
Novice Programmers Strategies for Online Resource
Use and Their Impact on Source Code

Omar Alghamdi∗†, Sarah Clinch∗, Mohammad Alhamadi∗, and Caroline Jay∗
∗ Department of Computer Science, University of Manchester, M13 9PL,United Kingdom

†College of Computing and Informatics, Saudi Electronic University, Riyadh,6867, Saudi Arabia
Email: ∗〈firstname〉.〈lastname〉@manchester.ac.uk, †oalghamdi@seu.edu.sa

Abstract—Websites are frequently used by programmers
to support the development process. This paper investigates
programmer-Web interactions when coding, and combines ob-
servations of behaviour with assessments of the resulting source
code. We report on an online observational study with ten
undergraduate student programmers as they engaged in pro-
gramming tasks of varying complexity. Screens were recorded
of participants’ activities, and each participated in an interview.
Videos and interviews were thematically analysed. Novice pro-
grammers employed various strategies for seeking and utilising
online knowledge. The resulting source code was examined to
determine the extent to which it met requirements and whether
it contained errors. The source code analysis revealed that coding
with the websites involved more coding time and effort, but
increased the possibility of producing correct code. However,
coding with websites also introduced instances of either incorrect
or non-executable source code.

Index Terms—Web Search, Knowledge reuse, Information
Search and Retrieval, Software Engineering.

I. INTRODUCTION

The internet has made information more accessible than ever
before, with significant implications for how people learn and
practice programming. Website usage is viewed as an integral
part of the software engineering process [1]. Developers some-
times spend more time searching for information online than
coding, assisting their learning and clarifying terms [2].

Searching is considered a vital process that is conducted
pervasively to augment programmers’ knowledge, even for
familiar issues [3, 4, 5, 6]. In addition to providing informa-
tion, searching the websites also aids in code understanding
and error correction [2, 7]. Programmers repeatedly access
previously visited Web pages [8]. However, searching can
affect programmers’ productivity, as using the websites for
simple tasks can take more time than coding from scratch, and
searches may not always be successful [9]. It can be difficult
for programmers to locate and assess online code snippets
[10], which are often of low-quality [11]. Students, in partic-
ular, experience challenges, given their lack of vocabulary to
assist their searches [12].

Seeking knowledge online is usually coupled with utilising
code [13], providing a structural template and supporting
similar functionalities [14]. Copying code from online sources
is commonplace during development, especially from the

This research was sponsored by Saudi Electronic University, College of
Computing and Informatics, Kingdom of Saudi Arabia.

website Stack Overflow[2, 11, 15, 16]. There is evidence
that online queries are focused primarily on code reuse [17]
and that increased complexity in source code leads to greater
online information seeking [18]. To date, there has been little
exploration of how seeking and utilising online knowledge
affects the production of source code.

Online code is often of poor quality or unsuited to the
task at hand, making it challenging to use effectively. Prior
research shows that code snippets on Stack Overflow contain
problematic code such as security issues [19, 20, 21] and
outdated statements [22].

The current study documents how programmers use the
websites to complete a series of coding tasks, and examines
how these activities may affect the resulting source code.
We screen recorded ten undergraduate students solving four
programming tasks with varying levels of difficulty. We also
collected the resulting source code for analysis and interviewed
the programmers to understand in more depth why they used
particular strategies and how these affected their code. Our
research questions were as follows:

RQ1 How do programmers use websites during programming?
RQ2 What are the effects of websites use on the resulting

code?
Our results show that programmers use various strategies

to seek and utilise online knowledge. These strategies may
increase task completion time and effort but increases the
chances of producing correct code. However, website use
does not guarantee functional code – in several instances
participants still fail to produce code that executes and/or
meets requirements. The results of this study shed the light
in coding with the websites with a unique approach applying
multiple inputs of data to the investigation, as well as in the
assessment of the resulting code to discover problematic code
propagation.

II. RELATED WORK

Our work builds on research from software engineering that
seeks to understand programmers’ activities, and examines the
resulting code to investigate possible implications.

A. Understanding coding activities

In computer science education, learning analytics such as
Error Quotient [23, 24] and Watwin Score [25] (both based on
compilation behaviour and errors), NPSM [26, 27] (based on a

ar
X

iv
:2

30
4.

10
36

9v
1

 [
cs

.S
E

]
 2

0
A

pr
 2

02
3

https://stackoverflow.com
https://stackoverflow.com

more holistic set of IDE-captured measures), and RED [28] (a
measure of repeated errors), have been used to quantify pro-
gramming behavior and predict outcomes. Outside of teaching,
IDE instrumentation has been used to identify problem solving
strategies [29] and code/documentation interaction patterns
[9, 18] (e.g. investigate, edit, validate [30]).

Qualitative approaches are also used to characterise pro-
grammer behaviours [9, 10, 12, 31, 32, 33, 34, 35, 36]. For
example, Ko et al. analysed screen captures for experts engag-
ing in software maintenance tasks, identifying three common
activities – code search, dependency following, and code
collection [34]. Combining IDE instrumentation with surveys
and interviews has been used to understand professionals’
debugging activities, with printf and breakpoints used in
preference to more advanced IDE functionality [37]; inter-
views have also been used to understanding student debugging
[35].

Whilst the above focus on in-editor activity, this study
seeks to better understand the usage of websites during coding
activities. Such behaviors have previously been observed by
Han et al., who combined eye-tracking with IDE and browser
logs to capture behaviour in Python tasks. In addition to
quantifying code production, their study identifies patterns of
external resource use (e.g. searching, copy-paste) [38].

1) Search: Programmers use their coworkers for informa-
tion [36], and search both within their own codebases [4, 6, 34,
39, 40, 41] and for online information (e.g. through Google’s
Web search) [2, 5, 19, 38, 39, 42, 43]. In this paper, we
focus on the interactions when coding with websites, and our
discussion of search therefore centers on this latter behavior.
Google has been observed to dominate programming-related
search, with the Stack Overflow Q&A website most prominent
in results [10, 11, 12, 17, 19]. However, the behaviour of
novices and students may differ, e.g. using search to identify
online tutorials in preference to Stack Overflow [2, 42, 44].

Search engines are used to support code comprehension and
reuse [11, 17, 44, 45], debugging [7, 11, 17], information
acquisition and reference [2, 7, 11, 17]. Search frequency
increases when tasks become complex [18, 43], and both
searches and their results are often consulted multiple times
in a single session [8, 42]. For example, Astromskis et al.
found low rates of search among professionals (6% of ses-
sions), but observed intense online consultation during some
sessions with more complex code leading to greater use of the
websites [18].

Searching websites are not always (immediately) successful.
In observations, Wang noted that some participants did not
click any of the search results, or that viewing a website
was immediately followed by new search behavior [9]. Other
studies confirm that multiple queries may be needed to identify
appropriate resources [8, 11, 12, 18]. This may be a result of
difficulties representing code and symbols in queries; retrieval
of unanswered questions; and retrieval of resources that are of
poor quality, missing exemplars, or are difficult to understand
[10, 11]. Effective search may be particularly problematic for
novices, who lack strategies and vocabulary and have difficulty

assessing the relevance of results [5, 12, 32, 46]. However,
professionals also report challenges, particularly with regard
to the volume of information retrieved [33]. Finally, context-
switches arising from search may themselves be problematic,
reducing productivity [18].

2) Code cloning/reuse: A common objective for searching
websites is the identification of code snippets for reuse [11,
13, 15, 16, 17, 46]. In one analysis of search queries, 46%
were seeking code for reuse [17].

Studies indicate that both students [13, 47, 48, 49] and
professionals [14, 18, 50, 51] engage in code cloning, although
there is some evidence that students may adopt alternative
approaches as they develop expertise [49]. Professionals report
using code clones as a tool to help refactor code, act as a struc-
tural template/example, and support forks/branches [3, 14],
and both groups engage in follow-on modification activity,
e.g.: complete or partial removal, correction and compilation
cycles, modification and ‘beautification’ to fit context, and
addition of new code [5, 8, 47, 50, 52].

B. Impact on code

The prevalence of code cloning [11, 17] has led researchers
to investigate the degree to clones could propagate problematic
code. Users of online code snippets report them to be out-
dated, incomplete, incorrect, poorly structured, verbose, lack-
ing meaningful variable names and rationale, and indicate that
code often does not address their problems [22, 53, 54, 55].
These problems have also been identified in data mining
studies [22, 56, 57, 58], and observation and lab studies
suggest that use of websites typically leads to poorer code
[19, 52].

