
Hearing the voice of experts: Unveiling Stack
Exchange communities’ knowledge of test smells

Luana Martins
Institute of Computing

Federal University of Bahia (UFBA)
Salvador, Brazil

martins.luana@ufba.br

Joselito Mota Junior
Institute of Computing

Federal University of Bahia (UFBA)
Salvador, Brazil

joselito.mota@ufba.br

Denivan Campos
Institute of Computing

Federal University of Bahia (UFBA)
Salvador, Brazil

denivan.campos@ufba.br

Heitor Costa
Department of Computer Science

Federal University of Lavras (UFLA)
Lavras, Brazil
heitor@ufla.br

Railana Santana
Institute of Computing

Federal University of Bahia (UFBA)
Salvador, Brazil

railana.santana@ufba.br

Ivan Machado
Institute of Computing

Federal University of Bahia (UFBA)
Salvador, Brazil

ivan.machado@ufba.br

Abstract—Refactorings are transformations to improve the
code design without changing overall functionality and observ-
able behavior. During the refactoring process of smelly test code,
practitioners may struggle to identify refactoring candidates and
define and apply corrective strategies. This paper reports on
an empirical study aimed at understanding how test smells and
test refactorings are discussed on the Stack Exchange network.
Developers commonly count on Stack Exchange to pick the
brains of the wise, i.e., to ‘look up’ how others are completing
similar tasks. Therefore, in light of data from the Stack Exchange
discussion topics, we could examine how developers understand
and perceive test smells, the corrective actions they take to
handle them, and the challenges they face when refactoring
test code aiming to fix test smells. We observed that developers
are interested in others’ perceptions and hands-on experience
handling test code issues. Besides, there is a clear indication that
developers often ask whether test smells or anti-patterns are
either good or bad testing practices than code-based refactoring
recommendations.

Index Terms—Developer expertise, stack exchange mining,
refactoring, test smells.

I. INTRODUCTION

Software refactoring consists of changing the structure of
the source code without compromising its overall functionality
[1] and observable behavior [2]. We use software refactoring
to enforce better design and coding practices through small
code transformations [3]. In addition, software refactoring
aims to facilitate readability and maintainability [4], especially
in large code bases where multiple developers engage without
a detailed view of the whole system [5].

Typically, the refactoring process takes place in the key
phases [6], [7]: (i) identification of candidates for refactoring;
(ii) determination of the appropriate refactoring technique; (iii)
application of refactoring; and (iv) validation of the refactoring
effect. Identifying a refactoring candidate requires an in-depth
understanding of various parts of the system and knowledge of
best practices [8]. Detecting problems in the code can be time-
consuming and labor-intensive and often requires automated

tool support to be effective in practice [9]. Besides, deciding
which refactoring technique best applies in each situation can
be challenging and complex [10]. Such reasons lead software
developers to understand how the software community has
dealt with anti-patterns and their refactoring processes [11].

The Software Engineering research community has ded-
icated efforts to understanding anti-patterns and proposing
solutions to assist developers in refactoring the code to
cope with design issues [12]–[15]. However, the evolution
of programming languages and frameworks creates new anti-
patterns that require novel refactorings to fix them, making
it challenging for the community to keep up with the actual
problems developers face in practice [16]. For this reason,
developers often post questions on Q&A platforms seeking
help to solve a problem with their code. In a recent study,
Peruma et al. [11] conducted quantitative and qualitative
experiments to understand how developers discuss refactoring
in a collaborative online discussion forum. The authors aimed
to unveil the most explored and discussed topics concerning
software refactoring.

From a broader perspective, refactoring is just as important
for automated test code as production code as it supports the
identification of issues caused by production code changes
[17], [18]. Testing verifies whether the software functionality
and observable behavior are kept the same after code refactor-
ings [19], [20]. The test result should remain unchanged before
and after the refactorings in the production code. However, the
test code development is prone to human errors, harming the
test code’s ability to detect defects. Therefore, to effectively
diagnose problems in production code, Beck et al. [21] stated
the coding of tests should follow good design principles.

Inspired by those arguments, van Deursen et al. [22] defined
test smells to indicate badly designed tests [22]. The presence
of test smells can be interpreted as a symptom of poor software
quality, harming the testing and maintenance activities [13],
[23]–[25]. Garousi et al. [15] proposed a catalog of test smells

ar
X

iv
:2

30
5.

03
43

1v
1

 [
cs

.S
E

]
 5

 M
ay

 2
02

3

and a summary of existing techniques and tools resulting from
a multivocal literature review. That catalog and summary are
a good initial step towards advancing the field, but there is
still a lack of understanding of which refactoring to apply and
how to apply them, in practice, to fix test smells.

By analyzing the literature on test smells [13], [15], [26],
we may observe a few pieces of evidence of the challenges
developers face during the automated test code development
and maintenance and the commonly discussed issues, mainly
unit testing. Furthermore, little is known about commonly used
corrective strategies and strategies that ensure the preservation
of test behavior after test code refactoring. These are important
gaps to bridge.

This paper reports on the results of an empirical study aimed
at understanding how the developers discuss test smells and
test refactorings in the Stack Exchange, the leading software
development collaboration network. By analyzing data from
Stack Exchange, we could contribute with a synthesis of the
community discussions about test smells, mainly regarding the
key challenges, test design issues, test code refactoring, and
post-refactoring test behavior.

II. RESEARCH METHODOLOGY

This study addressed the following Research Questions
(RQ):

RQ1 What challenges do developers report for han-
dling problems in the test code? This RQ studies
developers’ main difficulties in refactoring test code
by grouping the questions developers ask into why-
how-what categories.

RQ2 What test smells do developers most actively
discuss? This RQ studies which test smells develop-
ers consider relevant to refactor and classifies them
following Garousi et al.’s catalog [15].

RQ3 What preventive and corrective actions do de-
velopers suggest to handle test smells in the test
code? This RQ leverages the actions developers sug-
gest to prevent test smell insertion and the refactoring
operations from fixing test smells.

RQ4 Do developers discuss how to keep the test
behavior after test code refactorings? This RQ
investigates whether and how developers care about
test behavior during refactoring.

Fig. 1 shows the study design, which encompasses three
main steps: (A) Identification of discussions, (B) Classifica-
tion of discussions, and (C) Data analysis.

A. Identification of discussions

Developers’ competence consists of a frequent lifelong
quest for knowledge, and educational networks are excellent
environments for spreading knowledge [27]. According to
Tahir et al. [28], developers often gather in Q&A online forums
to ‘look up’ how others complete similar tasks and cope with
recurring issues, including how to get rid of anti-patterns.
For example, Stack Exchange is a collaborative discussion

forum network offering insightful resources on development
issues [28]. Posnett et al. [27] mentioned participating in and
sustaining learning communities is a durable and valuable
aspect of professional life.

In this study, we used Internet Archive (IA)1 to retrieve
discussions on test code problems developers report and the
corrective actions they suggest. IA keeps data dumps of
discussions on the Stack Exchange network over time. We
selected the following Stack Exchange sites:

• Code Review2: a site for peer programmer code reviews.
It allows programmers to ask questions about specific
code snippets and receive feedback from others;

• Software Engineering3: a site for developers and schol-
ars interested in asking general questions on the systems
development life cycle [28]. The site is adequate for
opinion-based questions;

• Stack Overflow4: a site covering technical and general
discussions on problems unique to software development
[29], [30]. The discussions commonly focus on specific
programming problems or tools.

