
socio-technical resilient performance at the small team level.
Applying this framework involves identifying and describing
details of episodes observed within team-based situations that
exhibit the potential for resilient performance, and comparing
instances of the strategies used with findings in RE and safety
studies in other domains. To gain insight into how these
strategies are leveraged, the descriptions are structured to
capture adaptations or compensations, and contextual
elements of the socio-technical system that influence the
actions taken: the resources and enabling conditions; whether
the instance presents a systemic vulnerability, threat or
opportunity for improvement of the system; and the mode or
state of the system at the time the instance occurred. The
outputs of analysis represent work as it is done and along with
strategies, form repertoires that indicate the potential for
resilient performance in the wider socio-technical system [9].

III. A PRELIMINARY STUDY INVESTIGATING SOCIO-TECHNICAL

RESILIENCE IN SOFTWARE ENGINEERING PRACTICE

This preliminary study examines software creation and
focuses on individuals and small teams by applying the small
team framework described above [9]. For this study, the goal
we adopt for resilient performance is to resolve problems so
that software development can progress. Although
productivity and efficiency are commonly identified as key
performance areas for software development, “making
progress” is an aspect of work that developers value, as widely
reflected in trade [1] and research literatures examining
motivation [5] and satisfaction [8] and perceptions of success

[37]. It has also been recognised more widely as important to
knowledge workers[2].

A. Secondary analysis of ethnographic data

To perform a secondary analysis, we examined previously
collected data from three sets of ethnographic studies
performed by the authors. Set 1 focused on five commercial
agile software development teams, were conducted between
2003 and 2019 and were analysed using distributed cognition
to understand collaboration and information flow in software
teams, e.g. [7, 33]. Set 2 was collected between 2010 and 2013
and used thematic analysis to identify how developers handle
errors that arise during software development [22, 23]. Set 3
was a multi-sited ethnographic study that used a range of
analysis approaches to examine security in software
development; it was conducted between 2017 and 2019 [21].
Although not collected with RE analysis in mind, the nature
of the data collected, and prior analysis undertaken was
compatible with performing an RE analysis. For example, the
studies were ethnographic and hence aimed to surface the
participants’ perspectives (referred to as “informants” in
ethnographic studies); they focused on day-to-day practice of
individuals and teams; and the data was available for further
analysis.

Our approach to analysis consisted of three steps. In each,
the ethnographic stance was maintained in order to reflect the
informant’s perspective on activities and conditions:

1. Using principles from error handling [22], identify
episodes where our informants experienced an
interruption or change in their workflow that required
problem solving. These principles originally focused on
individuals; to broaden the scope to include teams,
episodes were sought in which interruptions originated
inside an individual or team’s own space of activity or
within the wider organisation.

2. Analyse and document activity within each episode. The
first two authors re-read transcripts, fieldnotes and prior
reflections from the studies listed above. Virtual boards
were used to group data from each episode into categories
according to the structured descriptions from Furniss’
framework [9].

3. Using our definition of resilient performance, we assessed
how each episode demonstrated principles of resilience
engineering or signified an example of resilient
performance. First, strategies employed by our informants
were identified and compared with previous literature [12,
19, 24, 26]. Next, we considered the mechanisms
underlying the strategies [9], including threats and
opportunities, alternative actions, and possible
consequences for each episode.

The outcome from this analysis was a set of episode
descriptions that followed Furniss’ formulation and reflected
resilience engineering principles. The episodes were
identified and analysed by the first two authors. Findings and
conclusions were discussed with the wider team.

B. Findings

The analysis aimed to characterize episodes that illustrate
the application of the RE framework rather than to be
comprehensive. We identified several episodes from the
ethnographic data but here we report one episode from each
data set (Table 1). The following episode descriptions use RE
terminology and are presented according to the structure from

Furniss’ framework [9]: RE terms are highlighted in bold, and
each description starts with a narrative of the episode itself,
then discusses its potential for resilient performance and the
strategies used within the adaptation or compensation.

TABLE I. THREE ILLUSTRATIVE EPISODES

Episode Brief Description
Adaptation/Compe

nsation (A)/(C)

Breaking the

estimate (set 1)

During a sprint the
developer recognises that

the estimate is inaccurate

and interrupts his

workflow to investigate.