Data mining has also been a valuable tool for measuring
propagation [1, 20, 59]. Abdalkareem et al. examined 1, 496
Android apps finding that 377 had source in common with
Stack Overflow, and the introduction of this code increased the
number of subsequent bug fixes [59]. Propagation of security
vulnerabilities is a particular concern. Lab study has shown
that Stack Overflow users produce functional but insecure code
[19], and data mining shows that a very high proportion of
security-related snippets contain potential vulnerabilities [20],
even in accepted answers, up-voted answers and answers from
high reputation users [21]. However, not all studies agree that
cloning is problematic – in a study of 1, 244 open-source
projects, code reuse predicted neither the presence or absence
of security vulnerabilities [60].

Novice programmers may be particularly likely to gener-
ate and propagate problematic code. Static analysis of code
written in an introductory programming exam identified both
functional (syntax, logic) and stylistic errors [61].

In this paper, we provide in-depth qualitative analysis of
novice programmers’ online information-seeking and code-
cloning behaviours. Our research builds on knowledge from
prior studies, using a combination of methods to provide a
rich picture of online and in-editor activities, augmented with
programmers’ motivation and experiences of those activities,
and the impact on code outputs.

http://www.google.com
http://www.google.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com

III. METHODOLOGY

We conducted an online study in three sequential phases:
a set of four video-captured programming tasks, source code
collection, and then an interview (see Fig 1). This approach
allows us to triangulate multiple data sources to build a rich
understanding of our participants’ behaviour [62].

The experiment was conducted with undergraduate students
recruited from our university. Prior to recruitment, a pilot was
used to ensure the clarity and validity of tasks, and to assess
overall experiment duration. Procedures for the experiment
were reviewed and approved by the Ethics Committee at our
university All data was anonymized at time of collection.

A. Task design

This study phase required participants to engage in a
number of programming tasks appropriate to the participants’
experience and expertise. Having limited our recruitment to a
single cohort of undergraduate students in their second year at
our University, we could design our tasks to build on course
materials from their first year of study. This included a course
textbook [63], lecture slides, instructions for programming ex-
ercises, and sample solutions associated with those exercises.
We extracted an initial set of thirty-three programming tasks
from these materials.

To ensure task completion could be supported by online ma-
terials, specifically the Stack Overflow website1, we conducted
a preliminary search of Stack Overflow using task keywords.
Tasks with fewer than twenty Stack Overflow answers were
removed from the candidate pool, leaving fourteen tasks for
further consideration. The remaining tasks were classified into
three difficulty levels. Tasks that used only concepts/topics that
were explicitly taught during the course unit lectures/exercises
were classified as ‘easy‘ (n=5), those that used a combination
of explicitly taught and additional material (e.g. from the
textbook) were classified as ‘medium’ (n=5), and those that
required substantial additional material were classified as
‘difficult‘ (n=4). From the classified tasks, we selected four
tasks with a variety of difficulty levels: two easy, one medium
and one difficult (See Table I).

B. Study Procedure

Our three-phase study took place over the Zoom video
conferencing software, and using the Dropbox file hosting
service.

1) Preliminaries: All participants were provided with a
briefing sheet prior to participation (available as supplementary
material2). A video call with each participant was initiated,
and the researcher summarised the phases of the study. Once
participants had a good understanding of the nature of their
involvement, they were asked to provide verbal consent and
recording of the call (audio and screen capture) commenced.

1Prior research has indicated that Stack Overflow is a dominant resource
for students and programmers when seeking help using websites

2DOI: 10.48420/c.6366063

2) Phase 1: Video-captured programming tasks: At the
beginning of this phase, participants were presented with a
document summarising the four programming tasks. Partic-
ipants were instructed that they should not overly concern
themselves with the need to correctly solve all tasks, and
that they could use any of their usual software, resources, or
websites during task completion. Participants were then asked
to share their screen and could begin solving the tasks using
their preferred IDE or editor.

During the programming tasks, the researcher muted their
mic and turned off their own video camera so as to minimise
distraction. The researcher did not intervene or interrupt the
coding tasks unless participants directly requested that they
did so (e.g. to help resolve a technical issues or task). The re-
searcher did not provide any programming-related information
that could help the participant solve tasks, even if requested
to do so by the participant.

The programming task phase ended after 50 minutes of
elapsed time, or earlier if a participant indicated that all four
tasks had been completed. Upon completion, screen sharing
and recording was stopped, and the resulting video files (one
per task) were saved for subsequent analysis.

3) Phase 2: Source code collection: Participants were then
requested to share their final set of source code files for
the four programming tasks. Zoom chat was used to direct
participants to a Dropbox upload link.

4) Phase 3: Interview: The final phase was an audio-
recorded structured interview. Participants were asked to pro-
vide their age, gender and describe their programming exper-
tise/experience. They were asked about their experiences of
completing the programming tasks, and the degree to which
their behavior was representative of the participant’s usual
programming activity. Participants were additionally asked
targeted questions about their use of websites during typical
programming and during the experiment’s programming task
phase, code cloning behaviours during the programming task
phase, and the relationship between website-based information
retrieval and existing knowledge (i.e. are they looking up
things to refresh/jog their memory). The full questionset is
provided in the supplementary material2.

C. Participants and Recruitment

Our target population were invited to participate through
emails (sent to all second year computer science students)
sent by course directors. Ten participants (five males and five
females, aged 19 − 22 years) responded and participated in
the study (see Table II). Participants were compensated with
a £10 GBP Amazon gift certificate3.

D. Analysis

Interview recordings were transcribed for analysis. We
analysed interview (phase 3) transcripts first, and subsequently
used the knowledge gained to inform behavioral coding of
the videos (phase 1) and source code (phase 2). Analysis

3Approximately $14 USD.

https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://zoom.us
https://www.dropbox.com/
https://stackoverflow.com
https://doi.org/10.48420/c.6366063
https://zoom.us
https://www.dropbox.com/

Fig. 1. Overview of research methodology: an online study in three sequential phases. A set of four video-captured programming tasks are followed by source
code collection, and then an interview. The resulting qualitative data is thematically analysed.

TABLE I
STUDY TASKS, DIFFICULTY LEVELS, AND TOPICS. FIXED WIDTH TEXT DENOTES JAVA CLASSES, METHODS AND KEYWORDS. TOPICS MARKED WITH

AN ASTERISK (*) WERE NOT EXPLICITLY TAUGHT IN THE FIRST YEAR JAVA COURSE, BUT WERE COVERED IN ADDITIONAL MATERIAL.

Task Difficulty Description Topics assessed

1 Easy Write a program that contains a two-dimensional array with the following values: 10, 20, 30,
40, 50, and 60. Declare and initialise a two-dimensional array with three rows and two columns.
Then, using nested loops, print the array contents one by one in the same order.

multi-dimensional arrays,
nested loops

2 Easy Write and implement a program which converts a sum of money into a different currency. The
user will enter the amount of money to be converted and the exchange rate. The program will
contain separate methods for getting the sum of money from the user, getting the exchange rate
from the user, calculating the conversion, and displaying the result.

method definition, string
input, string output

3 Medium Write a program to enter and confirm a suitable code name for a spy agent. Declare a String
variable and then get the user to enter a suitable name as a codename. Check that the codename
meets the following requirements:

1) The codename is greater than 6 characters in length.
2) The codename starts with the word “Agent”.
3) The codename ends with an “X” character.

If one of the conditions above was not met, print “INVALID CODENAME” and ask the user
to re-enter a code name.

String,
.startsWith*,
.endsWith*.

4 Difficult Using Java threading feature, create three threads where each has a unique name. Then, each
thread should print the numbers from 1 to 100 in sequence order. For example, thread A will
print numbers 1 to 100, thread B will print numbers 1 to 100, and thread C will print numbers
1 to 100.

threading*

was done by first author. To ensure reliability of the coding,
30% of the data (i.e. three interview transcripts, ten videos,
and source code from three participants) were additionally
coded by third author, and any disagreements were resolved
through a process of discussion and consensus, with near-
perfect agreement (Cohen’s k = 0.83, k = 0.87, and k = 0.83
for interviews, videos and source respectively; agreement 96%,
96% and 93%).

Interview transcripts (n = 10) were inductively coded using
Braun and Clarke’s six phases for reflexive thematic analysis
[64] and NVivo 12.

