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Abstract

The emergence of large multi-platform and multi-scale data repositories in biomedicine has 

enabled the exploration of data integration for holistic decision making. In this research, we 

investigate multi-modal genomic, proteomic, and histopathological image data integration for 

prediction of ovarian cancer clinical endpoints in The Cancer Genome Atlas (TCGA). Specifically, 

we study two data integration techniques, simple data concatenation and ensemble classification, 

to determine whether they can improve prediction of ovarian cancer grade or patient survival. 

Results indicate that integration via ensemble classification is more effective than simple data 

concatenation. We also highlight several key factors impacting data integration outcome such as 

predictability of endpoint, class prevalence, and unbalanced representation of features from 

different data modalities.

INTRODUCTION

Although ovarian cancer is the fifth leading cause of cancer death in American women, there 

is a lack of consistently successful treatment plans for this disease [1]. In order to gain a 

better understanding of the functionality of this cancer and the roots of variation in treatment 

response, researchers are increasingly turning to molecular-level analysis. Recent 

technological advances have resulted in large volumes of molecular-level data for many 

cancers, including ovarian cancer. Until now, however, researchers have mostly focused on 

homogeneous datasets containing information for just one kind of data (e.g., genomic or 

proteomic). Because multi-modal datasets can capture the holistic status of a patient, there is 

a growing need to study multi-modal data integration methods that can jointly use clinically 

relevant information for decision making [2].

We seek to explore the effects of multi-modal data integration on prediction of ovarian 

cancer endpoints in The Cancer Genome Atlas (TCGA). We first need to determine whether 

integration of genomic, proteomic, and histopathological imaging data can improve the 

prediction of ovarian cancer grade or patient survival. To investigate data integration 
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methods, we compare the accuracy of survival and grade classification schemes based on (1) 

three homogenous datasets containing genomic, imaging, and proteomic data; (2) three bi-

modal datasets containing genomic & imaging, genomic & proteomic, and imaging & 

proteomic data; and (3) one multi-modal dataset containing all three types of data, as shown 

in Figure 1. We also investigate an ensemble classification method that combines prediction 

models developed for each individual data modality into a single prediction result.

METHODS

2.1. Datasets

We used three datasets (genomic, proteomic, and imaging) containing ovarian cancer patient 

data obtained from The Cancer Genome Atlas (TCGA), as shown in Figure 1. Affymetrix 

gene expression data was processed using caCORRECT and log normalized [3]. All datasets 

were filtered by mutual patients and then by availability of survival and grade data. Genomic 

datasets were also filtered by mutual genes. Table 1 and Table 2 contain dataset feature and 

patient information.

2.2. Image Data Processing

We extracted features from histopathological whole-slide images (WSIs) after quality 

control steps including detection of tissue-fold and pen-mark artifacts from the lowest 

resolution WSIs [4]. To represent each patient using quantitative image features, we 

followed four steps. First, we cropped the highest-resolution WSI into 512 × 512 -pixel, 

non-overlapping tiles and selected tissue (excluding pen-mark and blank) tiles with less than 

10% tissue-fold artifact. Second, from the tiles that passed quality control, we extracted 461 

image features capturing various pixel- and object-level image features (Table 3) [4]. Third, 

we classified tiles into tumor and non-tumor tiles using a supervised classification model, 

trained using image features and manually annotated tumor and non-tumor tiles from 15 

WSIs [4]. Finally, we combined image features from all tumor tiles of a patient. Since tile 

size is constant, we represented a WSI by simply averaging all pixel-level tile features 

except for Haralick and fractal features, where we summed co-occurrence matrices and 

histograms for tiles, respectively, to represent the WSI and then calculated the features (i.e., 

13 Haralick features and eight fractal dimensions [5]). For combining object-level tile 

features, we assumed that objects in a tile were a subset of all objects in a WSI and 

combined features using group statistics accounting for the number of objects in each tile.

2.3. Data Integration

We considered four integrated datasets (Figure 1 and Table 1). Each integrated dataset is a 

concatenation of its component datasets. For example, the complete integrated dataset is a 

concatenation of the genomic, imaging, and proteomic datasets. The feature counts of each 

dataset after integration are summarized in Table 1.

2.4. Classification

We tested data integration methods using two binary classification endpoints, i.e., cancer 

grade and patient survival (Table 2). For the grade endpoint, we divided patients into grades 

1 or 2 and grades 3 or 4 as the two classes. For the survival endpoint, we separated patients 
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with survival known to be less than 5 years from those with survival known to be greater 

than or equal to 5 years.

Patients not known to be still living and with no follow-up after 5 years (i.e., patients that are 

normally censored) are grouped into the class with known surviving patients. Each endpoint 

was classified using eight different scenarios, outlined in Table 4. We used nested cross 

validation to estimate prediction performance for the first seven scenarios; and ensemble 

classification for the last scenario.