He discovers that he is
implementing a different

design than the one

estimated

C: accept new

estimate,

A: new design

Rolling back

code (set 2)

After manually copying a

changed file to a testing
server, a service fails. The

developer realises that he

copied the file to the wrong

folder, overwriting

working code.

C: walk the code

back, leaving the

change until a
later time

Creating a new
definition of

done (set 3)

The team fails to complete

agreed tasks within sprints

due to unplanned work

requests as clients call

them directly with bugs or
feature requests

A: create a
different

definition of done

1) Episode 1: Breaking the estimate

The planning game involves estimating the effort required
for each user story, which in turn requires decisions on how to
implement a solution. However, in our episode, the design
used as the basis for estimating was not documented and a
different design was being implemented, which compromised
the estimate. In this case, we observed that a story card was a
resource that helped the developer realise the story was taking
significantly longer to implement than the estimate given on
the story card. The estimate on the card was an early indicator
or hint of a potential problem [38]. We relate this recognition
of a problem to the strategy “planning-based detection” [19].
We also observed the developer speaking with the teammate
who wrote the story card to understand why this may have
happened, suggesting the use of the strategy “anticipates
weaknesses in plans and identifies information need” [19].
The vulnerability was lack of documentation for the intended
design and the threats were that a different design might
weaken the code or an extended estimate may inhibit the
team’s progress. Exploring a different design and sharing an
understanding about the software and its requirements
presented an opportunity, and the willingness of the
teammates to engage in discussion with one another suggest
the “flexible approach to planning” [19] strategy. After
discussing the situation with the teammate, the developer
decided to carry on implementing their own design [34].

This episode characterizes resilient performance that is
enabled through top-down plans and bottom-up efforts [40],
environmental resources and conditions [9], and demonstrates
that situations within the mode of normal operations can
involve both adaptation and compensation. Within this
environment it was acceptable for the developer to question
the estimate given on the story card and to speak with the
teammate. By following the signal [10] on the story card, the
developers were able to align perspective with one another and
to augment their own experience [22].

2) Episode 2: Rolling back code

The developer’s team maintains a product name and an ID
service for their department. The services were implemented
in the same file, but each has its own directory on the server.
The developer was given the task to change a service so that
it would reference a different database. To deploy the changed
ID service, the developer had to manually copy the file into
the proper folder on a testing server. We observed that after
doing this the developer realised that the changed file had been
copied into the wrong folder, overwriting the product naming
service and causing it to fail. We relate this to the strategy
“outcome based-detection” [19]. This broke an internal
commitment made between the development teams to always
keep services running, indicating a vulnerability and marking
a transition in the mode from normal to critical practice. The
developer tried several things to fix the broken service. First,
the broken service could be restored from a back-up, however
all backups had been deleted through an automated process.
Second, the code could be redeployed for both services.
Unfortunately, changes to the ID service impacted the product
naming service and refactoring the naming service was out of
scope for the user story. Ultimately the developer tried to alter
the build to deploy the older version of the broken product
naming service. However, the developer did not have
permission to alter builds, and the service was not operational
overnight. In the end, the developer’s team decided to
compensate by abandoning the task for the sprint, rolling
back all changes and redeploying both services. This restored
access to the product naming service for the department [23].

This resilience episode characterises the cyclical nature of
error handling within software development [22], that
includes the interplay within episodes of awareness, planning,
and outcome-based strategies [19]. In this episode, the
problem was detected based on outcomes, in which the
developer used the strategy of “examining relational and
temporal patterns of changes” [19]. However, the fuller data
set [23] indicates that while attempting to bring the service
back up, the developer also used “loose plans to gain
flexibility” [19], and used awareness of the system to “detect
missing cues” and find “hidden assumptions” [19]. The
episode illustrates brittleness within a system [40], showing
how constraints on resources and enabling conditions [9] can
negatively influence the strategies an individual is able to use.

3) Episode 3: Creating a new definition of done

We observed that one team in a large workforce
management software company has created its own definition
of “done” and pinned the definition above the team Kanban
board in a public space. The team tailors a reporting system
that clients of the company’s software use to develop
intelligence about workflow. The team is also responsible for
managing bugs within the broader software suite—to help
ensure that clients can maintain “business as usual”. The
nature of the work in the reporting system and the
commitment to handle bugs results in many calls or requests
for changes that come directly to individual team members.
This is a threat to making progress for the team, as they
cannot always complete tasks for sprints. This causes stress,
and the lack of progress against agreed tasks is perceived by
team members to impact standing within the department.
Tailoring the definition of done to respond to this
vulnerability is a strategy that reorients the view of “making
progress” to account for circumstances particular to the team.
This relates to “managing workload” (individual strategy) or

“workload distribution management” (joint strategy) [24] and
“willingness to relax efficiency temporarily” [12].