Videos (screen recordings) were qualitatively analysed to
observe [62, 65] and quantify participants engagement with
websites when solving the study tasks. The same researcher
again followed a reflexive thematic analysis approach [64] and
linked the recorded videos to NVivo 12, given the large size
of the video files.

In the first step of the reflexive thematic analysis, the
researcher watched the videos multiple times for content

familiarisation. Then, the coding phase started with watching
and coding the related behaviours, using a deductive approach.
In contrast to the interviews, this approach was analyst-driven,
using findings from our phase 3 interviews as a framework to
identify relevant behaviors [66]. The choice of such an ap-
proach ensured behavioural coding of the videos that focused
on the study’s research questions and objectives, and helped
the researcher to know what to expect when coding the videos.
However, any interesting and related behaviours outside this
framework were also captured to ensure unbiased data. To
facilitate the coding, a marker was placed at the start of each
task in the videos. Coding the videos was an iterative process
involving many rounds, despite requiring more time and effort.

Initial coding observed behaviours based on the initial
framework. Th subsequent round sought to identify related
behaviours not covered by the framework. The third round
was to extract behaviours related to the source code for later
analysis. After this round, two criteria were established to
ensure that the captured behaviours were meaningful and

https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home/

TABLE II
PARTICIPANTS’ DEMOGRAPHIC AND EXPERTISE RESPONSES. EXPERIENCE IS A SELF-REPORTED VALUE FROM 1 TO 10, WHERE NOVICE=0,

INTERMEDIATE=5, AND PROFESSIONAL=10. DURATION REFERS TO THE LENGTH OF TIME FOR WHICH THEY HAVE PROGRAMMED.

Participant Gender Age Experience Duration Programming languages

P1 Male 20 5 Not available Python, Java, C#, JavaScript, and R
P2 Male 20 7 One semester Python, Java, C, C#
P3 Female 19 5 One year Python and Java
P4 Female 19 5 5 years 4 programming languages
P5 Male 20 5 8 years Python, Java, JavaScript, Typescript, C#, .NET, C, C++,

and Swift.
P6 Female 20 5 6 years Java, Python, C, C++, Web development
P7 Female 19 3 One year Python
P8 Male 21 5 4 years 5 programming languages
P9 Male 20 5 3 years Python, Java, C++ and Pascal
P10 Female 22 5 5 years Java along with 9 programming languages

relevant. The criteria were that the behaviours had to be
observed on the videos to constitute clear and reliable evidence
and the behaviours should be measurable, in the sense that the
videos provide enough information to support their serving as
relevant evidence. The fourth round considered the mentioned
criteria, checked the extracted behaviours and extracted any
missing relevant behaviours. These multiple rounds ensured
greater familiarity with the data and filtered behaviours down
to relevant activities with multiple observed instances.

The next phase of the reflexive thematic analysis was
grouping similar codes that form data patterns and share one
overarching concept for the themes. For instance, codes that
captured participants’ behaviour toward online code adoption
were grouped. The final set of themes was reviewed to ensure
that no theme constituted a sub-theme to another theme or
was not a theme in itself. Then, a thematic map was drawn to
illustrate the final themes. Finally, a report on these behaviours
was written.

A total of 33 videos (from a possible 40) were analysed.
Five participants did not attempt Task 4, and so no videos
were captured for these participant-task pairings. A further two
missing videos (P10 Tasks 1 and P10 Task 2) were attributed
to a failure of the Zoom recording facility.

Source code produced by participants was analysed for
the 33 tasks for which video was captured. A mixture of
quantitative and qualitative measures were established:

1) Quantitative: Compilation/Execution – Was the re-
searcher able to compile and run the source code either
using an IDE or Command line in Windows?

2) Quantitative: Correctness – Does code execution pro-
duce the expected output (based on the specified tasks)?

3) Quantitative: Online Clones – the number of lines
copied and pasted from online sources (final non-
commented source lines only) retrieved from reviewing
the videos.

4) Quantitative: Online Sources – the URLs from which
cloned code was sourced (retrieved from reviewing the
videos).

5) Qualitative: Clone Purpose – the perceived motivation
for including cloned lines (retrieved from reviewing the
videos).

IV. RESULTS

A. The interview

Our thematic analysis revealed three themes: reasons for
website use, experiences using websites, and study specifica-
tions and issues.

1) Theme 1: Usage of websites: Participants used websites
for various purposes during their coding.

a) Websites as a reminder:
Nearly all participants reported that the websites, such as
Stack Overflow, could serve as a reminder for information
even if it were already known.

I do not try to remember the code if I know where it
is exactly. [...] I am just reminding myself from the
sources. (P3)
[...] it is often the same thing looking up just to check
if you remember it correctly. (P6)
b) Copy online code:

All participants reported copying and pasting online code, even
the previously encountered code or problems, due to the easy-
to-find online code.

[Q: What about copying code that you have previ-
ously copied during websites search?]
Yeah, I would copy it again; some code I know where
I can find it, so whenever I cannot remember it by
heart, I know exactly where to find and then just
copied it and then it works. (P8)

Most participants felt that the websites urged them to adopt
available online content without checking, where the ease of
obtaining online code gave a sense of no need to understand
the code.

[...] I went ahead and copied the first things I saw
[...] I think this is very common from write code
pull up a page get something from the internet and
continue coding. (P8)
c) Searching for information:

Participants described the procedures they took when search-
ing the website for programming material. At the start, they
get familiarised with the requirements to help determine the
following step.

https://www.python.org
https://www.oracle.com/java/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.r-project.org
https://www.python.org
https://www.oracle.com/java/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.python.org
https://www.oracle.com/java/
https://www.python.org
https://www.oracle.com/java/
https://www.typescriptlang.org
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://dotnet.microsoft.com/en-us/
https://www.swift.org
https://www.oracle.com/java/
https://www.python.org
https://www.python.org
https://www.python.org
https://www.oracle.com/java/
https://www.oracle.com/java/
https://zoom.us
https://stackoverflow.com

I think my approach would usually be the same, read
though the questions a few times and give it a go
and see where I feel it does struggling and then start
seeing if there anyone else done it in a smart way
or whatever. (P9)

The following step is searching using the Google search
engine without predetermining preference, as mentioned by
most participants, and structuring the search query in a more
appealing way related to the requested tasks.

I did not use a particular website, just try to figure
most concise way to word my question and just see
what comes up. (P9)

2) Theme 2: Websites experience: This theme tackles pro-
grammers’ websites’ preferences and potential concerns.

a) Websites choices:
Half of the participants reported that Tutorialwebsites provide
clear, simple, understandable, self-sufficient, and easy to lo-
cate examples that offset the need to read the corresponding
contents.

The one I usually chose is GeeksforGeeksor
W3school. These two because it explains the best
what I need to find, and the answers are on the
beginning, so I do not need to scroll and read
through everything. (P10)

More than half of the participants mentioned using of
Stack Overflow because it provides reliable and genuine
examples aiding problem-solving.

[...] I use Stack Overflow for for this one specific
problem I was having because those questions are
more specific. (P7)

The usage of the Stack Overflow is approached with care, as
P5 noted:

And there is Stack Overflow, but you need take that
in with some caution sometime. (P5)
b) Issues with the websites:

Many participants reported issues when using the websites.
Some online answers were functional, but they were not
necessarily great.

[Q: When searching the websites, were you confident
that you got the right answer?]
Getting answers that works, but it is not always the
best answers I would say. (P4)

Online answers additionally contributed to poor outcomes
unsuitable for participants’ intentions.

[Q: Did you find the websites easy to use, helpful,
and correct?]
One give me a misleading data, so I would say no.
(P8)

Thus, participants reported the possibility of facing problem-
atic code or incomplete code that misses important informa-
tion.

Sometimes the code on Stack Overflow can be a bit
outdated, new version of framework or languages.
Also, the users select an answer as the best answers

that probably should not be, [...] like there are other
answers better but not chosen by the user [...] who
answer but it did not show up in the top. (P5)
The things it annoys me is website not showing the
entire piece of code, so the thing that missing is
something outside of the immediate bit of code they
are showing. Like import statements, if the import
statement is wrong and I cannot work out what it is,
they very rarely show that I guess. (P4)

Participants were uncertain about their ability to integrate
online code due to the associated problems.

Some problems are sometimes you are not working
with your own code, so you are do not know ev-
erything about it, you do not know how the code
interact with the code you find online. (P1)

Another impact was coding with unfamiliar programming as-
pects, where the websites did not help resolve such uncertainty.

