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Abstract—Cognitive communications has attracted a large is comparable to the desired signal, treating as noise is not
interest during the last decade due to spectrum scarcity. Incomb  an option because of the interference constraints involved

nation with multiantenna techniques, cognitive communications \yhije decoding. The 1A technique was firstly proposed in
have the ability to increase spectral efficiency by enabling the

coexistence of a primary and secondary systems. In this paper, [10] and Chahnel capacity as well as degrees of freedom
we focus in two specific cognitive approaches: a) Multiantenna (dof) for the interference channel have been analysed. The
Interference Alignment (IA) and b) Multiantenna Spectrum IA technique has been shown to achieve the dofs for a range
Sensing (SS). In the first case, we investigate how IA over multiple of interference channels [11], [12]. Its principle is based

spatial dimensions can be exploited in order to lower harmful aligning the interference on a signal subspace with respect

interference towards the primary system into acceptable levelsnl - . : oo
the second case, we compare the sensing performance of differe to the non-intended receivers so that it can be easily fidtere

eigenvalue-based blind SS techniques. This paper concludes byout by sacrificing some signal dimensions. The exact number
presenting some interesting open problems in this area. of needed dimensions and the precoding vectors to achieve
Index Terms—Multiple Antennas, Cognitive Communications, |A are rather cumbersome to compute, but a number of
Spectrum Sensing, Interference Alignment approaches have been presented in the literature towasds th
end [13]-[15]. In the context of cognitive communications,
the 1A in an underlay mode has received important attention
Due to the booming market for wireless multimedia serecently in the cognitive radio research community [16]][17
vices, the demand for broadband wireless spectrum has b&&e fundamental assumptions in this technique are thag ther
increased significantly. However, usable spectrum ressurare multiple available dimensions (space, frequency, time
are becoming scarce due to spectrum segmentation pelide) and that the Secondary Transmitter (ST) is aware of
cies and dedicated frequency allocations to various véselehe Channel State Information (CSI) towards the Primary
systems. This scarcity has led to the concept of cognitiReceivers (PR). In this paper, we apply this technique in
communications which allows for the coexistence of licehsehe spectral coexistence scenario of outdoor femto celts an
and unlicensed systems over the same spectrum [1]. Tdemacro cell uplinks to mitigate the interference of femto
cognitive techniques which are most commonly considereell User Terminals (UTs) towards the macrocell Base Siatio
in the literature are Spectrum Sensing (SS), underlaylayer(BS). For this purpose, we consider static, uncoordinatetl a
and database techniques [2]. In SS only techniques, Segondaordinated IA techniques. The proposed IA techniques are
Users (SUs) are allowed to transmit whenever Primary Usersmpared to no-mitigation technique as well as to a resource
(PUs) are inactive whereas in underlay techniques, SUs atering approach in terms of primary rate protection ratio.
allowed to transmit provided that they respect an interfeee ~ Spectrum Sensing is an important process used to acquire
constraint which guarantees the Quality of Services (QdS) the spectrum awareness required by the CRs. Several SS
PUs. techniques such as Energy Detection (ED), matched filter
In existing literature, multiple antennas have been considnd cyclostationary feature detection techniques have bee
ered in a wide range of applications such as beamformingpoposed in the literature [18]-[20]. The later two techras
spatial diversity/multiplexing, Interference Alignme(iw) etc. require the prior knowledge of the PU’s signal to make the
In the context of spectral coexistence of two systems, pialti decision about the presence or absence of the PU signal
antennas can be used for several purposes such as SS [3]42$],Although ED does not require any prior knowledge of
cognitive beamforming [6], [7] and cognitive IA [8], [9]. In PU’s signal, the performance of this technique is susckeptib
this paper, we focus on two important applications of midtipto noise covariance uncertainty [21]. Furthermore, déffér
antennas to exploit the underutilized primary spectruintAi multi-antenna techniques have been considered in thatliter
and (ii) SS. to enhance the SS efficiency in wireless fading channels [5],
The coexistence of two systems within the same spectry2®]-[24]. In most of these methods, the properties of the
can be modeled as a Cognitive Radio (CR) network witkigenvalues of the received signal's covariance matrixehav
interference channels between primary and secondarynsgstebeen considered using recent results from advances in Rando
When the strength of secondary interference to the primavatrix Theory (RMT) [25], [26]. Eigenvalue based SS does

I. INTRODUCTION



not require any prior information of the PU’s signal and it
outperforms ED techniques, especially in the presenceiséno
covariance uncertainty [22]. In this context, we comparm th
performance of different eigenvalue-based blind SS teples
using an asymptotic approach for multi-antenna sensing.