The discussions on the Stack Exchange sites associate one
question post with one or more answer posts given by different
users. A question post consists of a title, body, and tags. Fig.
2 shows a sample StackOverflow question post [31]. It comes
with three tags: Java, JUnit, and refactoring. In the
post, the author asks if the practice she/he adopted in the
JUnit test case consists of duplication and how she/he writes
the test without duplication. Fig. 3 shows a response to the
question post from Fig. 2. It reveals that the practice of the
question refers to a test anti-pattern called Ugly Mirror.
As a potential solution, the test code simplification (avoiding
conditional structures and using assertions instead) and the
test object creation to run the tests manually for complex data
structures. The post’s author rated the answer as accepted, and
the answer got four votes.

We defined and applied a search string on the tags in each
question post to select the discussions. It aimed at filtering
out the discussion content based on selected tags (Fig. 1 -
Posts selection). Table I shows four groups of tags composing
our search string. The TEST group filters the discussions about
test codes by specifying the types of tests, testing frameworks,
and language constructs used in test codes. The DESIGN
group filters the discussions containing smell-related problems
concerning test code [15]. The REFACTORING group filters
topics with discussions on how to refactor test code. Con-
sidering that the tagged topics rarely use the words of the
REFACTORING group, we used a logical disjunction with the
REFACTORING and DESIGN groups to create a less strict
filter. Similarly, many topics are untagged with programming
languages. Therefore, the group LANGUAGE removes those
topics tagged with programming languages other than Java.

1Available at https://archive.org/download/stackexchange
2Available at https://codereview.stackexchange.com/
3Available at https://softwareengineering.stackexchange.com/
4Available at https://stackoverflow.com/

https://archive.org/download/stackexchange
https://codereview.stackexchange.com/
https://softwareengineering.stackexchange.com/
https://stackoverflow.com/

Posts
selection

Potential posts

Test refactoring

Test smells

Main
challenges

Corrective
actions

Behavior
preservation

(A) Identification of discussions (B) Classification of discussions (C) Data analysis

Activity

Database

Data

Legend

StackOverflow

Search Keywords

St
ac

k
Ex

ch
an

ge

Filter

Manual
analysis

of Q&A topics

Selected posts

Quality
assessment

Test smells

SoftwareEngineering

CodeReview

Fig. 1: Study Design
TABLE I: Groups of tags composing the search string.

ID Group Description Tags Criteria

1 TEST Words related to testing, test
type, or test structure

‘unit-testing,’ ‘testing,’ ‘test-scenarios,’ ‘unit-test-data,’ ‘junit,’ ‘junit4,’ ‘junit5,’ ‘automated-
tests,’ ‘test-automation,’ ‘tests,’ ‘testcase,’ ‘assertions,’ ‘assert,’ ‘assertion,’ ‘annotations’ Inclusion

2 DESIGN Words related to programming
practices and design

‘code-smell,’ ‘code-smells,’ ‘anti-patterns,’ ‘programming-practices,’ ‘naming,’ ‘naming-
conventions,’ ‘naming-standards,’ ‘coding-standards,’ ‘coding-style,’ ‘code-formatting,’ ‘for-
mat,’ ‘formatting,’ ‘bad-code,’ ‘technical-debt’

Inclusion

3 REFACTORING Words related to refactoring ‘refactoring,’ ‘test-refactoring,’ ‘automated-refactoring’ Inclusion

4 LANGUAGE Words related to programming
languages ‘c++,’ ‘c#,’ ‘javascript,’ ‘vb6’, ‘python,’ ‘python-3’, ‘go,’ ‘c,’ ‘.net,’ ‘php,’ ‘sql,’ ‘ruby’ Exclusion

Fig. 2: Sample question post extracted from StackOverflow.

Fig. 3: Accepted/useful answer from a StackOverflow post.

Although some studies automatically classify thousands of
Stack Exchange topics [11], [28], [32], we fine-tuned our
search string to reduce the number of non-relevant topics on
test smells and test refactorings [33], [34]. We applied the
search string “TEST AND (DESIGN OR REFACTORING)
NAND LANGUAGE” on the data dumps of three StackExange
sites from September 15th, 2008 to December 6th, 2022. As
a result, we retrieved 303 potential posts.

TABLE II: Number or retrieved discussions.

Site # Total posts # Potential posts # Selected posts

SoftwareEngineering 237,548 153 40
CodeReview 196,301 2 2
StackOverflow +8million 158 59

B. Classification of discussions

We manually analyzed the discussions to select the ones
related to test smells and the refactorings to solve them (Fig. 1
- Manual analysis). To align the analysis criteria, three coders
performed a peer analysis on the CodeReview and Softwa-
reEngineering question topics. The coders read 155 question
posts and applied the following inclusion (IC) and exclusion
criteria (EC): (IC1) question topics describing a problem in
the test code related to bad design or implementation choices,
(EC1) question topics about the need for testing and how to
create test code, and (EC2) question topics without answers.
We calculated the Kappa statistics [35] to assess the reliability
of the manual classification (Fig. 1 - Quality assessment) and
reached a substantial agreement level of 0.61.

After, independent coders analyzed the StackOverflow ques-
tion posts and accepted 59 pots (Fig. 1 - Selected posts,
Table II - #Selected posts). Next, we analyzed 101 selected
posts to extract the data items listed in Table III. The data
extraction followed the same steps described in this section.
We performed the data extraction on the CodeReview and Soft-
wareEngineering in peers. The coders discussed divergences
in data extraction in daily meetings and performed individual
data extraction on StackOverflow.

TABLE III: Data items extracted from discussions.

Data Item Description RQ

D1 Challenges for refac-
toring test smells

Challenges that developers face for refac-
toring the test code to fix test smells RQ1

D2 Description of test
smells

Descriptions of test smells by developers
based on their understanding RQ2

D3 Cause of test smells Causes that lead to test smells RQ2

D4
Actions for preventing
test smells and refac-
toring the test code

Actions suggested by developers to pre-
vent the insertion of test smells and refac-
tor the test code to fix test smells

RQ3

D5 Tools for refactoring
test smells

Tools and sources that support developers
fixing test smells RQ3

D6 Strategies to keep the
test code behavior

Strategies to verify whether the test code
behavior is kept the same after the test
code refactorings

RQ4

C. Data Analysis

To answer RQ1, we analyzed the question topics in two
steps. First, we applied a Thematic Content Analysis (TCA)
[36] to classify the types of questions asked by developers
into why-how-what questions (Golden-circle theory) [29]: (1)
why is a type of question that seeks to understand the reason
or the cause of a problem, (2) how is the type of question
that seeks approaches or better ways to achieve a result, and
(3) what is the type of question to get the information related
to the problem. Then, we performed an open coding [37] to
interpret the question topics and extract the main challenges
developers face when applying refactorings to fix problems in
the test code.

To answer RQ2, we applied a TCA to classify the discus-
sions into (1) specific discussion about a specific test smell and
(2) general discussion that does not explicitly ask about a test
smell. After, we interpreted the description of the test smell
and classified it according to Garousi et al.’s catalog [15].

To answer RQ3, we applied a TCA in the top answers
(top-rated answer, accepted answer, or unique answer) to
classify their actions into [28]: (1) Fix to recommend test code
refactorings for fixing problems in the test code, (2) Capture to
explain the test problems but does not recommend test code
refactoring to solve the problems, (3) Ignore to recommend
ignoring taking any action to fix the test code, and (4) Explain
why something is considered a test problem. In addition, we
extracted the tools and applied open coding to list the test code
refactorings suggested in the answers.

To answer RQ4, we analyzed whether the developers asked
for strategies to verify the test code behavior after performing
test code refactorings. We listed the strategies and tools
suggested in the answers. Data is publicly available in an
online open data repository [38].

III. RESULTS

A. Discussions characterization

We characterized 101 discussion topics on test smells and
their solutions found on the Stack Exchange network. There
is nearly no repetition of users asking questions. For those
users who asked more than one question, the author rephrased
the question in a more specific way or on a different site.