Within this resilience episode, the team is enabled by
recognised agile practices and their local adoption to create an
individual definition of done. This exemplifies coordination
within resilient performance, that is, joint activity that
includes establishing and maintaining common ground with
one another and the negotiation and commitment to
undertaking a joint task [18]. The public space provides an
additional resource in which to communicate the nature of the
difference in the work performed by the team. The enactment
of this strategy and the department’s recognition that it was
acceptable are an example of the co-production of resilience
through plans for work that come “down” into the space of
practice and bottom-up efforts to keep a system working [40].

C. Study limitations

This was an exploratory study designed to apply concepts
from RE to data from software development practice. It is not
a comprehensive study and there are other episodes that we
identified in the data. It therefore has inherent limitations as a
standalone study. Accepting this, we consider the work in
terms of trustworthiness in flexible design research [31].

The original studies employed various techniques to
support trustworthiness including: member checking; seeking
confirming and disconfirming evidence; triangulation of data,
method and observer; and providing audit trails. These
measures are described in earlier study reports [7, 21-23, 33,
34]; their qualities carry forward into this secondary analysis.

Two limitations relating specifically to this study are
interpretation and bias. Regarding interpretation, the original
studies were not focused on resilience, but they were focused
on everyday practices in individual and team activities, and
were designed to capture the informants’ perspectives. Hence
they provide a solid basis on which to identify resilient
episodes. Regarding bias, the ethnographic stance requires a
reflexive, nuanced mindset. As with all research involving
people, bias is possible [31]. But in this secondary analysis,
having two analysts who were variably acquainted with the
data sets helped to keep the analysis independent. RE studies
are often performed on historic data and by using previously-
collected data we are continuing that tradition, but by adding
in the ethnographic mindset we are countering, to some
degree, the bias inherent in retrospective accounts.

IV. REFLECTIONS AND FUTURE DIRECTIONS

This study demonstrates that RE principles and concepts
can be applied to illustrate elements of resilient performance
in software development practice at the individual and small
team levels. Furthermore, three salient episodes have been
presented with elements that indicate the potential for resilient
performance, based on a realistic characterisation of resilience
in a software development context. In this section we reflect
on our experience and suggest future research directions.

Performing an RE analysis of software practice is not
straightforward. Firstly, although identifying potential
episodes was straightforward because the data was well-
known to the authors, agreeing on the focus of the episode and
extracting their characteristics required considerable
discussion and reflection. Secondly, while RE takes a socio-
technical view of resilience, some affective and cultural
factors, which prior work in software engineering has shown
to be important to practitioners, are not accounted for in RE

frameworks, such as peer reputation [3] and shadow tactics
[17]. These factors and how to capture them through an RE
analysis deserve further investigation. Thirdly, determining
whether an aspect of practice is resilient or not requires an
understanding of specific resilience goals within a domain. In
this study we used an illustrative goal that focuses on making
progress, but other resilience goals for software development
might focus on team well-being or customer value, for
example. The goal for any one study would need to be decided
with practitioners and for the specific context. Fourthly,
identifying competencies in practice and linking them to
strategies in other RE literature requires detailed knowledge
and understanding of the activity and the participants’ point of
view. This requires detailed fieldwork and analysis. Finally,
RE concepts and vocabulary need to be interpreted within a
software engineering context. For example, a strategy
identified for Episode 3 was “willingness to relax efficiency
temporarily”. In this context “temporarily” might mean for a
sprint, or a release cycle, while in another context, such as a
hospital, “temporarily” might mean for only a few hours.

However, an RE analysis also presents opportunities.
Causal analyses within safety science have been found to be
biased, reflecting analysts’ aims rather than practitioner
rationalities [16]. Avoiding such bias relies on fine-grained
reflexive qualitative analysis, that maintains the practitioners’
point of view. This resonates with the aims of ethnographic
studies [32], and RE therefore provides a lens through which
ethnographic data may be analysed. Sharp et al [32] identified
four potential roles in empirical software engineering for
ethnographic studies: to strengthen investigations into the
social and human aspects of software engineering; to inform
the design of software engineering tools; to improve process
development; and to articulate research questions and
complement other research methods. RE analyses may
support any of these roles, but here we consider two: designing
new tools and improving processes.