The remainder of this paper is structured as follows: Sactio
Il presents the system and signal models and the proposed mul
tiantenna |A technique with some numerical results. Sactio
[l presents the multi-antenna SS techniques with the fatus
multi-antenna eigenvalue-based sensing and some nuinerica
results. Section IV concludes this paper by presentingarebe
challenges in this area.

Fig. 1. System model for the considered coexistence scenario
I[l. MULTIANTENNA INTERFERENCEALIGNMENT
In this application scenario, we consider the problem of
mitigating interference from femtocell terminals towartie gains between the PR ardh ST . To simplify notations, we
macrocell BS while operating both macro and femto uplingroup allF; into a singleL x NL matrix F = [F;...Fy].
systems within the same spectrum. The received signal at the joint processor of the SRs is:

N

A. System and Signal Model yo = Z Fox, + Fx + 29, @)

We consider a single macrocell BS receiving signals from P
a set of PUs and a number of femto cell§)(which operate wherey, is the NI x 1 received symbol vector and is the

over the same coverage area receiving signals from a Setreo eiver noise. The&vV L. x M channel matrixH represents the
the SUs as shown in Fig. 1. The femto cells can cooperaig

. - . : annel gains between all SRs and the PT whileXtex L
through a backhaul link and jointly decode the receivedaign = .
[27]-[31]. After scheduling, we consider that for a singlats channel matrixF; represents the channel gains between all

o SRs and the-th ST. To simplify notations, we group aK;
one macro UT andVv femto cell UTs transmit simultaneously. to a singleNL x NI matrir; %y_ [F F ] group
= 1.--- N

: i
over a common spectrum. The interference from femtocerl]we consider a Multiple Input Multiple Output (MIMO)
UTs towards the_macroceII'BS needs to be syppressethgyleigh channel whose power is scaled according to a
protect the reception of PU signals from harmful interfesn power-law path loss model i.eH = oG, wherea is the
We consider that the macro UT hdd antennas while the - ' N '

. h | ff he B h T
BS, femto cell UTs and the femto cell Access Points (AP ath loss coefficient between the BS and the macro U

dG is a L x M random matrix with complex circularl
have L = M + 1 antennas. We further assume that femtg * P y

: mmetric (c.c.s.) independent identically distributédd()
cell UTs have CSI towards the macro BS. This CSI can . . : - e
easily measured with the help of the macrocell pilot signa:%%/ements representing Rayleigh fading coefficients. Syl

. : . S . = a;J;, whereq; is the path loss coefficient between BS
In addition, there is a predefined vectomwhich is known by and i—?h femto-ceﬁ uT andpJ- is a L x I random matrix

both femtocell UTs and the macro BS. We employ precodlrwith i.i.d. c.c.s. elements representing channel coeffisie

at the femto cell UTs so that the received secondary Sigmalsb%tween femto-cell BS and thigh femto-cell UT. As a result
the macro BS are all aligned across vestotn the considered F— (o ®l.1) o with a — [a1...ax]” andJ is a’
scenario, the femtocell UTs have to be aware of the CSI a d>< NI randorrx1 matrix with iid. c.c s. .e'lements In addition
vector v to perform the precoding and the macro BS nee PO | '

ALohs ) . = (BILxnm)OG, whered = [B; ... 8x]T includes path
only to perform spatial filtering over vectar without having loss c<oefficieT1ts between all APs gnld macr]o UT @hdenotes
additional awareness.

Th ved sianal at th BS b it . aNLxM random matrix with i.i.d. c.c.s. elements. Similarly,
e received signal at the macro can be written as: g _ (3, ®11x1) © J,, where 8, contains the path loss

N coefficient between all APs and tfi¢h femto-cell UT andJ;
y1 = Hx+ Z Fixi + 21, (1) represents & L x L random matrix with i.i.d. c.c.s. elements.
=t As aresultF = (B®1I..;) ©J with B=[3,...3,] and

wherey is the L x 1 received symbol vectox is the M x1  J s a NL x NL random matrix with i.i.d. c.c.s. elements.
transmitted symbol vector from the Primary Transmitter )(PT

x; is the L x 1 transmitted symbol vector from thieth ST B- 1A Techniques

and z; is the receiver noise. All inputg, x; are assumed to The IA is employed at all the STs towards the PR and
be Gaussian and obey the following sum-power constrainisterference is filtered out at the PR by using the 1A veastor
E[xx] < v,sM and E[xzxi] < 7vssL, 7ps being the transmit Let us assume & x 1 non-zero reference vecteralong which
SNR® of the PT andy;;s being the transmit SNR of the ST. Thethe interference should be aligned. It should be noted tiat S
L x M matrix H represents the channel gains between the RiRe assumed to know the alignment directiorand to have
and the PT while thd. x L matrix F; represents the channelperfect own CSI about the channel coefficielits towards



the PR. In this context, the following precoding scheme is
employed to align the interference:

X; = W;I; = (Fi)_l VU X;. (3)

o
©

where||v||> = L andE[x|x;] < Ly. the scaling variable; is
needed to ensure that the input power constraint is notteidla
for each ST. This precoding results in unit multiplexingrgai
and is by no means the optimal IA scheme, but it serves as
a tractable way of evaluating the IA performance. Following
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It can be easily seen that interference has been alignedsacro  Fig. 2.  Primary protection ratio vs. number of femto celNs

the reference vector and it can be removed usinty a< L

zero-forcing filterQ designed so thaf is a truncated unitary

matrix [11] andQv = 0. After filtering, the M x 1 received System. The primary throughput in presence of secondary can
signal vector at the PR can be expressedyas= Hx + z,, be written as:

whereH = QH is the M x M filtered channel matrix. The [ ( Vps T T)}
. . L : Cps = E |logdet (I, + “=HH') |, 7
received signal at the joint processor of the SRs is: P o et {Lur -+ M )
N _ where H is the equivalent channel matrix after IA filtering.
y2 =Y Fix; + Hx + 25, (5)  The primary rate protection ratio can be denotedR#y and
=1 is defined asPR = g—” Figure 2 presents the PR versis

whereF; = F; (]5‘1»)‘1 vu; are the equivalen L x 1 channel for a set of typical psorameters described in [8]. It should be
matrices including precoding. To simplify notations we gwo especially noted that the coordinated IA approach fully-pro

all F; into a single NL x N matrix F = [F,...Fy]. tects the primary rate as expected while other IA approaches
In the following paragraphs, we describe three different Iareserve roughly 70% and the resource division preservigs 82
approaches. of the primary rate. Furthermore, all the techniques exonept

1) Satic Approach: The alignment direction is predefinedmitigation preserve a constant protection rate with insirea
and does not depend on the channel state. This is a simplewhile the performance of no-mitigation technique degsade
solution assuming no coordination in the network. The disathonotonically. In addition, IA techniques achieve rougtiig
vantage is that the IA direction may be aligned with one sfame system spectral efficiency (SE) as Resource Division,
the strong eigenvectors of the random PR-PT channel andviaere SE is defined as the sum of primary and secondary
large amount of received power may be filtered out. SEs.

2) Coordinated Approach: The selection of the alignment
direction takes place at the PR and is subsequently communi-
cated to STs. It is assumed that the channel coherence time ¥/ consider a multi-antenna assisted CR node with
adequate for the alignment direction to be fed back and usdgmber of antennas as in [3]. LeV be the number of
by STs. observations collected by each CR node in the time durafion o

3) Uncoordinated Approach: This approach assumes no - We consider a generic signal model assuming the presence
coordination between two systems. Furthermore, the STs femultiple PUs, while the signal model for the case of
aware of their CSI towards the PR but have no informaticiingle PU can be considered as a specific case. We assume
about the CSI of the PT. STs select an alignment directiéf@t channel remains constant during the period of sensing
which maximizes the secondary throughput and the PR ggd the transmitted PU symbols are i.i.d. complex circularl
responsible for sensing the alignment direction and applyiSymmetric (c.c.s.) Gaussian symbols. A single observaifon

IIl. M ULTIANTENNA SPECTRUM SENSING

the appropriate filter. the M x 1 received signaly in presence ofil PUs can be
) written as:
C. Numerical Results K
y:Zhisi—Fz:Hs—Fz (8)

The primary only throughput in the absence of secondary
can be written as:

i=1

s : wheres is K x 1 transmitted signal i.es = [sy, s2,...,5x]7,
Cpo =E [10% det (IL + o HH )] (6)  with s; being a Gaussian symbol with power = E[s?]. The
M x K channel matrixH includes the channel coefficients
Q@tween PUs and/ receive nodes i.& = [h; hy ... hg],
z is M x 1 Gaussian noise vector with zero mean and
1The mathematical details on these techniques can be found.in [8  varianceo?. After collecting N samples for each receiving

where I, is the identity matrix of dimension. and v,
represents the SNR at the transmit antenna of the prim



+
:

—#— SCN

—+—SsT |
SLE

—e— D

node, theM x N received signal matrix¥ can be written
as:Y = [ y1,y2...yn |. Let us denote the hypotheses
of the presence and absence of the PU signalihyand
H, respectively. The binary hypothesis testing problem for
deciding the presence of a PU signal can be written as:

Hy:Y=2% H,:Y=HS+7Z 9)

whereS is the K x N transmitted signal and is the M x N
Gaussian noise. Let us define sample covariance matrices
of received signal and noise aRy(N) = +YY? and
Rz(N) = %ZZH Under noise Only hypOtheSIﬁy(N) = R S
Rz(N). It can be noted that sincé& ~ CAN(0,1I), ZZH

follows an uncorrelated Wishart distribution [22] iBZ ~ Fig. 3. Ratio of correct sensing versus SNR for differentitegues in

Wu (2, N), whereX = LZJ\?H], Rayleigh fading channel3(= 10, N = 100)

A. Blind SS Techniques B. Numerical Results

1) Scaled Largest Eigenvalue Technique: The decision for ~ Figure 3 shows the ratio of correct sensing versus SNR
SLE method can be made on the basis of following binaf¢r different techniques with parametefs= 10, N = 100
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hypothesis testing: in Rayleigh fading channel assuming the channel remains
Ho if Amas(Ry(N) - constant across during the period of sensing. From thetresul
decision — { 0, if Tt {Rv(N)} <Tsip (10) it can be noted that SLE detector performs the best among

H;, otherwise other detectors and JD detector performs slightly worsa tha

whereT2 ,. is the asymptotic threshold for the SLE methodn€ SLE detector and better than SCN-based and ST detectors.
which cSaLnEbe written as [5]7% , = (1 + 1/v/B)2, where During simulation, it was observed that the same performanc

B=N/M. or.d.ering was preserved folr. multiple user scenario and for
2) SCN based Technique: The decision for SCN basedRician fading channel conditions.
technique can be made in the following way: IV. CONCLUSIONS ANDDISCUSSION
decision—{ Hg, if % < T8N (1) This paper has_ presented two impo_rt_ant applicat_iong of
" | Hy, otherwise multiple antennas in the context of cognitive communiaatio

The IA technique has been considered in order to mitigate
R the interference from secondary femto UTs to the macro BS
which is given by [32], [33]75¢ v = Eiﬁig equipped with MIMO transceivers. The primary protection
3) Spherical Test Method: The test statistic for this methodratio of the IA techniques have been compared with non-1A
is calculated as the ratio of the geometric and arithmetiammetechniques and it is noted that the coordinated IA technique
of all eigenvalues: perfectly protects the primary rate, while achieving the SE
M /M Resource Division. Furthermore, the comparison of differe
T — (det(RY(N)))l/M B (Hi:1 /\i> (12) blind eigenvalue based SS techniques have been presented by
ST = Ltr(Ry (N)) o LuM N using an asymptotic analysis under noise only hypothesis. |
The binary hypothesis testing based on this method can PE)%S b_een observed that the pe_rformance of the SLE detector
expressed as: is optimal for a range of scenarios, followed by JD, SCN and
ST.
decisionz{ Ho, if TST? TSt (13) In the coordinated IA technique, it is assumed that the
Hy, otherwise ST-PR channel as well as the CSI of the PT is perfectly
where Tg5 represents the asymptotic thresholénown to the ST. Although different techniques exist in
for the ST method, which is given by [5]: acquiring the channel information, there always arises the
T3y =exp(—1—(8—1)log(1—1/8)) uncertainty of perfect CSI. In this context, exploring the |
4) John's Detection Method: The test statistic for this techniques which can provide better primary protection in
method is given as the ratio of the quadratic mean ovéte absence of channel knowledge in one important research
the arithmetic mean of all eigenvalues iE; = Vv Ji&%?_ challeng_e. Fu_rther_more, applying IA in the downli_nk is more
The binary hypothesis testing based on this method can IIengmg since interference would have to be _allgnedsx:r
expressed as: all receivers. In the context of.SS_, there remain many open
] research challenges such as distributed multiantennangens
decision — { Ho, if Ty 3 Ty (14) collaborative multiantenna sensing, applying the asytipto
Hy, otherwise analysis to finite cases with higher accuracy etc. Furthezmo
whereT'5° represents the asymptotic threshold for JD detectimvestigating the effect of noise and channel correlatiothi
which is given by [5]:T5° = /1 +1/5. performance of different SS techniques is an open issue.

whereTSg  is the asymptotic threshold for the SCN metho
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