Nested Cross Validation—We estimated classification performance for each dataset 

using the SVM classifier and nested cross validation (Figure 2) [6]. Within the fifteen 

iterations of the outer loop, the entire dataset was randomly partitioned into training and 

testing sets. Thus, for each data combination scenario and endpoint, we (1) selected features 

from the training set using Minimum Redundancy Maximum Relevance (mRMR) [7], (2) 

trained the classifier using the selected features and training set samples, and (3) evaluated 

the classifier using testing set samples to produce 15 measures of prediction accuracy (i.e., 

one value for each iteration). The feature selection step requires one parameter, i.e., the 

number of features to be selected. We optimized this parameter within three iterations of the 

inner cross-validation loop. That is, we selected the feature size that produced the highest 

inner cross-validation accuracy. Within the inner cross-validation, we performed two-fold 

cross validation using mRMR feature selection and tested feature sizes ranging from 1 to 

200. For each training and testing combination, we used rank normalization to normalize the 

testing data to the training data. The feature number that outputs the greatest accuracy on 

testing data is selected as optimal. Thus the inner loop outputs an optimal feature number.

Ensemble Classification—We used ensemble classification to estimate combined 

prediction performance using genomic, proteomic, and imaging data [8]. Specifically, we 

used nested cross validation as previously described, but simultaneously applied it to all 

three un-integrated datasets (i.e., the genomic, proteomic, and imaging datasets) to obtain 

three classification decisions for each sample. We then used voting to determine the final 

classification of each sample as follows. For each sample xi, we obtained three decision 

values after training each classifier, f(x): fgene(xi), fimage(xi), and fprotein(xi). The output of 

each classifier function can be either 1 or −1, indicating grade or patient survival, depending 

on the endpoint in question. Thus, the final ensemble classification for sample xi is the 

mode, or most frequently occurring class of the set {fgene(xi), fimage(xi), fprotein(xi)}.

2.5. Performance Evaluation

We used boxplots to compare the accuracies of the different classification scenarios. We first 

compared the prediction performance of the integrated datasets to that of their constituents 

to determine if data integration affects prediction performance. We used a one-tailed, two-

sample t-test to determine if integrated datasets resulted in statistically significant 

improvements in prediction performance compared to individual datasets.
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RESULTS

Boxplots of the prediction performances for each dataset are displayed in Figure 3, 

organized by data type and endpoint. Results from the t-tests are displayed in Table 5. As is 

evident in the figure, perhaps the most striking result is the drastic difference in accuracy 

between survival and grade classification. For survival, mean accuracies range from 0.51 to 

0.55, while grade classification accuracies range from 0.83 to 0.88. Also interesting is that 

the standard deviation in accuracy values for survival (ranging from 2.5 to 4.3) are 

consistently higher than those for grade (ranging from 1.3 to 2.1), indicating greater 

variation in accuracy.

Comparison between different classification methods yields equally interesting results. For 

example, the imaging data produces the best results for one endpoint (grade) and the worst 

results for the other (survival). Other patterns of note include the consistent accuracy of 

proteomic and ensemble classification relative to the other methods and the superiority of 

ensemble accuracy over accuracy from the complete concatenated dataset. Also significant is 

that, in the integrated datasets produced through concatenation, classification accuracy is 

statistically similar to the accuracy of the genomic dataset, by far the largest dataset used.

DISCUSSION

Perhaps the most significant result of this research is that information integration via 

ensemble classification results in higher prediction performance compared to basic data 

concatenation. Ensemble classification removes the effect of dataset size (i.e., feature size) 

and reduces the effect of random errors via voting.

The difference in classification accuracy between the two endpoints can probably be 

explained by a combination of two factors. First, the low classification accuracy of patient 

survival can likely be attributed to the inherent difficulty of predicting survival; second, the 

relatively high classification accuracy of grade may be affected by the imbalance of classes 

in the grade data. These factors likely compounded to result in the large disparity in 

accuracy between the results for the two endpoints. In the future, evaluating results by AVC 

rather than accuracy would eliminate the effect of the large inter-class prevalence difference.

The consistent superiority of the proteomic data in classification, meanwhile, can likely be 

attributed to the smaller number of features present in the dataset relative to the number of 

samples. In the larger datasets, it is much more difficult to isolate informative features, 

which can decrease predictive accuracy, giving the proteomic dataset (the smallest dataset) 

an inherent advantage. It is likely that the superior performance of imaging data in grade 

classification can similarly be attributed to the size of the dataset. However, this may also be 

attributed to the fact that histopathological image data was originally used by pathologists to 

determine cancer grade. The feature size factor may also play a large role in the similarity in 

accuracy between the genomic and complete integrated datasets. That is, because there are 

so many genomic features, the genomic features represent nearly 95% of the total features in 

the complete datasets. This has implications on the proportion of genomic features used in 

final classification. To counteract some of these biasing effects of size an initial feature 
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selection could be used to balance the proportion of features contributed by each data 

modality.