[...] for the threading, I am not too familiar with
threading, so I am not sure if it is what I wanted.
(P8)

3) Theme 3: Experiment’s specifications and issues.: This
theme addresses participants’ thoughts and concerns regarding
aspects of the experiment.

a) Video recording:
More than half of the participants stated that their behaviours
during the experiment followed their normal programming
behaviours.

[Q: To what extends does the behaviours that you
used today reflect the behaviours that you would
normally use?]
I think pretty accurately. (P4)

Nevertheless, some behaviours were either not captured or did
not reflect the programmers’ normal behaviours. Two partici-
pants expressed that recording could conceal some behaviour
or introduce unwanted factors to their programming activities.

[...] I would probably open up my notes and some
written notes which obviously that I cannot show on
the screen. (P2)
[Q: To what extends does the behaviours that you
used today reflect the behaviours that you would
normally use?]
It sorts of similar but in smaller scale. Usually I
have got two monitors set up. (P5)
b) Time constraints:

Half of the participants felt that time constraints affected their
performance in the experiment.

So today I try do it relatively fast because of the
time thing. Normally I will take it a bit slower and
maybe read more things. (P8)

The other half of the participants indicated no stress from the
restricted time, and using some approaches would assist in
regulating the time.

What I do when I started problems, I know it is time
constrain I sort try to get the first few really quick

https://www.geeksforgeeks.org
https://www.w3schools.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com
https://stackoverflow.com

or the one I spot easier, so I try manage the time
better, and I know I have done it so it does not much
so time constrain does not stress me. (P5)
c) Task Difficulty:

Participants reported that the tasks were not difficult but
required more searching.

The tasks was not challenging. (P5)
However, four participants thought the fourth task could be
challenging because they had no previous information, which
may lead to not approaching the task.

I have not got the time to read it [fourth task], but
I am not familiar with threading, so that why I left
it. (P3)

Two participants thought the problems were not from the task
but from forgetting the information and time.

My Java was a bit rusty, slight, I did not remember
a lot of things how to do in Java in particular. But
no, I think if I have a bit more time I will finish them
all. (P2)

B. Behavioural coding

Participants used both Web-based and non Web-based re-
sources to search. All participants used websites at vari-
ous stages. Most participants used Tutorial websites to re-
trieve syntax, including GeeksforGeeks, W3school, JavaT-
point, “Java671”, BeginnerBook and TutorialPoint. The choice
of Tutorial websites changed based on the tasks. Other than
Tutorial websites, Stack Overflow was used for resolving
errors, and blogs were used to aid for understanding. In
addition, participants consulted the requirements document
for tasks’ requirements, course-related materials, previously
written code, and the IDE. Participants edited and compiled
their code, going through a cycle of observing and fixing errors
post-compilation.

1) Theme 1: Acquiring knowledge: Participants searched
websites for syntax and to clarify understanding. Searches
yielded useful knowledge, but also caused problems.

a) Looking for syntax: All participants searched websites
for syntax either before or during coding. Before writing code,
P6, P7, P8, and P10 in the fourth task and P3 and P8 in
the first task searched for specific terms such as threading,
“two-dimensional array” and the main method. The search
for syntax while coding was noticed by nearly all participants
who divided the tasks into meaningful searchable pieces and
searched looking for syntax. Specifically, all participants in the
first task, except P10, searched for “two-dimensional array”
and basic syntax like for loop, main method and array. In a
similar manner, all participants in the second task, except P2
and P10, searched regarding converting data types and getting
user inputs, such as Scanner and Console. P4 and P9
searched for basic syntax, including Java function structure
and .println, similar to the previous task. All participants
in the third task searched syntax to retrieve String methods
like .length, .startsWith, .endsWith, .charAt
and .substring. P9 and P6 searched for basic syntax,

include while loop while loop and “AND” symbol. In
the fourth task, four participants (P5, P6, P8, P10) performed
superficial searches, such as creating threads, assigning threads
names and importing threads; P8 used the whole question text
to search at the task’s start.

b) Increase understanding: Participants sought program-
ming information related to the task along with searching for
syntax. P1 and P4 on the second task and P7 on the third
task searched for syntax clarifications, such as the use of the
.equals method for character type, the difference between
Float and Double and the use of currency in Java. P7 and
P10 also searched to gather information about the threading
feature in the fourth task.

c) Experiencing problems during search: It can be ob-
served that some online searches were unhelpful, causing
additional time and effort. Eight participants struggled with
online search across coding stages in all the tasks, and half
of them returned to the previously visited Web pages. At the
first task, P2 accessed various websites and searched for the
nested “foreach” loop, resulting in more search time and
attempts, then eventually changing the chosen method. In
another instance, P2 searched for “two-dimensional array”,
and the outcomes did not help succeed in printing array
elements accurately but motivated further searches that also
did not help fix the issue. Similarly, P7 searched repeatedly
for a “two-dimensional array” before writing it correctly. P9
searched for the main method and the .println statements
without beneficial outcomes and resolved without searching.
While coding the second task, P4 struggled the most as she
searched five times for Float and Double, truncate Float,
Decimal format and currency without valuable outcome; she
sometimes returned to the previously searched results and
chose another website. P6 and P7 searched for Scanner
syntax, but their searches were not complete and caused further
searches, and P4 and P9 conducted fruitless searches when
converting data types from String to Float.

Online searching issues continued in the third task. Five
participants faced issues related to String. P2 was affected
the most as he searched for the getchar method in Java but
adopted String declaring instead, then continued searching
for the equivalent of getchar from C++ in Java and accessed
three websites without reaching an answer. The previously
adopted String declaring resulted in issues when compil-
ing, causing two further search attempts, which was finally
resolved by adopting a new code from websites; P10 shared
a similar struggle while searching for the getchar method.
In addition, search instances conducted by P3, P9 and P10
caused further search attempts, such as searching for String
.length methods, split String and .substring. P8
searched for unnecessary syntax like “regex” and Matcher.
Lastly, three participants (P7, P8, P10) in the fourth task
searched for how to start one thread after another and count
threads, then faced unproductive content, causing them to
reformulate their query and repeat the search.

2) Theme 2: Utilising knowledge to write the code:
Through seeking online knowledge, participants utilised the

https://www.geeksforgeeks.org
https://www.w3schools.com
https://www.javatpoint.com
https://www.javatpoint.com
https://beginnersbook.com
https://www.tutorialspoint.com/index.htm
https://stackoverflow.com

knowledge to develop their code. The following sub-themes
will list participants’ observed strategies when reusing online
code.

a) Exploiting search results to copy code: All the partic-
ipants copied online code snippets using two ways: a clipboard
as a normal way and a visual way by looking at online code
while writing it. There also appeared to be a further copy
instance where participants examined particular code snippets
from the websites and then wrote it in their code afterwards,
and this copy instance will be labelled as a mental way. These
three copy instances were conducted throughout the tasks with
variance. Participants reused online code following the tasks’
requirements. Seven participants in the first task, except P5,
P6 and P10, copied “two-dimensional array”. Similarly, all
participants in the second task, except P10, copied syntax,
like declaring and importing Scanner and converting syntax
such as String to Float or Integer or the other way
around. In the third task, all participants, except P5 and P10,
copied .startsWith, .length, .endsWith, .charAt,
.substring, Matcher and Scanner. At last, all five par-
ticipants copied online code, including a class header, printing
outputs and declaring the variables. Participants within all the
tasks copied basic syntax from online, such as main method,
for loop and .println statements.

b) Implementing complicated approaches: Participants
followed suggestions imposed by either websites or their code
practices causing additional coding time and effort. Videos
observed such approaches that did not necessarily appear in
participants’ source code. Five participants (P2, P3, P4, P5,
P9) in the first task followed online complex suggestions. In
particular, P2 copied an online code that printed the array’s
contents using the toString method, which caused printing
memory places, but not the array contents. Three participants
(P3, P4, P5) used online suggestions to manually assign
values to the array without using a loop, and P5 placed the
array contents using three variables, each holding two array
elements. P2 created four loops instead of two based on the
online suggestions. A similar observation is valid for P1 but
not from the online suggestions. In the second task, four
participants (P3, P6, P8, P9) copied a user entry that used a
String data type from online, then converted it to Integer
data type. P5 and P1 followed the same path without online
suggestions. In the third task, six participants (P2, P3, P4, P5,
P8, P10) followed their code practices. P2 and P3 faced issues
declaring multiple String variables and P4 and P10 made
multiple unnecessary if statements that could be eliminated.
P8 chose “regex” and Matcher, which resulted in several
searches, debugging and more time. As most of the code was
copied online in the fourth task, the online suggestions were
only problematic for P7, who used three Run() methods with
different names and loops, causing more searches to write
them correctly.