One value of understanding current practice is to make
informed decisions about the potential impact of changes
within software engineering environments such as introducing
new tools and languages, or process improvements.
Identifying activity in current practice that contributes to
resilient performance allows its presence or subsequent
absence to be tracked, and for the impact of the change to be
assessed after time has passed. For example, questions framed
using terminology from [9] might be: will the change remove
observed interruptions to practice? will the actions taken
remain relevant? do the threats to progress remain and will
opportunities still present themselves in the changed
environment? Furthermore, will the enabling conditions and
resources within the environment that supported the activity
remain or lose relevance?

Another value in characterising current practice in these
terms is to capture patterns of behaviour that may be
disseminated. Professional learning is widely recognized to be
a component of resilient performance [29, 13]. Performing an
RE analysis may, for example, expose useful strategies that
can be shared through formal or informal learning channels.

Finally, the framework used here [9] was helpful in
working with ethnographic data. It provided both structure
and vocabulary to support an RE analysis and clarified how to
focus on small teams and individuals. Performing an
ethnographic study can be challenging [27], and structuring
frameworks provide focus for fieldwork and analysis. One gap

in prior RE studies identified by [9] is that they focus on
finding evidence for resilience at different levels of
abstraction, such as within an entire industry like aviation, or
operations within an organisation, as within nuclear plants. At
these higher levels of analysis, the nuanced details of practice
within a profession are lost and this kind of analysis could not
support the assessment of some key changes that affect
software development teams. A second gap is methodological:
because the RE discipline lacks shared criteria or common
approaches for undertaking analyses, it is difficult for studies
to build upon one another’s findings. The framework used
provides a foundation for producing a traceable hierarchy that
links RE theory to empirical evidence and for building
generalised categories (referred to as “markers” in [9]) that are
applicable across industries. Although we have found
commonalities between our observations and those in other
domains, our analysis has not yet identified examples of
practice within software engineering that can be generalised
as transferable “markers” of resilience.

This set of reflections points to several future research
directions. The study performed here was based on historic
data to illustrate application. New studies that focus on
collecting data specifically for an RE analysis would allow the
technique to be explored in more depth, allow further
investigation of social and cultural factors that are relevant to
software engineering, and to define goals for resilient
performance that are relevant within the domain. Salient
episodes of practice identified through these new studies could
then be used to fully evaluate their usefulness in determining
the impact of changes to practice brought about by the
growing number of automation projects in software
engineering, e.g. towards the automatic generation of code
such as chatGPT and GitHub’s CoPilot.

Assuming that this evaluation is positive and following
efforts in Air Traffic Control (ATC), we are inspired by
Stroeve et al [35] to suggest the development of a catalogue of
episodes for software development. Stroeve et al’s work used
the same small teams framework, and the resultant catalogue
captures over 400 episodes related to ATC. A similar
undertaking within software engineering would be
considerable, but could be a useful resource for querying
changes. One of the potential challenges in using Stroeve’s
catalogue is its size: finding relevant entries in the resource to
use in analytic exercises is difficult. However, the concepts
used to characterise the episodes are in themselves a useful
way in which to structure and index the work.

Looking further to the future, a set of episodes that capture
the potential for resilient performance may be useful in
determining socio-technical requirements for new tools and
other automation endeavours, as episodes capture the nuanced
socio-technical context within which work happens.

V. CONCLUSIONS

This paper aimed to illustrate whether and how concepts
from RE can be used to characterise resilient performance in
software design and creation at the individual and small team
levels of activity. Findings from the preliminary study
demonstrated that characteristics of socio-technical resilience
are recognisable within adaptations made by developers and
teams. The study also indicated how this may be done by
utilising one framework to analyse ethnographic data of
software practice. Further, being able to relate developers’
strategies with examples in external literatures indicates that

agile and other software engineering practices reflect aspects
of resilient performance observed in other domains. Applying
this lens to software practice therefore has the potential to
inform understanding about how changes to the system that
supports software development impact professional practice,
to provide input to specification and design activities, and in
the longer term, to assess the impact of changes on resilient
performance.