Day 0

Day 1

90

Day 2

Day 3

Day 4

Day 26
One topic was
answered after
twenty-six days.

Ninety topics
were answered

on the same day.

Seven topics
were answered

the next day.

One topic was
answered after

two days.

One topic was
answered after

three days.

One topic was
answered after

four days.
7

 1 1

11

(a) Time between asking a question and receiving a first answer.

Day 0

Day 1

Day 4

Day 290

Day 358

Day 852
One topic was

closed after 852
days.

Day 4083

Two topics were
closed after 4083

days.

Three topics were
closed on the

same day.

Two topics were
closed the next

day.

One topic was
closed after four

days.

One topic was
closed after 290

days.

One topic was
closed after 358

days.
2

 1 1 2

11

 3

(b) Time between asking a question and closing the discussion.

Fig. 4: Timeline of answer time and closing time of discussion
topics in days

We collected 111 top answers, of which we accepted 61
answers, and 38 answers were top-rated. We found another 12
answers, and although not accepted, we deemed relevant for
our investigation. Most users answered only one question, and
only seven answered more than one. It is worth noting four out
of these seven users are top-ten users when considering users’
reputation score, number of questions, and number of answers.
Next, we collected the time between asking a question and
receiving the first answer (Fig. 4a) and the time to close the
discussion topic (Fig. 4b). We observed that 90 out of 101
questions received an answer on the same day, and seven
received an answer the next day. The remainder received an
answer from the second to the twenty-sixth day. Regarding
the time to close, only three topics were closed the same day
they were posted, and the other 11 were closed within a year.
Curiously, some took 4,083 days to close, and many never
closed.

B. Trends and Challenges (RQ1)

In RQ1, we aimed to understand the trends and challenges
around developers’ discussions on test code refactoring con-
cepts and activities. We classified the discussions into 30
categories representing the questions asked by developers
while evolving the test code. Fig. 5 presents the number of
discussions in each category and their relationship with the
why-how-what questions.

In the why questions, we classified the discussions into ten
categories to understand the test code problems and bring
insights into the decision-making of whether to refactor the
test code for fixing such problems. The Understanding which
code structures to test, Understanding coupling in unit tests
and production code, and Understanding how to evolve legacy
code categories refer to problems with origin in the produc-
tion code. The Convincing people to follow good practices
category relates to problems faced by newcomers joining
a team that does not follow good practices for testing the

Fig. 5: Classification of types of questions and challenges

code due to organizational decisions or team conventions.
The Understanding test smells, Understanding the best way to
implement the test code, Understanding test code duplication,
Understanding naming conventions, Understanding mocking
anti-patterns, and Understanding the test results categories
refer to problems related to the comprehension of the testing
frameworks constructs, the importance of following good
practices and conventions for developing test code, and the
problems caused by the wrong usage of such constructs,
practices, and conventions.

We could sort most topics into Understanding which code
structures to test and Understanding of test smells categories.
In the former, the discussions usually present a code excerpt
asking whether the developers should test a structure of the
production code (e.g., overloaded/private/public methods). In
the latter, the discussions often refer to whether a particular
test code is either smelly or not and why someone should be
concerned about the impacts of test smells.

For example, we classified the following question in the
Understanding test smells category. That category shows a
barrier developers face in learning specific constructs for
creating test cases. Although they perceive the code as smelly,
they need to understand the pros/cons of improving the test
code.

(...) I always tell myself as long as the “real” code is “good,”
that’s all that matters. Plus, unit testing usually requires var-
ious “smelly hacks” like stubbing functions. How concerned
should I be over poorly designed (“smelly”) unit tests? [39]

In the how questions, we classified the discussions into

twelve categories. These encompass strategies and techniques
to handle problems reported in the why questions through other
developers’ experience. The How to handle dependencies (with
mock) and How to refactor mocks categories deal with the test
code evolution to use mocks and stubs for testing external
dependencies with APIs, databases, web services, and files.
The How to refactor test code to remove duplication category
discusses how to handle duplication of setup methods, anno-
tations, and test cases covering overloaded production meth-
ods. The How to deal with async category discusses testing
framework constructs to avoid non-deterministic tests given
the asynchronicity of the production code. The How to refactor
test code to improve coverage and How to refactor to evolve
legacy code categories involve understanding the production
code to co-evolve the production and test codes, improving test
coverage. The How to organize the test code, How to name test
methods and classes following naming conventions, and How
to organize the documentation of test code categories seek to
standardize the naming, documentation, and organization of
test codes. The How to refactor test smells and How to refactor
test smells (pointed by tools) categories discuss strategies to fix
test smells identified by developers or tools (e.g., SonarQube).
Lastly, the How to assure that the refactoring does not break
the tests category presents discussions on techniques to verify
whether the behavior of the test code keeps the same after test
code refactorings.

For example, we classified the following question into two
categories Understanding which code structures to test and
How to handle dependencies (with mock). The question shows
an example of a helper method containing some external
dependency. The first category aims to understand whether
the developer should test the helper method, and the second
asks for strategies to implement the test code handling the
dependencies of the helper method.

So I have a helper method [..] for which I can call to grab a
particular object rather than to remember which dependen-
cies I need to hook up to get the object I require.
My first question here is: should methods like these be
tested? The only reason I can think of to test these methods
would be to ensure that the correct dependencies are used
and set up correctly. If the answer to the first question is yes,
my second is: how? [40]

In the what questions, we classified the discussions into
seven categories. The What are the best practices to name
test classes, methods, mocks, or paths, What are the best
practices for unit testing, and What are the best practices
for mocking categories ask for coding standards, patterns,
and guidelines for constructs in the test code. The What are
the strategies and tools to find unused/dead code and What
are the tools to rename and organize tests categories present
tools for refactoring the test code to match the naming and
structure of the production classes and improve the test code
readability by removing unused code. The What are the
mocking anti-patterns and What are the test smells categories
ask for the anti-patterns and test smells definitions and
catalogs that can occur in the test code.

For example, we classified the following question in the

What are the good practices for unit tests category. With this
question, the developer received guidance on which patterns
to use while developing the test code, e.g., the Arrange, Act,
Assert (AAA) pattern for arranging and formatting the code.

Usually, when talking about coding standards, we refer to the
code of the program itself, but what about the unit tests? Are
there certain coding standards guidelines that are unique to
unit tests? [41]

Conversely, we classified the following question [42] in the
What are the test smells category. The answers to this question
provided more than 31 test code anti-patterns.

There must be at least two key elements present to formally
distinguish an actual anti-pattern from a simple bad habit,
bad practice, or bad idea [...] Vote for the TDD anti-pattern
that you have seen “in the wild” one time too many. [42]

Finding 1: Developers are interested in the practi-
cal experience of other developers to understand test
smells and decide whether and how to refactor the test
code to fix them.

C. Test code problems (RQ2)

In RQ2, we investigated the test smells discussed by devel-
opers in the Stack Exchange network. We followed Garousi
et al.’s catalog [15] to classify the posts. Although most
question topics did not explicitly ask about a test smell, we
could establish a link between the description of the test
code problem and the test smell categorization. Therefore, we
labeled the discussions without explicit test smells as General
Discussion (GD) and the discussions with explicit test smell
as Specific Discussion (SD) on test smells. We analyzed 36
SD with 46 test smells and 64 GD with 125 test smells.