C. Source code

Table III shows that nearly all participant-provided source
code files compiled and executed successfully (28/33 files,

85%), and just over half (19/33, 58%) were considered to
be correct (i.e. they met the requirements described in the
task). Across the four tasks, participants produced at least two
executables (mean: 2.80, median 2.50) and one correct source
file (mean: 1.88, median 2.00). Progressively fewer source
code files were correct as the tasks progressed (max: 9, min:
2).

All but one of the supplied source files (P5 Task 3) con-
tained cloned code, with each participant including an average
of 2.67 (mean, P1) to 8.50 (mean, P6) cloned lines per file
(medians ranged from 1.5, P5, to 6.0, P4 & P10).

1) Correct: There were instances of unnecessary syntax
on the first and fourth tasks increasing the complexity of the
correct source code. In the first task, P1 and P2 in the first task
used four loop statements instead of two to solve the “two-
dimensional array” where P2 wrote such code based on online
suggestions, P5 copied online code and identified the “two-
dimensional array” using three array locations, and P3 printed
the locations of the array along with the contents. In the fourth
task, P7 followed the online suggestions and included multiple
Run() methods for each thread, for loop, and .println
statements.

Each of the correct source code were linked with video
recordings to understand the strategies participants used to
produce correct code. Regarding searching strategies, syntax
searches were apparent throughout coding sessions for all
participants, where they located items related to the task. Other
than syntax searching, few searching occasions were attributed
to clarifications. In addition, the online search resulted in
multiple complicated issues faced by more than half of the
participants who produced correct source code, which caused
non-beneficial results and motivated further search attempts.
Furthermore, all participants referenced the requirements doc-
ument to check the requirements, and exhibited medium
referencing in the first task, low in the second task, and high
in the third task.

In terms of copying online code strategies, nearly all par-
ticipants, who produced correct source code, copied online
code in varied ways. On the contrary, copying from non Web-
based resources is a rare strategy done by one participant. In
addition, participants in twelve correct code instances ran into
complex issues, half of them from their choice and the other
half from the online suggestions.

2) Non-executable: Half of the third task participants
(P2, P3, P4, P5, P9) (50%) failed to produce a functional
compiled code. By analysing each source code within non-
executable type, multiple reasons caused the code to be non-
executable. Participants thought their code carried enough
information while the code was incomplete, contained incor-
rect elements, or missed critical elements. In particular, P2
missed System.in that caused incorrect Scanner, used
return() in the method while the method is void, used
variable before declaring it, and wrote else if statement
without including a condition. Similarly, P3 used else with-
out a condition and missed the Scanner import, and P2
and P3 copied from online incomplete Scanner syntax and

TABLE III
RESULTS OF SOURCE CODE ANALYSIS.

Not Provided Non-Executable Incorrect Correct Online Clones

Task 1 1: P10 0 0 9: P1-P9 9/9 files: 1–5 lines/file
x̄: 2.78, x̃: 3.0

Task 2 1: P10 0 4: P1, P3, P6, P8 5: P2, P4, P5, P7, P9 9/9 files: 2–7 lines/file
x̄: 4.67, x̃: 5.0

Task 3 0 5: P2-P5, P9 2: P1, P7 3: P6, P8, P10 9/10 files: 2–6 lines/file
x̄: 3.80 (4.22), x̃: 4.0 (4.0)

Task 4 5: P1-P4, P9 0 3: P5, P6, P10 2: P7, P8 5/5 files: 6–24 lines/file
x̄: 12.00, x̃: 10.0

Note: In the First Four Columns, the Overall Number of Source Files in Each Category Is Followed By the List of Participants Whose
Source Fell Into Each Category. Non-Executable Indicates That the Source Either Failed to Compile or Did Not Run to Completion.
Incorrect Indicates That the Code Compiled and Executed Successfully but Produced Output That Was Not Compliant With The
Requirements. In the Final Column, the Number of Files and Lines Containing Cloned Source Are Given, Together With the Mean
(X̄) and Median (X̃) Number of Cloned Lines Per File (Values in Brackets For Task 3 Indicate Averages for Files Containing Cloned
Code).

encountered difficulty when adopting the code. In addition,
P4 wrote four non-executable if statements, along with an
incomplete .println statement. At last, the P5 and P9
source code contained incomplete main method and missed
a semicolon.

The strategies that lead to non-executable code were ex-
plored for a more in-depth understanding. Participants exces-
sively searched for syntax during coding, except for P5, and
other searches were for learning. Searching produce issues as
P2 conducted a repeating search with no successful output, and
P3 and P9 conducted unnecessary searches. Most participants
referred to the requirements document moderately, except P5
and P9. In the code strategies, online code was copied by
all participants following mainly the visual way, except P5.
Most participants made choices based on their practices that
complicated their coding and used non Web-based code.

3) Incorrect: Multiple reasons caused the source code to
not comply with the specified requirements. In the second task,
P1 and P6 did not address Float or Double user entries
(caused by copying online code for P1) and P3 and P8 missed
doing methods for each requirement. In the third task, the
String conditions wrote by P1 code did not function because
it accepts non-string entries without processing, and P7 missed
the while loop for continuous user entry. In the fourth task,
P5, P6, and P10 printed threads but not in sequence order, and
all solved the task engaging online.

Participants in this source code type conducted some com-
mon behaviours. In syntax search, the online search was
generally prevalent, where participants looked for tasks re-
lated to syntax. Facing complex issues were not high during
searching activities. Nearly all the participants resorted to the
requirements document with moderate to high access. For the
code strategies, copying the code has normal observations
where participants copy online code and faced some complex
issues.

V. DISCUSSION

This section discusses the study results and summarises the
findings for each research question.

A. RQ1: How do programmers use websites during program-
ming?

We found evidence from observations that the predominant
use of websites was for retrieving syntax. Participants in our
experiment referred to various resources, including websites,
the requirements document, course-related materials, previous
code and the IDE; websites were used predominately to search
for knowledge. Participants preferred referring to the Tutorial
websites to seek syntax, consistent with the findings of [52]
but in contrast with other studies that suggest programmers
use Stack Overflow for coding [19]. They started their search
by decomposing the tasks into searchable parts, similar to
observations in [40].

Two interesting observations were made in relation to
searching: it was common to search for Java basic syntax
such as main method, .println statements and loops
syntax, and previously taught syntax such as “two-dimensional
array” and user entry methods. Interviews with participants
showed they relied on websites to remind them of this basic
information, which they may have been able to retrieve from
memory if they had not had access to the websites. This
tendency to search for basic syntax has also been seen in
[5, 9]. Participants in our study preferred not to trust their
memory of the syntax itself, but rather to rely on their ability
to find it online, supporting the notion of using the websites
as a reminder [2]. Participants also searched websites for, e.g.,
the equivalent of getchar from C++ in Java, suggesting
that previous knowledge (especially knowledge of another
programming language) plays a role in the search process.
In some cases, participants searched continuously, without
appearing to get relevant results. Failing to obtain relevant
information in spite of repeated searchers has also been noted
in [9, 19].

https://stackoverflow.com

Participants copied code from websites and used it within
their programs. Participants used code found online more in
the fourth task than other tasks suggesting that the more
difficult or unfamiliar the task, the greater the need to use
online code. Using websites to help with unfamiliar tasks
involves dealing with uncertainty about the information found,
as expressed in the interviews. Participants were observed to
copy online code, including basic and taught syntax, in three
ways: using copy and paste functionality; observing it and
retyping it; memorising it then retyping it. They reported in
the interviews that the reason for using online code is the ease
with which it can be located. It appears easier to search for
basic syntax every time it is required than to commit it to
memory.