Several benefits and challenges of performing an RE
analysis with software development data have also been
identified. Applying the RE lens is promising, but there are
some aspects that require adaptation before its full potential
may be assessed, and further investigation of resilience goals
within software practice is required.

ACKNOWLEDGMENTS

We thank all study participants who informed this work.

REFERENCES

[1] The Agile Manifesto. Agile Alliance. 2001. http://agilemanifesto.org/
[2] T.M. Amabile & S. Kramer. 2011. The progress principle. Harvard

Business Review Press.
[3] S. Amreen, A. Karnauch, and A. Mockus. 2020. Developer Reputation

Estimator (DRE). In Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE’19), IEEE
Press, 1082-1085.

[4] A. Bäckevik, E. Tholén and L. Gren. 2019 "Social Identity in Software
Development," IEEE/ACM 12th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE),
pp. 107-114.

[5] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp. 2008.
‘Motivation in Software Engineering: A Systematic Literature
Review’, Information and Software Technology, 50, 860-878

[6] R.I. Cook. 2020. Above the line, below the line. Communications of
the ACM, 63(3), 43-46

[7] A. Deshpande, H. Sharp, L. Barroca and A.J. Gregory. 2016. Remote
Working and Collaboration in Agile Teams. In International
Conference on Information Systems. 11-14 Dec 2016, Dublin, Ireland.

[8] C. França F. QB Da Silva, and H. Sharp. 2020. Motivation and
satisfaction of software engineers. IEEE Transactions on Software
Engineering 46, 2, 118–140.

[9] D. Furniss, J. Back, A. Blandford, M. Hildebrandt, and H. Broberg.
2011. A resilience markers framework for small teams. Reliability
Engineering & System Safety 96, 1, 2–10.

[10] M.R. Grayson. 2020. Cognitive work of hypothesis exploration during
anomaly response. Communications of the ACM, 63(4), 97-103

[11] B. Johansen. 2009. Leaders make the future. San Francisco, CA:
Berrett-Koehler Publishers.

[12] B. Johansson, and M. Lindgren. 2008 A quick and dirty evaluation of
resilience enhancing properties in safety critical systems. In:
Proceedings of the Third Symposium on Resilience Engineering, Juan-
les-Pins, France, October 28- 30.

[13] E. Hollnagel. 2018. Safety-II in practice: developing the resilience
potentials. Routledge. Chapter 2. What does resilience mean

[14] E. Hollnagel. 2012. FRAM, the Functional Resonance Analysis
Method: Modelling Complex Socio-technical Systems. Ashgate
Publishing, Ltd.

[15] E. Hollnagel, D.D. Woods and N. Leveson (eds). 2006 Resilience
Engineering: Concepts and Precepts. CRC Press.

[16] E. Hollnagel and R. Amalberti. 2001. The emperor’s new clothes: Or
whatever happened to “human error”. In Proceedings of the 4th
international workshop on human error, safety and systems
development. Linköping University, 1–18.

[17] I. Kirlappos, S. Parkin, and M.A. Sasse. 2014. Learning from Shadow
Security: Why understanding non-compliance provides the basis for
effective security. In Workshop on Usable Security (USEC). 27 April.

[18] G. Klein, P.J. Feltovich, J.M. Bradshaw, and D.D. Woods. 2005
Common ground and coordination in joint activity. Organizational
simulation 53, 139–184.

[19] T. Kontogiannis and S. Malakis. 2009. A proactive approach to human
error detection and identification in aviation in air traffic control. Safety
Science, 47, 693-707.

[20] J.-C. Laprie. 2008. From dependability to resilience. In 38th IEEE/IFIP
Int. Conf. On dependable systems and networks. G8–G9.

[21] T. Lopez, H. Sharp, T. Tun, A. Bandara, M. Levine, and B. Nuseibeh.
2022. Security Responses in Software Development. ACM
Transactions on Software Engineering and Methodology. Early access,
https://dl.acm.org/doi/abs/10.1145/3563211.

[22] T. Lopez, H. Sharp, M. Petre, and B. Nuseibeh. 2021. Bumps in the
Code: Error Handling During Software Development. IEEE Software
38, 3, 26–34.

[23] Lopez, T., Petre, M., & Nuseibeh, B. 2016. Examining active error in
software development. In 2016 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC) (pp. 152-156).