Fig. 6 presents the categorization of discussions into test
smells. We found test smells composing seven of the eight
top categories proposed by Garousi et al. [15]. The Code
related category refers to test smells related to the test
code duplication, long, complex, and hard-to-understand tests,
and tests that do not follow coding best practices regarding
naming conventions and code organization. The Dependencies
category refers to test smells related to dependencies within
the test code or with external resources. The In association
with production code category refers to test smells related
to coupling and dependencies between test and production
code, making the tests hard to evolve. The Mock and stub
related category refers to test smells related to misusing mock
objects and mocking verification. The Issues in test steps
category refers to occurring test smells in specific language
constructs such as assertions and setup methods. The Test
execution/behavior category refers to test smells that can lead
to unexpected results as non-determinism. The Test seman-
tic/logic category refers to test smells related to test logic and
several responsibilities per test. The only category we did not
find was the Design related category, which mainly presents
test smells related to page-object patterns in Selenium tests.

The seven categories from Fig. 6 group 54 test smells. The
Issues in test steps category is the most diverse regarding test
smells, comprising 18 test smells. Although the category is
diverse, most of its test smells were discussed only once.
Conversely, the Code related category is diverse and comprises
two of the most recurrent test smells in the discussions.
The Bad Naming test smell was the most frequent, with 14
occurrences. It describes the non-compliance with naming
conventions for test code structures such as variables, methods,
and classes. The Code Organization test smell was the second
most frequent, with 13 occurrences. It describes the non-
compliance with test code organization as following the same
production and test classes package hierarchy.

In addition, the Code related category has the most test
smells gathered from specific topics. The developers explicitly
discussed ten out of 17 test smells of this category. Differently,
we gathered the most test smells of other categories from the
GD. While the In association with production code, Mock and
stub related only contain GD, the Dependencies and Issues
in test steps categories have three SD each, and the Test
execution/behavior and Test semantic/logic categories have
one SD each. It can indicate that developers face problems
in different categories of test smells. Still, they know more
about naming the test smells in the Code related category.

Finding 2: Developers usually ask whether something
is a test smell or an anti-pattern, rather than referring
to a particular one.

D. Test code refactorings (RQ3)

In RQ3, we investigated the solutions for handling test
smells that developers suggest in the Stack Exchange network.
We analyzed the actions suggested in the top answers of each
discussion, resulting in 33 answers in the Fix category, seven
answers in the Capture category, 70 answers in the Explain
category, and one answer in the Ignore category.

In addition, we extracted the code-based answers, tools,
and documents suggested in the answer topics to support
developers in fixing test smells. The answers categorized into
the Fix category suggested 40 test code refactorings for fixing
test smells. Less than half of the answers (13; 39.4%) in this
category presented code-based refactoring recommendations,
i.e., the answers included code samples. In comparison, 32
answers (41.5%) categorized into the Explain and Capture
categories presented 64 patterns for organizing the test code
and good practices for preventing test smells. Some answers
(10; 12.9%) presented examples of using patterns and good
practices. The only answer in the Ignore category discussed
the trade-offs of refactoring a test method with many assertions
to fix a test smell or keeping the assertions as documentation.

Next, we analyzed the solutions proposed in the answers
to remove duplicates and group similar answers according to
the developers’ definitions. Fig. 7 presents 54 solutions clas-
sified into three categories: i) Good practices for preventing

Code duplication Dependencies among tests In association with production code Issues in assertions Other test execution / behavior
Test Redundancy (7) Coupling Between Test Methods (7) Ugly mirror (6) Tests That Can’t Fail (3) Verify behaviour (6)
Annotation Repetition (1) Chain Gang (1) Test logic in production code (3) Inappropriate Assertions (1) Non-deterministic tests (1)
Unecessary Test (1) Order Dependent Tests (1) Coupling with Production Code (2) Line hitter (1) Sleep Test (1)

Hard to co-evolve (2) Redundant Assertion (1) The Flickering Test (1)
Complex / Hard to understand External dependencies Obsolete tests (2) The Turing Test (1)

Multiple Assertion (3) Mystery Guest (9) Doppelgänger (1) Performance

Verbose Test (3) Tooling Details in Test Case (5) For Testers only (1) Issues in setup Slow Runtime (1)
God Test Class (1) Hidden Dependency (3) Friction (1) General Fixture (2) The Slow Poke (1)
Irrelevant Information (1) Hardcoded dependency (2) Replicating Disadvantages of the Code (1) Inappropriately Shared Fixture (2)

Obscure Test (1) Dependencies on test containers (1) Second Class Citizens (1) Excessive Setup (1) Other test logic related
The Giant (1) State Leak (1) The Forty Foot Pole Test (1) Fragility (1) The Sleeper (2)

The Butterfly (1) Logic in Setups (1) Lazy Test (1)
Violating coding best practices The Conjoined Twins (1) Mock and stub related Setup/Teardown Bloat (1) Conditional logic (1)
Bad Naming (14) The Environmental Vandal (1) Using more than one mock for a test (3) The Cuckoo (1) Happy Path (1)
Code Organization (13) The Local Hero (1) Mock makes the test always passes (2) The Mother Hen (1) The Inspector (1)
Print Statement (2) Mocking whole classes (2) Wait and See (1)

Anal Probe (1) General Mocking (1) Issues in teardown

Magic Number (1) Is Mockito Working Fine (1) Wet Floor (1) Testing many things
Messy Tests (1) Mock call verification (1) Assertion Roulette (3)

Sensitive Equality (1) Mock naming (1) Other test steps Multiple Responsibilities (1)
The Test With No Name (1) The Dead Tree (1) The Secret Catcher (2) Tests of Different Behaviors (1)

The Mockery (1) Boiler Plate (1) The Test It All (1)
Brittle Unit Tests (1)
Fragile Unit Tests (1)

C
od

e
re

la
te

d D
ep

ed
en

ci
es

Is
su

es
 in

 te
st

 s
te

ps

M
oc

k
an

d
st

ub
 re

la
te

d
In

 a
ss

oc
ia

tio
n

w
ith

 p
ro

du
ct

io
n

co
de

Te
st

 s
em

an
tic

 /
lo

gi
c

Te
st

 e
xe

cu
tio

n
/ b

eh
av

io
r

Fig. 6: Classification of GD and SD on test smells according to Garousi’s catalog of test smells [15].

problems with roots on, ii) Patterns, and iii) Refactorings for
problems associated with. The colors represent the categories
of test code problems from Fig. 6. The patterns, good practices,
and test code refactorings aim to solve them.

The Patterns category refers to patterns to structure the
test code, avoiding issues in the test steps. Most solutions
suggested organizing the test methods according to the AAA
pattern [21], [43]. This pattern organizes the test methods into
three steps: (1) setup inputs and targets, (2) act on the target
behavior, and (3) assert expected outcomes. It is also called the
Given-When-Then pattern in the Behavior Driven Development
(BDD) process [44], [45]. The Four-Phase Test pattern adds
one step into that pattern: (4) reset to its pre-setup state [46].

The Good practices for preventing problems with roots
on category refers to good practices covering the top test
problems presented in Fig. 6. The Test Steps category presents
good practices for organizing the test code. The Code-related
category suggests practices to provide useful information while
naming variables and test methods and classes to facilitate the
identification of failures caught by the tests. The Dependencies
category suggests practices for handling dependencies among
tests and with external resources. The Mock and stub related
category brings insights into the correct usage of the mocking
frameworks. The In association with production code category
suggests separating the responsibilities to avoid coupling be-
tween test and production codes. The Test execution/behavior
category aids in developing tests for async tasks of the
production code. The Test semantic/logic category presents
good practices to avoid developing naive test cases and cover
as many paths as possible.