B. RQ2: What are the effects of websites use on the resulting
code?

Using the websites while coding helped participants to pro-
duce correct code that met requirements. Where participants
produced non-executable code, this was not due to using
websites per se, but rather poor programming practices. Never-
theless, there were many instances where participants did not
exploit online content efficiently. Copied code was sometimes
neither suitable for nor required by the task. Examples are the
manual assignment of array values, not printing array contents,
unsuitable data types for user entries, redundant code and
unnecessary multiple Run() methods. Participants appeared
to trust the code without giving it much scrutiny, at the expense
of efficiency and effectiveness. It is not possible to know
whether better code would have been written were the websites
not available, but it is certainly the case that wholesale or
unthinking inclusion of online code did not always result in
satisfactory code. In the interviews participants reported that
websites urged them to use code as presented, but we can
see that this sometimes resulted in negative outcomes. The
difficulty of reusing online code is also observed superficially
in [10, 11]. The findings of this study suggest that while
reusing online code can be effective, it can also cause complex
problems that require time and effort to resolve. Programmers
need to consider the associated time and effort while coding
using the websites.

Issues we observed in the code included: increased com-
plexity; extraneous unwanted or unexpected outputs; and
bugs [57, 59]. Participants reported two additional issues in
the interviews: outdated and incomplete problematic code
[22, 54, 56]. A possible explanation for these issues is that
Websites state the code is safe to use as is; this was also
mentioned in the interviews. Thus, it is necessary to reflect on
the online presented content and ensure its accuracy.

Other factors may have affected the accuracy of source
code, including task difficulty, time constraints and previous
experience. While participants had previously been taught how
to achieve most of the tasks, difficulty appeared to be a factor
– production of valid code reduced as task difficulty increased.
However, participants reported in the interview that the tasks

were not difficult to code, indicating they may have been
unaware that code did not meet requirements.

C. Recommendations

The findings in this paper have applications for stakeholders
across software engineering, including owners of the Web-
sites, educators, researchers and tools builder. The following
sections distill these findings into some concrete recommen-
dations.

1) Recommendations for owners of the Websites:
• Owners of the websites should advise their content au-

thors to consider the problematic code from the program-
mers’ perspective and fully explain their online posted
code.

• Owners of the websites should advise their content au-
thors to consider that users with various experiences may
consider their posted code.

2) Recommendations for educators:
• Educators should providing training in online informa-

tion seeking, including how to search effectively, source
selection, and appropriate expectations for online content.

• Educators should train students to engage in judicious
code reuse, equipping them to make sound judgements
about the suitability of code snippets. This includes sup-
porting them in determining when (and which parts of)
code snippets are relevant and recognising problematic
code.

3) Recommendations for researchers:
• Researchers can further investigate the search and code

reuse strategies and propagation of problematic code by
collecting or analysing ready sets of code.

4) Recommendations for tools builder:
• Tools builder could exploit the findings by designing a

tool that identify programmers’ copy-and-paste activities
when using websites and suggests follow-on activities
such as the review of copied code for understanding, fit
with requirements, and quality control.

D. Limitation

Participants’ source code contained relatively few lines,
providing little room to analyse the impact of website use. The
study’s design introduced no baseline with which to compare
coding with or without using the websites. Asking participants
to code without websites would not have been meaningful, and
participants may have been reluctant to take part in a study
designed that way. Also, repeating the study with the same
participants would introduce previous exposure to the tasks.

In addition, to minimise threats to construct validity, a pilot
study was used to validate and refine the tasks and the study’s
phases. One threat to construct validity could have been a
concern about using appropriate tasks to reflect upon the
coding activities. Task design ensures participant familiarity by
using previous materials, and ensures online content support
solving the tasks. Other threat may have emerged as a prop-
erty of recruiting student participants from the University of

Manchester. Whilst it was clearly indicated to participants that
their data would be treated anonymously, to prevent impact
on their study or outcomes, students may still have been
reluctant to divulge behaviours that they thought academe
would perceive negatively. Students at UK universities are
regularly advised against activities that might constitute plagia-
rism, such as copying and pasting from external sources, and
this therefore may have led students to minimise disclosure of
these behaviours during their coding sessions and interviews.

This study does not set out to examine causal relationships,
and the internal validity is of limited concern. However,
potential influence by external factors could have included
experiment time, settings and researcher availability influ-
encing their coding. The study uses multiple data sources
to ensure triangulation, including observations, source code
and interviews. While the findings of this experiment resulted
from solving programming tasks, the observed behaviours may
vary based on the tasks. Time also play an important role
in solving the tasks. In addition, steps were taken to involve
multiple members of the research team at every step. An inter-
rater reliability method was further conducted to increase the
reliability of the findings.

VI. CONCLUSION

We conducted an online experiment to explore program-
mers’ activities during coding tasks using websites, analysing
the resulting source to uncover possible consequences on the
code. Recordings and source code for ten programmers solving
four programming tasks were collected, and participants were
interviewed. Recordings and interviews were thematically
analysed, and source code analysed through a combination
of quantitative and qualitative measures.

The observations have revealed that the vast majority of
searches on websites were for syntax and involved tutorial
websites. Syntax search comprised breaking down the task into
searchable chunks and was usually for syntax that was basic,
and had been previously taught. Participants copied code in
three ways: using copy and paste functionality; observing it
and retyping it; memorising it then retyping it. The copied
syntax was not always appropriate or necessary for solving
the task.

Participants produced source code in three categories: cor-
rect, which was working according to the requirements; non-
executable; and incorrect, which was compiling/running but
non-compliant with the requirements. Participants used various
strategies during their coding using the websites, and these
strategies were linked with participants’ source code to inves-
tigate their outputs for any implications. Although coding with
websites and encountering complex issues that increased task
completion time and effort helped participants produce correct
code, using websites impacted the resulting code, producing
either incorrect or non-executable code. Thus, using websites
during coding produced incorrect code.

Programmers need to consider the time and effort it takes
to use websites, reflect carefully on their requirements to help
filter online content, and not presume that online content is

accurate. Future work should explore these findings with other
samples, for example, professional programmers.

REFERENCES

[1] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack
Overflow in Github: any snippets there?” in Proc. of 14th
International Conference on Mining Software Reposito-
ries. IEEE, 2017, pp. 280–290.

[2] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and
S. R. Klemmer, “Two studies of opportunistic program-
ming: interleaving web foraging, learning, and writing
code,” in Proc. of SIGCHI Conference on Human Factors
in Computing Systems. New York, NY, USA: ACM,
2009, pp. 1589–1598.

[3] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
mental models: A study of developer work habits,”
in Proc. of 28th International Conference on Software
Engineering. New York, NY, USA: ACM, 2006, pp.
492–501.

[4] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An
examination of software engineering work practices,” in
CASCON First Decade High Impact Papers. Riverton,
NJ, USA: IBM Corp., 2010, pp. 174–188.

[5] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help
do developers seek, when and how?” in Proc. of 20th
Working Conference on Reverse Engineering, 2013, pp.
142–151.

[6] C. Sadowski, K. T. Stolee, and S. Elbaum, “How devel-
opers search for code: a case study,” in Proc. of 10th
Joint Meeting on Foundations of Software Engineering.
New York, NY, USA: ACM, 2015, pp. 191–201.

[7] R. E. Gallardo-Valencia and S. E. Sim, “What kinds
of development problems can be solved by searching
the web? a field study,” in Proc. of 3rd International
Workshop on Search-Driven Development: Users, Infras-
tructure, Tools, and Evaluation. New York, NY, USA:
ACM, 2011, pp. 41–44.

[8] G. Gao, F. Voichick, M. Ichinco, and C. Kelleher, “Ex-
ploring programmers’ API learning processes: Collect-
ing web resources as external memory,” in Proc. of
Symposium on Visual Languages and Human-Centric
Computing. IEEE, 2020, pp. 1–10.

[9] Y. Wang, “Characterizing developer behavior in cloud
based IDEs,” in 2017 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measure-
ment, 2017, pp. 48–57.

[10] J. Escobar-Avila, D. Venuti, M. Di Penta, and S. Haiduc,
“A survey on online learning preferences for computer
science and programming,” in Proc. of 41st International
Conference on Software Engineering: Software Engineer-
ing Education and Training. IEEE, 2019, pp. 170–181,
https://ieeexplore.ieee.org/document/8802102/.

[11] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Has-
san, and Z. Xing, “What do developers search for on
the web?” Empirical Software Engineering, vol. 22,

https://ieeexplore.ieee.org/document/8802102/

no. 6, pp. 3149–3185, 2017, https://doi.org/10.1007/
s10664-017-9514-4.

[12] D. Wong-Aitken, D. Cukierman, and P. K. Chilana, “It
Depends on Whether or Not I’m Lucky” How Students
in an Introductory Programming Course Discover, Select,
and Assess the Utility of Web-Based Resources,” in Proc.
of 27th Conference on Innovation and Technology in
Computer Science Education. ACM, 2022, pp. 512–
518.