In the future, repeating this process with other novel and more biologically-relevant 

integration methods could yield more answers regarding the effect of integration on 

classification accuracy. Alternatively, using ensemble classification with different types of 

data might provide greater insight into the results presented in this paper. These results 

highlight some key factors to be considered when using integrated data for classification, 

i.e., predictability of endpoint, class prevalence, and unbalanced representation of features 

from different data modalities.
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Figure 1. 
Depiction of the flow of integration, indicating the component datasets (in the lighter boxes) 

of each integrated dataset (in the darker boxes).
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Figure 2. 
Estimation of classification performance using nested cross validation.
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Figure 3. 
Prediction of ovarian cancer grade (top) and patient survival (bottom) using individual and 

integrated datasets. Boxes represent mean ± one standard deviation. Whiskers indicate data 

range. Red and green dashed lines indicate mean prediction performance for complete and 

ensemble methods, respectively.
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Table 1

Summary of un-integrated/integrated ovarian cancer datasets used for classification.

Data Modality # of Features

Un-Integrated Genomic 11410

Imaging 461

Proteomic 165

Integrated Genomic+Imaging 11871

Genomic+Proteomic 11575

Imaging+Proteomic 626

Complete 12036
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Table 2

Summary of patient classes for two ovarian cancer clinical prediction endpoints.

Grade 1 or 2 Grade 3 or 4 Total

# of Patients 50 337 387

Known
Survival <5
Yrs

Known Survival
≥5 Yrs OR No
Follow-Up after
5 Yrs

# of Patients 173 209 382
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Table 3

Summary of histopathological image features.

Features
Subset Count Description

Color 73 RGB histograms, histogram statistics,
and stain co-occurrence

Global
Texture

138 Haralick, fractal, GHM multi-wavelet,
gray-level histogram statistics, and
Gabor filter

No-Stain-
Object Shape

51 Pixel area, boundary fractal, bending
energy, convex hull area, solidity,
perimeter, elliptical area, major-minor
axes lengths, eccentricity, and count

Eosinphilic-
Object Shape

51 Pixel area, boundary fractal, bending
energy, convex hull area, solidity,
perimeter, elliptical area, major-minor
axes lengths, eccentricity, and count

Eosinphilic-
Region
Texture

18 Haralick and gray-level histogram
statistics

Basophilic-
Object Shape

51 Pixel area, boundary fractal, bending
energy, convex hull area, solodity
perimeter, elliptical area, major-minor
axes lengths, eccentricity, and count

Basophilic-
Region
Texture

18 Haralick and gray-level histogram statistics

Nuclear
Shape

26 Count, elliptical area, major-minor axes
lengths, eccentricity, and cluster size

Nuclear
Topology

35 Delaunay triangle, minimum spanning,
Voronoi diagram tree, and closeness
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Table 4

Summary of data combination scenarios tested.

Combination Description

Genomic Uses genomic dataset

Imaging Uses imaging dataset

Proteomic Uses proteomic dataset

Genomic+Imaging Uses genomic data concatenated with
imaging data

Genomic+Proteomic Uses genomic data concatenated with
protein data

Imaging+Proteomic Uses imaging data concatenated with
protein data

Complete Uses a concatenation of genomic,
imaging, and proteomic data

Ensemble Uses voting from genomic, imaging,
and proteomic prediction models.
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Table 5

P-values for two-sample t-tests comparing each integrated dataset’s prediction results with those of its 

constituent datasets. Each row corresponds to an integrated dataset and each column for which it has a value is 

one of its constituent datasets; the p-value at the intersection of two datasets reflects the probability that their 

accuracy is the same. Bold p-values indicate statistically significant improvements in performance as a result 

of data combination.

GRADE Genomic Imaging Proteomic

Gene+Img. 0.1540 0.9998 n/a

Gene+Prot. 0.6500 n/a 0.9993

Img.+Prot. n/a 0.9978 0.9309

Complete 0.1476 0.9986 0.9609

Ensemble 0.0104 0.9494 0.5447

SURVIVAL Genomic Imaging Proteomic

Gene+Img. 0.7011 0.1581 n/a

Gene+Prot. 0.6842 n/a 0.9404

Img.+Prot. n/a 0.0104 0.6592

Complete 0.5318 0.1019 0.8971

Ensemble 0.1259 0.0143 0.5255
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