Similarly, the Refactoring for problems associated with
category refers to test code refactorings to solve the seven top
problems presented in Fig. 6. The Test steps category presents
only one refactoring to extract common arrange code in
test methods into setup/teardown methods. The Code-related
category presents refactorings to deal with code duplication

Test steps Test steps

Use setup/teardown (3) Arrange, Act and Assert (AAA) (4)
Do not mix different types of test codes (1) Don't Repeat Yourself (DRY) (1)
Do not put assertions in the setup method (1) Four-Phase Test (1)
Organize the code following good practices (1) Given-When-Then (1)
Separate setup and assert methods (1)

Code-related

Follow naming conventions (7) Test steps

Give meaningfull names (6) Extract setup/teardown (1)
Asserting strings instead of discrete values (1)

Fast, Focused Feedback (1) Code-related

Propositional Style Naming (1) Reestructure test folder (3)
Write meaningfull assert messages (1) Remove unnused method (2)

Rename test methods and classes (2)
Dependencies Test the 'helper object' in isolation (2)
Use mocks (3) Create helper methods (1)
Keep all code related entries together (1) Replace print by assert (1)
Tests should run independently of each other (1)
Use fakes instead of mock (1) Dependencies

Use dependency injection (5)
Mock and stub related Create mocks (2)
Do not mock entire classes (1) Mock database (1)
Do not use unrealistic test data (1)

Mock and stub related
In association with production code Create a shared sttubing (1)
Assert the behavior of your class's features (4) Match widely and verify precisely (1)
Do not test private methods (2)

Avoid coupling your code to unit tests (1) In association with production code
Minimize Test-Code Distance (1) Create an interface (1)

Fixing production class (1)
Test execution / behavior Use abstract factory (1)
Avoid use sleep statements (1) Use reflection (1)
Idempotent between test sessions (1)

Results do not vary based on the environment (1) Test execution / behavior
Static state sharing between threads (1) Use test annotation (2)

Mock the elapsed time (1)
Test semantic / logic Use explicit wait (1)
One scenario per test (7)

Asserting elements in a UI (1) Test semantic / logic

Do as little as possible (1) Decompose test logic (1)
Do not create tests only for the happy path (1) Use guard asserts to multiple assertions (1)

G
oo

d
pr

ac
tic

es
 fo

r p
re

ve
nt

in
g

pr
ob

le
m

s
w

ith
 ro

ot
s

on

R
ef

ac
to

rin
gs

 fo
r p

ro
bl

em
s

as
so

ci
at

ed
 w

ith

Pa
tte

rn
s

Fig. 7: Suggestions of patterns for code organization, good
practices, and test code refactorings for preventing and fixing
test smells.

and bad naming. The Dependencies category suggests using
mocks or dependency injection to handle external dependen-
cies. The Mock and stub related category presents refactorings
to remove duplication related to mocks and ensure well-
designed asserts. The Association with the production code
category presents refactorings in the production class that
can require adaptations in the test code. The Test execu-
tion/behavior category presents refactorings to handle async
tasks by using specific features of the testing or mocking
frameworks. Lastly, the Test semantic/logic category presents
refactorings to decompose the logic in test methods, reducing
their complexity.

To guide the adoption of testing patterns, good practices,
and test code refactorings, the developers pointed out 32
resources in their answers. Most resources are blogs and books
(5; 21.7% each) that present test anti-patterns and refactoring
strategies to fix them. In addition, the developers suggested
mocking frameworks (7; 30.4%) and pointed out the docu-
mentation for constructs of testing and mocking frameworks
(4; 17.4%). Some developers also suggested online courses
and videos (1; 4.4% each).

Finding 3: Developers more often discuss good prac-
tices and test patterns than code-based refactoring
recommendations.

E. Test behavior (RQ4)

In RQ4, we analyzed whether developers are concerned with
keeping the test code behavior after performing refactorings
to fix test smells. From 101 discussions, only eight (7.9%) ad-
dressed test code behavior. In most discussions, the developers
are interested in evolving legacy codes, understanding how to
perform the refactoring phase of TDD, or improving the test
code quality.

After reading Martin Fowler’s book [2], the developer
decided to refactor the test code to organize and remove re-
dundant code. The developer linked refactoring production and
test codes, asking how to test the test code refactorings [47].
As a strategy to keep test code behavior, the answer suggests:

[...] The trick with complex refactoring of test code is to be
able to run the tests against the system under test and get
the same results. [...] [47]

In another discussion, the developer brings up definitions of
refactoring and how to ensure that refactorings do not break
the code behavior. Following those definitions, the developer’s
interest lies in understanding how to refactor smelly test codes
and whether creating meta-tests helps keep the test code
behavior [48]. The answer suggests:

When modifying tests, keep the SUT (System Under Test)
unchanged. Tests and production code keep each other in
check, so varying one while keeping the other locked is
safest. [...] [48]

Finding 4: Discussions on how to keep the test code
behavior suggest 1) locking the production code while
modifying the tests and 2) checking the results of the
tests before and after performing the refactoring. There
is no suggestion of tools or strategies to make this
process more trustworthy.

IV. DISCUSSION

This section discusses and interprets the results of each RQ
we addressed in this study. Besides, this section points out
some existing gaps.

In RQ1, we raised the challenges developers face regarding
test code problems and the solutions to cope with them.
Developers have to overcome the barrier of (1) convincing
management and development teams of the implications of test
smells for the test code quality, (2) co-evolving the production
and test codes, and (3) keeping themselves up-to-date about
the new constructs of programming languages and testing
frameworks, as they emerge. Although all the discussions
occurred after the first catalogs of test smells [22], [49], we
found that developers commonly ask for others’ perceptions
and practical experience on test code problems and proven
solutions. The discussions on the Stack Exchange network
highlight a gap between industry and academia, indicating the
importance of effectively disclosing literature findings.

In RQ2, we classified 54 test smells into eight high-level
categories of test code problems, based on [15]. In addition,
we publicized the test smells definitions through an online
catalog [38] to help developers understand, prevent, detect,
and refactor test smells. Practitioners could use the catalog
to educate themselves on test smells concepts. To evolve
the catalog, we invited researchers and developers to submit
pull requests to update the website with test smells and their
definitions.

In RQ3, we listed the solutions for test code problems and
classified them into good practices, test patterns, and test code
refactorings. Most solutions explain how to deal with the test
code problem but do not demonstrate them. In addition, one
good practice or test code refactoring could prevent or refactor
more than one test smell. As we could not establish a link
between the good practices and test code refactorings to the
specific test smells, we linked the good practices and test code
refactorings to the top test code problems they aim to solve.
Hence, exploring good practices and test code refactorings to
fix test smells is essential. Most solutions pointed to blogs,
books, documentation, and testing frameworks. Despite the
research community’s efforts in developing tools for handling
test smells and other problems in the test code, the solutions
of the Stack Exchange network did not point to any of them.
Besides proposing new tools, academic studies should evaluate
their usefulness in real-world contexts.

In RQ4, we observed developers are concerned with keeping
the test code behavior after the refactoring. However, no well-
defined strategies or tools to aid developers in refactoring test

code. It can lead developers to skepticism, missing an op-
portunity to improve test code quality. Therefore, researchers
could focus on providing simple oracle mechanisms for test
refactorings (e.g., mutation testing), or automating the catalog
of refactorings in a static analyzer.

V. THREATS TO VALIDITY

Search process: We filtered the discussions related to the
test code refactorings and test smells by applying a search
string to the tags of each post. As developers can use different
tags other than the ones we considered in our search string, we
may have missed some discussions in exchange for reducing
the number of non-relevant discussions returned with the
search string. In addition, we only analyzed the accepted
and top-voted responses for each discussion to analyze only
the relevant answers that provided a refactoring action or
explanation for the problems raised on the Stack Exchange
network.

Generalization of findings: There are several technology-
based question-and-answer websites on the Stack Exchange
network. For this study, our scope focused on the top 3
websites (Stack Overflow, Software Engineering, and Code
Review), encompassing various programming-related topics. In
addition, we applied a search string to the discussions’ tags
to limit our analysis to test code refactorings performed with
Java programming language and the JUnit testing framework.