[13] M. Fuchs, M. Heckner, F. Raab, and C. Wolff, “Monitor-
ing students’ mobile app coding behavior data analysis
based on IDE and browser interaction logs,” in Proc.
of Global Engineering Education Conference. Istan-
bul: IEEE, 2014, pp. 892–899, http://ieeexplore.ieee.org/
document/6826202/.

[14] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethno-
graphic study of copy and paste programming practices
in oopl,” in Proceedings. 2004 International Symposium
on Empirical Software Engineering, 2004. ISESE’04.
IEEE, 2004, pp. 83–92.

[15] M. Umarji, S. E. Sim, and C. Lopes, “Archetypal
internet-scale source code searching,” in IFIP Interna-
tional Conference on Open Source Systems, B. Russo,
E. Damiani, S. Hissam, B. Lundell, and G. Succi, Eds.
Springer US, 2008, pp. 257–263.

[16] M. Hucka and M. J. Graham, “Software search is not
a science, even among scientists: A survey of how sci-
entists and engineers find software,” Journal of Systems
and Software, vol. 141, pp. 171–191, Jul. 2018.

[17] A. Hora, “Googling for software development: what
developers search for and what they find,” in 2021
IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 2021, pp. 317–
328.

[18] S. Astromskis, G. Bavota, A. Janes, B. Russo, and
M. Di Penta, “Patterns of developers behaviour: A 1000-
hour industrial study,” Journal of Systems and Software,
vol. 132, pp. 85–97, 2017, https://linkinghub.elsevier.
com/retrieve/pii/S016412121730136X.

[19] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky, “You get where you’re looking for:
The impact of information sources on code security,”
in 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 2016, pp. 289–305. [Online]. Available:
https://doi.org/10.1109/SP.2016.25

[20] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar,
M. Backes, and S. Fahl, “Stack Overflow considered
harmful? the impact of copy& paste on Android applica-
tion security,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 121–136.

[21] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-
Argoty, “Secure coding practices in java: Challenges and
vulnerabilities,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE,
2018, pp. 372–383, https://doi.org/10.1145/3180155.
3180201.

[22] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco,
and R. Oliveto, “Toxic code snippets on stack overflow,”
IEEE Transactions on Software Engineering, vol. 47,
no. 3, pp. 560–581, 2021.

[23] M. C. Jadud, “A first look at novice compilation
behaviour using BlueJ,” Computer Science Educa-
tion, vol. 15, pp. 25–40, 2005, https://doi.org/10.1080/
08993400500056530.

[24] ——, “Methods and tools for exploring novice compila-
tion behaviour,” in Proc. of 2nd international workshop
on Computing education research. New York, NY, USA:
ACM, 2006, pp. 73–84, https://doi.org/10.1145/1151588.
1151600.

[25] C. Watson, F. W. Li, and J. L. Godwin, “Predicting
performance in an introductory programming course by
logging and analyzing student programming behavior,”
in Proc. of 13th International Conference on Advanced
Learning Technologies. IEEE, 2013, pp. 319–323.

[26] A. S. Carter, C. D. Hundhausen, and O. Adesope,
“The normalized programming state model: Predicting
student performance in computing courses based on
programming behavior,” in Proc. of 11th annual In-
ternational Conference on International Computing Ed-
ucation Research. Omaha, Nebraska, USA: ACM,
2015, pp. 141–150, http://dl.acm.org/citation.cfm?doid=
2787622.2787710.

[27] ——, “Blending measures of programming and social
behavior into predictive models of student achievement
in early computing courses,” ACM Transactions on Com-
puting Education, vol. 17, no. 3, pp. 1–20, Aug. 2017,
http://dl.acm.org/citation.cfm?doid=3135995.3120259.

[28] B. A. Becker, “A new metric to quantify repeated
compiler errors for novice programmers,” in Proc. of
Conference on Innovation and Technology in Computer
Science Education. ACM, 2016, pp. 296–301, https:
//dl.acm.org/doi/10.1145/2899415.2899463.

[29] M. Robillard, W. Coelho, and G. Murphy, “How effective
developers investigate source code: an exploratory study,”
IEEE Transactions on Software Engineering, vol. 30,
no. 12, pp. 889–903, Dec. 2004.

[30] M. Schröer and R. Koschke, “Recording, visualising
and understanding developer programming behaviour,” in
Proc. of International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 2021, pp. 561–566.

[31] D. M. Arya, J. L. Guo, and M. P. Robillard, “How
programmers find online learning resources,” Empirical
Software Engineering, vol. 28, no. 2, 2023, https://doi.
org/10.1007/s10664-022-10246-y.

[32] P. Chatterjee, M. Kong, and L. Pollock, “Finding help
with programming errors: An exploratory study of
novice software engineers’ focus in Stack Overflow
posts,” Journal of Systems and Software, vol. 159,
p. 110454, 2020, https://www.sciencedirect.com/science/
article/pii/S0164121219302286.

[33] M. J. de Dieu, P. Liang, and M. Shahin, “How do devel-
opers search for architectural information? an industrial

https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
http://ieeexplore.ieee.org/document/6826202/
http://ieeexplore.ieee.org/document/6826202/
https://linkinghub.elsevier.com/retrieve/pii/S016412121730136X
https://linkinghub.elsevier.com/retrieve/pii/S016412121730136X
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1080/08993400500056530
https://doi.org/10.1080/08993400500056530
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
http://dl.acm.org/citation.cfm?doid=2787622.2787710
http://dl.acm.org/citation.cfm?doid=2787622.2787710
http://dl.acm.org/citation.cfm?doid=3135995.3120259
https://dl.acm.org/doi/10.1145/2899415.2899463
https://dl.acm.org/doi/10.1145/2899415.2899463
https://doi.org/10.1007/s10664-022-10246-y
https://doi.org/10.1007/s10664-022-10246-y
https://www.sciencedirect.com/science/article/pii/S0164121219302286
https://www.sciencedirect.com/science/article/pii/S0164121219302286

survey,” in Proc. of 19th International Conference on
Software Architecture, 2022, pp. 58–68.

[34] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung, “An exploratory study of how developers seek,
relate, and collect relevant information during software
maintenance tasks,” IEEE Transactions on Software En-
gineering, vol. 32, no. 12, pp. 971–987, Dec. 2006,
http://ieeexplore.ieee.org/document/4016573/.

[35] L. Murphy, G. Lewandowski, R. McCauley, B. Simon,
L. Thomas, and C. Zander, “Debugging: the good,
the bad, and the quirky – a qualitative analysis of
novices’ strategies,” ACM SIGCSE Bulletin, vol. 40,
no. 1, pp. 163–167, Mar. 2008, http://doi.org/10.1145/
1352322.1352191.

[36] A. J. Ko, R. DeLine, and G. Venolia, “Information
needs in collocated software development teams,” in
29th International Conference on Software Engineering
(ICSE’07). IEEE, 2007, pp. 344–353.

[37] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On
the dichotomy of debugging behavior among program-
mers,” in Proc. of 40th International Conference on Soft-
ware Engineering. New York, NY, USA: ACM, 2018,
pp. 572–583, https://doi.org/10.1145/3180155.3180175.

[38] L. Han, T. Chen, G. Demartini, M. Indulska, and
S. Sadiq, “On understanding data worker interaction
behaviors,” in Proc. of 43rd International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2020, pp. 269–278.

[39] S. Chattopadhyay, N. Nelson, T. Nam, M. Calvert, and
A. Sarma, “Context in programming: an investigation
of how programmers create context,” in Proc. of 11th
International Workshop on Cooperative and Human As-
pects of Software Engineering. ACM, 2018, pp. 33–36,
https://dl.acm.org/doi/10.1145/3195836.3195861.

[40] J. Sillito, K. De Voider, B. Fisher, and G. Murphy,
“Managing software change tasks: An exploratory study,”
in 2005 International Symposium on Empirical Software
Engineering, 2005.

[41] J. Starke, C. Luce, and J. Sillito, “Searching and skim-
ming: An exploratory study,” in Proc. of International
Conference on Software Maintenance. IEEE, 2009, pp.
157–166.

[42] A. P. Koenzen, N. A. Ernst, and M.-A. D. Storey, “Code
duplication and reuse in Jupyter notebooks,” in Proc.
of Symposium on Visual Languages and Human-Centric
Computing. IEEE, 2020, pp. 1–9.