[24] S. Malakis, T. Kontogiannis. 2008. Cognitive Strategies in Emergency
and Abnormal Training: Implications for Resilience in Air Traffic
Control. In Proceedings of the Third Symposium on Resilience
Engineering, Juan-les- Pins, France, October 28-30.

[25] N. McDonald. 2006. Chapter 11 Organizational Resilience and
Industrial Risk. In Resilience Engineering: Concepts and Precepts.
Edited by Hollnagel, Woods and Leveson, pp 155-179, CRC Press.

[26] R. Mumaw, E. Roth, K. Vicente, C. Burns. 2000. There is more to
monitoring a Nuclear Power Plant than meets the eye. Human Factors,
42(1), 36-55.

[27] C. Passos, D. S. Cruzes, T. Dyba, and M. Mendonça, 2012. Challenges
of applying ethnography to study software practices. In Proc. ACM-
IEEE Int. Symp. Empirical Softw. Eng. Meas., pp. 9–18

[28] P. Ralph, S. Baltes, G. Adisaputri, R. Torkar, V. Kovalenko, M.
Kalinowski, ... & M. Zhou. 2020. Pandemic Programming: How
COVID-19 affects software developers and how their organizations
can help. arXiv preprint arXiv:2005.01127

[29] J. Rasmussen. 1990. The role of error in organizing behaviour.
Ergonomics 33, 10-11, 1185–1199

[30] J. Reason. 1990. Human error. Cambridge university press.

[31] C. Robson & K. McCartan. 2016. Real world research: a resource for
users of social research methods in applied settings, 4th edition, Wiley.

[32] H. Sharp, Y. Dittrich and C. deSouza. 2016. The Role of Ethnographic
Studies in Empirical Software Engineering. IEEE Transactions on
Software Engineering, 48, 8, 786-804.

[33] H. Sharp, and H. Robinson. 2008. Collaboration and co-ordination in
mature eXtreme programming teams. International Journal of Human-
Computer Studies, 66(7), 506–518

[34] H. Sharp, H. Robinson, J. Segal, and D. Furniss. 2006. The Role of
Story Cards and the Wall in XP teams: a distributed cognition
perspective. In AGILE 2006 (AGILE’06). IEEE.

[35] S.H. Stroeve, B.A. van Doorn, & M.H.C. Everdij. 2013. The human
contribution - Analysis of the human role in resilience in ATM. Report
number: Deliverable D1.2, EU FP7 Resilience 2050,
DOI: 10.13140/2.1.3527.3287.

[36] B. Tjørhom and K. Aase. 2012. The art of balance: using upward
resilience traits to deal with conflicting goals. In Resilience engineering
in practice: A Guidebook. 2012. CRC Press, 157–170.

[37] B. Trinkenreich, M. Guizani, I. Wiese, T. Conte, M. Gerosa, A. Sarma,
& I. Steinmacher. 2021. Pots of Gold at the End of the Rainbow: What
is Success for Open Source Contributors?. IEEE Transactions on
Software Engineering, 48(10), 3940-3953

[38] R. Westrum. 2006. Chapter 5 A Typology of Resilience Situations. In
Resilience Engineering: Concepts and Precepts. Edited by Hollnagel,
Woods and Leveson, pp 55-65, CRC Press.

[39] D.D. Woods and J. Allspaw. 2020. Revealing the Critical Role of
Human Performance in Software, Communications of the ACM, May,
63, 5, pp 64-67, doi:10.1145/3380468

[40] D.D. Woods. 2006. Chapter 2 Essential Characteristics of Resilience.
In Resilience Engineering: Concepts and Precepts. Edited by
Hollnagel, Woods and Leveson, pp 21-33. CRC Press.

http://agilemanifesto.org/

	I. Introduction
	II. Background
	A. Resilience in Software Engineering
	B. Resilience Engineering in Safety Science
	C. Applying Resilience Engineering

	III. A preliminary study investigating socio-technical resilience in software engineering practice
	A. Secondary analysis of ethnographic data
	B. Findings
	1) Episode 1: Breaking the estimate
	2) Episode 2: Rolling back code
	3) Episode 3: Creating a new definition of done

	C. Study limitations

	IV. Reflections and Future Directions
	V. Conclusions
	Acknowledgments
	References