Manual analysis bias: We performed a peer review process
to mitigate bias during the selection and classification of
the discussions. First, we selected a set of potential discus-
sions, and three researchers classified them independently. We
achieved an agreement level of 0.61, following Kappa statis-
tics. Also, the selection and classification processes involved
discussions aiming to solve any potential conflicts.

Popularity metric: To measure the popularity of a question
and an answer, we considered counts of the number of scores
on the posts. In addition, we did not consider the period of the
questions (e.g., when the developers posted the questions). In
our analysis, we did not distinguish between questions based
on time, so there are no new questions with low counts of the
number of scores and views.

VI. RELATED WORK

A. Developers’ perception of test smells

Bavota et al. [50] performed the first study investigating
the empirical evidence of test smells in 18 software systems
and the software developers’ perception of the test smells
effects on the code quality. Later, the authors extended that
study [51] by investigating 27 software systems and surveying
61 developers. The authors observed a high diffusion of test
smells in such a study, which may lead to issues concerning
the comprehensibility and maintainability of test suites and
production code.

Similarly, Tufano et al. [52] surveyed 19 developers to
investigate whether they could recognize occurrences of test
smells in software projects. The results indicated developers
do not recognize test smells and rarely remove them from the

test code. Similarly, Junior et al. [53], [54] conducted empirical
studies to unveil how consciously software developers insert
test smells. The results indicated that experienced profession-
als introduce test smells during their daily programming tasks,
even when using standard practices from their companies.

Spadini et al. [13] argued developers only sometimes per-
ceive test smells as problematic, given the lack of thresholds
to interpret them. The authors defined thresholds for nine
test smells and empirically evaluated the perception of 31
developers on the proposed thresholds. As a result, the authors
indicate that participants’ perceptions agree with previously
predefined severity thresholds and that test smells impact
maintenance in test suites. Bai et al. [55] investigated the
impact of test smells on test learning with 42 computer science
students. Results indicated some test smells become less severe
or do not occur with the evolution of the testing frameworks.

Instead of analyzing developers’ opinions through surveys
and interviews, our analysis of Stack Exchange discussions
addresses the main challenges developers face in handling
test smells in practice. This work differs from state-of-the-
art approaches by (i) addressing a larger set of developers
through the Stack Exchange network discussions among many
developers and (ii) studying the definitions of test smells in
practice, providing additional context to earlier studies.

B. Test code refactoring

van Deursen et al. [22] introduced the concept of test smells
and proposed a catalog describing test smells and refactorings
to fix them. Complementary, Meszaros et al. [49] and Bowes
et al. [56] broadened the definition of test smells and listed
relevant principles for test code. Later, Guerra et al. [20]
explored those test smells definitions and proposed a catalog
of 15 test code refactorings to fix them. In addition, the authors
proposed a representation that can ease the analysis of whether
the refactoring did not change the test code behavior.

Turning the attention to the empirical studies, Kummer
[57] studied whether 20 developers recognize and refactor test
smells. Results pointed out developers refactor test smells by
chance. Similarly, Soares et al. [58] investigated how devel-
opers refactor test code to eliminate test smells. The authors
surveyed 73 open-source developers to assess their preference
and motivation to choose between smelly and refactored test
code samples. In another work, Soares et al. [59] investigated
whether the JUnit 5 features help refactor test code to remove
test smells. They conducted a mixed-method study to analyze
the usage of the testing framework features in 485 Java open-
source projects, identifying the features helpful for fixing test
smells and proposing test code refactorings.

To understand how often and which strategies developers
use to refactor the test code for fixing test smells, Santana
et al. [3] surveyed 87 developers and interviewed eight other
developers. Results indicated most participants consider rele-
vant to refactor test smells but only sometimes do it. Similarly,
Campos et al. [60] asked software developers to refactor the
test code of their projects and remove existing test smells.

The results indicated developers must learn how to refactor
test code to remove the test smells.

The studies mentioned above asked for the developers’
opinions, while other studies mined the projects’ commits
history to understand test code refactorings. Peruma et al. [61]
investigated the relationship between refactorings and their
effect on test smells in 250 open-source Android Apps. Results
showed that refactoring operations in test and non-test files
differ, and the refactorings co-occur with test smells. Kim et al.
[62] conducted an empirical study on the test smells evolution
and maintenance in 12 open-source projects. The authors
analyzed the commits that removed test smells and concluded
the test smells removal was due to maintenance activities. Kim
et al. [63] studied the maintenance activities of developers
on test annotations. They created a taxonomy by manually
inspecting and classifying a sample of test annotation changes
and documenting the motivations driving these changes.

Differently, Alomar et al. [64], [65] discussed the im-
portance of considering the developer’s experience as part
of solutions for code refactoring. The authors conducted an
empirical study on 800 open-source projects to investigate
the relationship between the developers’ experience and the
number of refactoring activities. As a result, the authors found
several developers apply refactorings, but only a few are
responsible for the production and test code. Furthermore,
the authors reported no correlation between experience and
motivation due to refactoring.

Instead of analyzing developers’ opinions or refactoring
activities through the projects’ histories, our study analyzes
discussions from the Stack Exchange network. Those discus-
sions can anticipate the problems that developers face with
their respective solutions in practice.

C. Developers’ perceptions of Stack Exchange topics

Several studies have analyzed Stack Exchange network dis-
cussions on particular topics in the Software Engineering field
[28], [29], [32], [66], [67]. Openja et al. [29] analyzed 260,023
release engineering questions using topic modeling. The au-
thors examined the developers’ topics of interest and their
difficulties reported on Stack Overflow. The results indicated
developers discussed 38 release engineering topics, among
which software testing is the most challenging topic and the
most important contributor to software quality assurance.

Other topics include discussions on smells that occur in
different software artifacts. Choi et al. [32] performed a
preliminary study on 925 discussions on Stack Overflow about
code clones. Results showed most discussions are related
to refactoring with the need for more support for clone
refactoring tools. Tian et al. [66] analyzed the developers’
perception of architectural smells through 207 discussions on
Stack Overflow. The results indicated developers use general
terms to describe architectural smells caused by violating
architectural patterns and design principles.

Tahir et al. [67] mined 17,126 Stack Overflow posts and
manually analyzed the top 100. The results showed developers
use Stack Overflow to ask for general code smell assessments

rather than particular refactoring solutions. Tahir et al. [28]
also analyzed how developers discuss code smells and anti-
patterns across three technical Stack Exchange sites. Results
showed developers often discuss the downsides of implement-
ing specific design patterns and flag them as potential anti-
patterns that developers should avoid.

Regarding code refactoring to improve its overall design,
Pinto and Kamei [68] mined Stack Overflow posts to study
discussions around refactoring tools. The results indicated
developers prefer multi-language refactoring tools. However,
they do not use them due to usability issues and a lack of
trust in the refactoring process. Peruma et al. [11] analyzed
9489 refactoring discussions on Stack Overflow to investigate
the trends and challenges that the developers face in refactor-
ing software artifacts in practice. The authors automatically
assigned the discussions to one of the topics: (i) code opti-
mization, (ii) architecture and design patterns, (iii) unit testing,
(iv) tools and IDEs, and (v) database. As for unit testing,
developers face challenges with writing test cases, mainly
to accommodate refactored production code. As a result, the
authors summarized the key challenges and conclusions for
relevant stakeholders considering each topic.

In contrast, our study is the first to look into test smells
within the discussions of the Stack Exchange sites. More
specifically, our study investigates the challenges developers
face in test code refactoring, the test code problems in practice,
and the test code refactorings suggested to fix test smells.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we investigated the discussions about test
smells and test code refactoring on the Stack Exchange net-
work. We aimed to leverage knowledge about the corrective
actions developers take to deal with them and the main
challenges developers face to correct test smells.