[43] R. Michaels, N. Tula, S. Ramisetty-Mikler, D. Nurmu-
radov, and R. Bryce, “An empirical study of how novice
programmers search the web for help,” The Journal of
Computing Sciences in Colleges, p. 42, 2020.

[44] G. R. Bai, J. Kayani, and K. T. Stolee, “How graduate
computing students search when using an unfamiliar
programming language,” in Proceedings of the 28th
International Conference on Program Comprehension
(ICPC ’20). ACM, 2020, pp. 160–171.

[45] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On

the comprehension of program comprehension,” ACM
Transactions on Software Engineering and Methodology,
vol. 23, no. 4, pp. 1–37, 2014, https://dl.acm.org/doi/10.
1145/2622669.

[46] H. Nygren, J. Leinonen, and A. Hellas, “Tracking stu-
dents’ Internet browsing in a machine exam,” in Proc. of
6th Computer Science Education Research Conference.
ACM, 2017, pp. 91–95.

[47] P. Blikstein, “Using learning analytics to assess students’
behavior in open-ended programming tasks,” in Proc. of
1st International Conference on Learning Analytics and
Knowledge. ACM, 2011, pp. 110–116, http://dl.acm.
org/citation.cfm?doid=2090116.2090132.

[48] H. Meier, E. Tõnisson, M. Lepp, and P. Luik, “Behaviour
patterns of learners while solving a programming task:
An analysis of log files,” in Proc. of Global Engineering
Education Conference. IEEE, 2020, pp. 685–690.

[49] A. Vihavainen, J. Helminen, and P. Ihantola, “How
novices tackle their first lines of code in an IDE:
analysis of programming session traces,” in Proc. of
14th Koli Calling International Conference on Comput-
ing Education Research. ACM, 2014, pp. 109–116,
http://dl.acm.org/citation.cfm?doid=2674683.2674692.

[50] A. Ciborowska, N. A. Kraft, and K. Damevski, “De-
tecting and characterizing developer behavior following
opportunistic reuse of code snippets from the Web,” in
Proc. of 15th IEEE/ACM International Conference on
Mining Software Repositories, 2018, pp. 94–97.

[51] J. T. Jacques and P. O. Kristensson, “Studying program-
mer behaviour at scale: A case study using Amazon
Mechanical Turk,” in Companion Proc. of 5th Interna-
tional Conference on the Art, Science, and Engineering
of Programming. New York, NY, USA: ACM, 2021,
pp. 36–48.

[52] G. R. Bai, B. Clee, N. Shrestha, C. Chapman, C. Wright,
and K. T. Stolee, “Exploring tools and strategies used
during regular expression composition tasks,” in 2019
IEEE/ACM 27th International Conference on Program
Comprehension, 2019, pp. 197–208.

[53] J. Escobar-Avila, D. Venuti, M. Di Penta, and S. Haiduc,
“A survey on online learning preferences for computer
science and programming,” in Proc. of 41st International
Conference on Software Engineering: Software Engineer-
ing Education and Training. IEEE, 2019, pp. 170–181,
https://ieeexplore.ieee.org/document/8802102/.

[54] C. Treude and M. P. Robillard, “Understanding Stack
Overflow code fragments,” in Proc. of International Con-
ference on Software Maintenance and Evolution. IEEE,
2017, pp. 509–513, http://ieeexplore.ieee.org/document/
8094452/.

[55] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue,
“How do developers utilize source code from stack
overflow?” Empirical Software Engineering, vol. 24,
no. 2, pp. 637–673, 2019, http://link.springer.com/10.
1007/s10664-018-9634-5.

[56] D. Yang, A. Hussain, and C. V. Lopes, “From query

http://ieeexplore.ieee.org/document/4016573/
http://doi.org/10.1145/1352322.1352191
http://doi.org/10.1145/1352322.1352191
https://doi.org/10.1145/3180155.3180175
https://dl.acm.org/doi/10.1145/3195836.3195861
https://dl.acm.org/doi/10.1145/2622669
https://dl.acm.org/doi/10.1145/2622669
http://dl.acm.org/citation.cfm?doid=2090116.2090132
http://dl.acm.org/citation.cfm?doid=2090116.2090132
http://dl.acm.org/citation.cfm?doid=2674683.2674692
https://ieeexplore.ieee.org/document/8802102/
http://ieeexplore.ieee.org/document/8094452/
http://ieeexplore.ieee.org/document/8094452/
http://link.springer.com/10.1007/s10664-018-9634-5
http://link.springer.com/10.1007/s10664-018-9634-5

to usable code: An analysis of Stack Overflow code
snippets,” in Proc. of 13th Working Conference on
Mining Software Repositories. New York, NY,
USA: ACM, 2016, pp. 391–401, https://doi.org/10.1145/
2901739.2901767.

[57] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and
M. Kim, “Are code examples on an online q&a forum
reliable?: a study of api misuse on Stack Overflow,”
in Proc. of 40th International Conference on Software
Engineering. IEEE, 2018, pp. 886–896.

[58] J. Zhou and R. J. Walker, “Api deprecation: A retrospec-
tive analysis and detection method for code examples on
the web,” in Proc. of 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering.
New York, NY, USA: ACM, 2016, p. 266–277, https:
//doi.org/10.1145/2950290.2950298.

[59] R. Abdalkareem, E. Shihab, and J. Rilling, “On code
reuse from StackOverflow: An exploratory study on
Android apps,” Information and Software Technology,
vol. 88, pp. 148–158, 2017.

[60] A. Gkortzis, D. Feitosa, and D. Spinellis, “Soft-
ware reuse cuts both ways: An empirical analysis
of its relationship with security vulnerabilities,” Jour-
nal of Systems and Software, vol. 172, p. 110653,
2021, https://www.sciencedirect.com/science/article/pii/
S0164121220301199.

[61] T. Delev and D. Gjorgjevikj, “Static analysis of source
code written by novice programmers,” in Proc. of Global
Engineering Education Conference. IEEE, 2017, pp.
825–830, http://ieeexplore.ieee.org/document/7942942/.

[62] C. Seaman, “Qualitative methods in empirical studies of
software engineering,” IEEE Transactions on Software
Engineering, vol. 25, no. 4, pp. 557–572, Jul. 1999.

[63] Q. Charatan and A. Kans, Java in Two Semesters: Featur-
ing JavaFX, 4th ed. Springer International Publishing,
2019.

[64] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative Research in Psychology, vol. 3,
no. 2, pp. 77–101, 2006.

[65] K.-J. Stol and B. Fitzgerald, “The abc of software
engineering research,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 27, no. 3,
pp. 1–51, 2018.

[66] R. Bakeman and V. Quera, “Behavioral observation,”
in APA handbook of research methods in psychology.
American Psychological Association, 2012, vol. 1, Foun-
dations, planning, measures, and psychometrics, pp. 207–
225.

https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2950290.2950298
https://doi.org/10.1145/2950290.2950298
https://www.sciencedirect.com/science/article/pii/S0164121220301199
https://www.sciencedirect.com/science/article/pii/S0164121220301199
http://ieeexplore.ieee.org/document/7942942/

	I Introduction
	II Related work
	II-A Understanding coding activities
	II-A1 Search
	II-A2 Code cloning/reuse

	II-B Impact on code

	III Methodology
	III-A Task design
	III-B Study Procedure
	III-B1 Preliminaries
	III-B2 Phase 1: Video-captured programming tasks
	III-B3 Phase 2: Source code collection
	III-B4 Phase 3: Interview

	III-C Participants and Recruitment
	III-D Analysis

	IV Results
	IV-A The interview
	IV-A1 Theme 1: Usage of websites
	IV-A2 Theme 2: Websites experience
	IV-A3 Theme 3: Experiment's specifications and issues.

	IV-B Behavioural coding
	IV-B1 Theme 1: Acquiring knowledge
	IV-B2 Theme 2: Utilising knowledge to write the code

	IV-C Source code
	IV-C1 Correct
	IV-C2 Non-executable
	IV-C3 Incorrect

	V Discussion
	V-A RQ1: How do programmers use websites during programming?
	V-B RQ2: What are the effects of websites use on the resulting code?
	V-C Recommendations
	V-C1 Recommendations for owners of the Websites
	V-C2 Recommendations for educators
	V-C3 Recommendations for researchers
	V-C4 Recommendations for tools builder

	V-D Limitation

	VI Conclusion