To accomplish our goal, we sorted the discussion topics into
30 categories. Each category describes questions developers
ask when they face any issue during test code evolution. The
yielded results indicate most topics lie in the Understanding
which code structures to test (12) and Understanding test
smells (12) categories. We observed developers are interested
in others’ perceptions and hands-on experience handling issues
of test code. In addition, there is an indication the developers
often ask whether test smells or anti-patterns are either good
or bad testing practices than code-based refactoring recom-
mendations.

In future work, we plan to design a catalog of test smells and
their definitions to help bridge the gap between tool supporters
and developers to ensure that refactoring does not break tests.

ACKNOWLEDGMENTS

This work is partially supported by INES (www.ines.org.br),
CNPq grant 465614/2014-0, FACEPE grants APQ-
0399-1.03/17 and APQ/0388-1.03/14, CAPES grant
88887.136410/2017-00; and Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code
001; and FAPESB grant BOL0599/2019 and BOL0188/2020.

REFERENCES

[1] V. Alizadeh, M. Kessentini, M. W. Mkaouer, M. Ó Cinnéide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach to
software refactoring recommendations,” IEEE Transactions on Software
Engineering, vol. 46, no. 9, pp. 932–961, 2020.

[2] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[3] R. Santana, D. Fernandes, D. Campos, L. Soares, R. Maciel, and
I. Machado, “Understanding practitioners’ strategies to handle test
smells: A multi-method study,” in Proceedings of the XXXV Brazilian
Symposium on Software Engineering, ser. SBES ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 49–53.

[4] C. Dibble and P. Gestwicki, “Refactoring code to increase readability
and maintainability: A case study,” J. Comput. Sci. Coll., vol. 30, no. 1,
p. 41–51, oct 2014.

[5] A. Christopoulou, E. A. Giakoumakis, V. E. Zafeiris, and V. Soukara,
“Automated refactoring to the strategy design pattern,” Information and
Software Technology, vol. 54, no. 11, pp. 1202–1214, 2012.

[6] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative evalu-
ation of maintainability enhancement by refactoring,” in International
Conference on Software Maintenance, 2002. Proceedings., 2002, pp.
576–585.

[7] M. Katić and K. Fertalj, “Towards an appropriate software refactoring
tool support,” in WSEAS international conference on applied computer
science, 2009, pp. 140–145.

[8] R. Oliveira, R. de Mello, E. Fernandes, A. Garcia, and C. Lucena,
“Collaborative or individual identification of code smells? on the ef-
fectiveness of novice and professional developers,” Information and
Software Technology, vol. 120, p. 106242, 2020.

[9] T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna, “On the
evaluation of code smells and detection tools,” Journal of Software
Engineering Research and Development, vol. 5, no. 1, pp. 1–28, 2017.

[10] E. Tempero, T. Gorschek, and L. Angelis, “Barriers to refactoring,”
Communications of the ACM, vol. 60, no. 10, pp. 54–61, 2017.

[11] A. Peruma, S. Simmons, E. A. AlOmar, C. D. Newman, M. W. Mkaouer,
and A. Ouni, “How do i refactor this? an empirical study on refactoring
trends and topics in stack overflow,” Empirical Software Engineering,
vol. 27, no. 1, pp. 1–43, 2022.

[12] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia,
“Do they really smell bad? a study on developers’ perception of bad
code smells,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 101–110.

[13] D. Spadini, M. Schvarcbacher, A.-M. Oprescu, M. Bruntink, and A. Bac-
chelli, “Investigating severity thresholds for test smells,” in Proceedings
of the 17th International Conference on Mining Software Repositories,
ser. MSR ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 311–321.

[14] M. Hozano, A. Garcia, B. Fonseca, and E. Costa, “Are you smelling it?
investigating how similar developers detect code smells,” Information
and Software Technology, vol. 93, pp. 130–146, 2018.

[15] V. Garousi and B. Küçük, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52–81, 2018.

[16] V. Garousi, K. Petersen, and B. Ozkan, “Challenges and best practices in
industry-academia collaborations in software engineering: A systematic
literature review,” Information and Software Technology, vol. 79, pp.
106–127, 2016.

[17] I. Karac and B. Turhan, “What do we (really) know about test-driven
development?” IEEE Software, vol. 35, no. 4, pp. 81–85, 2018.

[18] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and software technology,
vol. 50, no. 9-10, pp. 833–859, 2008.

[19] E. A. AlOmar, M. W. Mkaouer, C. Newman, and A. Ouni, “On
preserving the behavior in software refactoring: A systematic mapping
study,” Information and Software Technology, vol. 140, p. 106675, 2021.

[20] E. M. Guerra and C. T. Fernandes, “Refactoring test code safely,” in
International Conference on Software Engineering Advances (ICSEA
2007). IEEE, 2007, pp. 44–44.

[21] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[22] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok, “Refactoring test
code,” Centre for Mathematics and Computer Science, NLD, Tech. Rep.,
2001.

[23] M. Greiler, A. Van Deursen, and M.-A. Storey, “Automated detection
of test fixture strategies and smells,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. IEEE,
2013, pp. 322–331.

[24] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba, “On the distribution of test smells in open source
android applications: An exploratory study,” in Proceedings of the 29th
Annual International Conference on Computer Science and Software
Engineering, ser. CASCON ’19. USA: IBM Corp., 2019, p. 193–202.

[25] P. S. Kochhar, X. Xia, and D. Lo, “Practitioners’ views on good software
testing practices,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 2019, pp. 61–70.

[26] D. J. Kim, “An empirical study on the evolution of test smell,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 2020, pp. 149–
151.

[27] D. Posnett, E. Warburg, P. Devanbu, and V. Filkov, “Mining stack
exchange: Expertise is evident from initial contributions,” in 2012
International Conference on Social Informatics, 2012, pp. 199–204.

[28] A. Tahir, J. Dietrich, S. Counsell, S. Licorish, and A. Yamashita, “A large
scale study on how developers discuss code smells and anti-pattern in
stack exchange sites,” Information and Software Technology, vol. 125,
p. 106333, 2020.

[29] M. Openja, B. Adams, and F. Khomh, “Analysis of modern release
engineering topics : – a large-scale study using stackoverflow –,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2020, pp. 104–114.

[30] T. Bhasin, A. Murray, and M.-A. Storey, “Student experiences with
github and stack overflow: An exploratory study,” in 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 2021, pp. 81–90.

[31] “Java: code duplication in classes and their junit test
cases,” Stack Overflow, 2012, Accessed on 12.29.2022.
[Online]. Available: https://stackoverflow.com/questions/10781050/
java-code-duplication-in-classes-and-their-junit-test-cases

[32] E. Choi, N. Yoshida, R. G. Kula, and K. Inoue, “What do practitioners
ask about code clone? a preliminary investigation of stack overflow,”
in 2015 IEEE 9th International Workshop on Software Clones (IWSC),
2015, pp. 49–50.

[33] F. Gomes, E. P. d. Santos, S. Freire, M. Mendonça, T. S. Mendes,
and R. Spı́nola, “Investigating the point of view of project management
practitioners on technical debt: A preliminary study on stack exchange,”
in Proceedings of the International Conference on Technical Debt, ser.
TechDebt ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 31–40.

[34] E. P. Santos, F. Gomes, S. Freire, M. Mendonça, T. S. Mendes, and
R. Spı́nola, “Technical debt on agile projects: Managers’ point of view
at stack exchange,” in Proceedings of the XXI Brazilian Symposium on
Software Quality, ser. SBQS ’22. New York, NY, USA: Association
for Computing Machinery, 2023.

[35] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[36] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[37] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in
software engineering research: A critical review and guidelines,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 120–131. [Online]. Available:
https://doi.org/10.1145/2884781.2884833

[38] “Data collection and analysis,” 2022, Accessed on 12.23.2022. [Online].
Available: https://github.com/arieslab/testsmells

[39] “If your unit test code “smells” does it really matter?” Software
Engineering, 2011, Accessed on 12.23.2022. [Online]. Available:
https://softwareengineering.stackexchange.com/questions/77313/

[40] “Do i need to test helper/setup methods?” Software Engineering, 2009,
Accessed on 12.23.2022. [Online]. Available: https://stackoverflow.com/
questions/1004866/do-i-need-to-test-helper-setup-methods

[41] “Unit test coding standards,” Software Engineering, 2010, Accessed
on 12.23.2022. [Online]. Available: https://softwareengineering.
stackexchange.com/questions/15925/

https://stackoverflow.com/questions/10781050/java-code-duplication-in-classes-and-their-junit-test-cases
https://stackoverflow.com/questions/10781050/java-code-duplication-in-classes-and-their-junit-test-cases
https://doi.org/10.1145/2884781.2884833
https://github.com/arieslab/testsmells
https://softwareengineering.stackexchange.com/questions/77313/
https://stackoverflow.com/questions/1004866/do-i-need-to-test-helper-setup-methods
https://stackoverflow.com/questions/1004866/do-i-need-to-test-helper-setup-methods
https://softwareengineering.stackexchange.com/questions/15925/
https://softwareengineering.stackexchange.com/questions/15925/

[42] “Unit testing anti-patterns catalogue,” Software Engineering, 2008,
Accessed on 12.23.2022. [Online]. Available: https://stackoverflow.com/
questions/333682/unit-testing-anti-patterns-catalogue

[43] V. Khorikov, Unit Testing Principles, Practices, and Patterns. Simon
and Schuster, 2020.

[44] J. Smart, BDD in Action: Behavior-driven development for the whole
software lifecycle. Simon and Schuster, 2014.

[45] J. Korhonen, “Automated model generation using graphwalker based on
given-when-then specifications,” 2020.

[46] G. Meszaros, “xunit patterns - four-phase test,” 2011, Accessed
on 12.26.2022. [Online]. Available: http://xunitpatterns.com/Four%
20Phase%20Test.html

[47] “Refactoring and test driven development,” Stack Overflow, 2009,
Accessed on 12.26.2022. [Online]. Available: https://stackoverflow.com/
questions/657645/

[48] “How do i refactor unit tests?” Stack Overflow, 2015, Accessed
on 12.26.2022. [Online]. Available: https://stackoverflow.com/questions/
31434305/

[49] G. Meszaros, S. M. Smith, and J. Andrea, “The test automation mani-
festo,” in Extreme Programming and Agile Methods - XP/Agile Universe
2003, F. Maurer and D. Wells, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 73–81.

[50] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM), 2012, pp. 56–65.

[51] G. Bavota, A. Qusef, R. Oliveto, A. Lucia, and D. Binkley, “Are
test smells really harmful? an empirical study,” Empirical Software
Engineering, vol. 20, no. 4, p. 1052–1094, 2015.

[52] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 4–15.

[53] N. S. Junior, L. R. Soares, L. A. Martins, and I. Machado, “A survey
on test practitioners’ awareness of test smells,” in Iberoamerican Con-
ference on Software Engineering, vol. abs/2003.05613, 2020.

[54] N. Silva Junior, L. Martins, L. Rocha, H. Costa, and I. Machado, “How
are test smells treated in the wild? a tale of two empirical studies,”
Journal of Software Engineering Research and Development, vol. 9,
no. 1, p. 9:1 – 9:16, Sep. 2021.

[55] G. R. Bai, K. Presler-Marshall, S. R. Fisk, and K. T. Stolee, “Is assertion
roulette still a test smell? an experiment from the perspective of testing
education,” in 2022 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2022, pp. 1–7.

[56] D. Bowes, T. Hall, J. Petric, T. Shippey, and B. Turhan, “How good
are my tests?” in Proceedings of the 8th Workshop on Emerging Trends
in Software Metrics, ser. WETSoM ’17. New York, NY, USA: IEEE
Press, 2017, p. 9–14.

[57] M. Kummer, O. Nierstrasz, and M. Lungu, “Categorising test smells,”
Bachelor Thesis. University of Bern, 2015.

[58] E. Soares, M. Ribeiro, G. Amaral, R. Gheyi, L. Fernandes, A. Garcia,
B. Fonseca, and A. Santos, “Refactoring test smells: A perspective from
open-source developers,” in Proceedings of the 5th Brazilian Symposium
on Systematic and Automated Software Testing, ser. SAST 20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 50–59.

[59] E. Soares, M. Ribeiro, R. Gheyi, G. Amaral, and A. M. Santos,
“Refactoring test smells with junit 5: Why should developers keep up-
to-date,” IEEE Transactions on Software Engineering, pp. 1–1, 2022.

[60] D. Campos, L. Rocha, and I. Machado, “Developers perception on
the severity of test smells: an empirical study,” XXIV Ibero-American
Conference on Software Engineering, 2021.

[61] A. Peruma, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
“An exploratory study on the refactoring of unit test files in android
applications,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, ser. ICSEW’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
350–357.

[62] D. J. Kim, T.-H. P. Chen, and J. Yang, “The secret life of test smells-
an empirical study on test smell evolution and maintenance,” Empirical
Software Engineering, vol. 26, no. 5, pp. 1–47, 2021.

[63] D. J. Kim, N. Tsantalis, T.-H. Chen, and J. Yang, “Studying test anno-
tation maintenance in the wild,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 62–73.

[64] E. A. AlOmar, A. Peruma, C. D. Newman, M. W. Mkaouer, and A. Ouni,
“On the relationship between developer experience and refactoring: An
exploratory study and preliminary results,” in IEEE/ACM 42nd Interna-
tional Conference on Software Engineering Workshops, ser. ICSEW’20.
New York, NY, USA: ACM, 2020, p. 342–349.

[65] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. D. Newman, and A. Ouni,
“Behind the scenes: On the relationship between developer experience
and refactoring,” Journal of Software: Evolution and Process, vol. 0, p.
e2395, 2021.

[66] F. Tian, P. Liang, and M. A. Babar, “How developers discuss architecture
smells? an exploratory study on stack overflow,” in 2019 IEEE Interna-
tional Conference on Software Architecture (ICSA), 2019, pp. 91–100.

[67] A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, and S. Counsell, “Can
you tell me if it smells? a study on how developers discuss code
smells and anti-patterns in stack overflow,” in Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software
Engineering 2018, ser. EASE’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 68–78.

[68] G. H. Pinto and F. Kamei, “What programmers say about refactoring
tools? an empirical investigation of stack overflow,” in Proceedings of
the 2013 ACM Workshop on Workshop on Refactoring Tools, ser. WRT
’13. New York, NY, USA: Association for Computing Machinery,
2013, p. 33–36.

https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Four%20Phase%20Test.html
https://stackoverflow.com/questions/657645/
https://stackoverflow.com/questions/657645/
https://stackoverflow.com/questions/31434305/
https://stackoverflow.com/questions/31434305/

	I Introduction
	II Research methodology
	II-A Identification of discussions
	II-B Classification of discussions
	II-C Data Analysis

	III Results
	III-A Discussions characterization
	III-B Trends and Challenges (RQ1)
	III-C Test code problems (RQ2)
	III-D Test code refactorings (RQ3)
	III-E Test behavior (RQ4)

	IV Discussion
	V Threats to Validity
	VI Related Work
	VI-A Developers’ perception of test smells
	VI-B Test code refactoring
	VI-C Developers' perceptions of Stack Exchange topics

	VII Conclusions and Future Work
	References

