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ABSTRACT1 

 
Recently, there has been a trend to combine independent 
component analysis and canonical polyadic decomposition 
(ICA-CPD) for an enhanced robustness for the computation 
of CPD, and ICA-CPD could be further converted into CPD 
of a 5th-order partially symmetric tensor, by calculating the 
eigenmatrices of the 4th-order cumulant slices of a trilinear 
mixture. In this study, we propose a new 5th-order CPD 
algorithm constrained with partial symmetry based on joint 
diagonalization. As the main steps involved in the proposed 
algorithm undergo no updating iterations for the loading 
matrices, it is much faster than the existing algorithm based 
on alternating least squares and enhanced line search, with 
competent performances. Simulation results are provided to 
demonstrate the performance of the proposed algorithm.  
 

Index Terms — Blind source separation, Independent 
component analysis, Canonical polyadic decomposition, 
Joint diagonalization 
 

1. INTRODUCTION 
 
The use of tensor tools for the analysis of multidimensional 
signals has attracted wide interests in the past decades. For 
example, tensors were used to formulize the multilinearities 
of higher-order statistics or nonstationary (or colored) 2nd 
order statistics in independent component analysis (ICA) [1-2]. 
They have also been used in practical systems where data 
acquisition is in nature multilinear and tensor model could 
be directly set up in the deterministic data domain [3-5]. The 
main merit of using tensors is the essential uniqueness of 
several tensor decomposition tools [6, 7]. In particular, the 
canonical polyadic decomposition (CPD, also known as 
canonical / parallel factor analysis: CPA) is among the most 
important tensorial tools. 

Although CPD is essentially unique in theory, its actual 
computation is not always guaranteed to generate globally 
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optimal results [8], and one way to address this problem is to 
incorporate extra priors into decomposition procedure [5, 9-11]. 
In particular, noting that it is often reasonable to assume 
statistical independence at one mode of the tensorial datasets, 
the idea of combining ICA and CPD emerged in biomedical 
applications [5], and was further developed in [10, 11]. More 
exactly, the methods in [5, 11] perform ICA firstly on the 
matricized tensor to extract independent components, and 
impose CPD structure afterwards via rank-1 approximation. 
As a contrary, the work in [10] proposes to incorporate CPD 
structure during the ICA computation, by converting the 
ICA-CPD problem into the CPD of a 5th-order partially 
symmetric tensor by calculating 4th-order cumulants of the 
3-way datasets. In addition, a 5th-order partially symmetric 
CPD method is proposed based on alternating least squares 
(ALS) with enhanced line search (ELS) as the accelerator. 

In this paper, we propose a new algorithm of 5th-order 
CPD with partial symmetry for ICA-CPD based on joint 
diagonalization (JD). More exactly, we matricize the target 
tensor and factorize it into the product of 2 matrices. Then 
we use rank-1 structure detector given in [12] on both these 
2 matrices to link CPD constrained with partial symmetry to 
real-valued JD. Lastly, rank-1 approximation is used to 
obtain estimates of the loading matrices. We note that the 
proposed algorithm undergoes no updating iterations for the 
loading matrices and thus is expected to be computationally 
more efficient than the algorithm based on ALS and ELS [10]. 

In the rest of the paper, problem formulation is given in 
Section 2, and Section 3 presents the proposed algorithm. 
Simulation results are shown in Section 4, and Section 5 
concludes this paper. 

 
2. PROBLEM FORMULATION 

 
We assume R  mutually independent non-Gaussian sources 

1, , CK
R ∈s sL  are mixed with two sets of parallel loading 

factors 1 , , CI
R ∈a aL , and 1, , CJ

R ∈b bL : 

1
Tri( , , ) R

r r rr =
= ∑A B S a b s@ o oX                 (1) 

where “ o ” denotes tensor outer product, CI J K× ×∈X , A @  
1[ , , ]Ra aL , 1[ , , ]RB b b@ L , and 1[ , , ]RS s s@ L . We note 
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that (1) is actually a third-order CPD model with statistical 
independence constraint at the last mode.  

We matricize X  into a matrix C ×∈ IJ KX  such that 
(( 1) , ) ( , , )i J j k i j k− + =X X , and X  could be written as:  

T( )= eX A B S                                (2) 

where “e ” is Khatri-Rao (column-wise Kronecker) product. 
In addition, by denoting ( )= eM A B , we note that (2) 
actually infers a linear instantaneous mixing procedure of 
statistically independent sources, with the constraint that the 
mixing matrix is of Khatri-Rao structure.  

To solve the above problem, [10] proposed to convert it 
into the CPD of a 5th-order tensor with partial symmetry, 
using 4th-order statistics. We summarize the main steps as:  
- Calculate the sampled 4th-order cumulant matrix1:  

2 2 2 2* *cum( , , , ) C ×= ∈ I J I JC X X X X                (3) 

- Perform eigenvalue decomposition (EVD) on C : =C  
2 2

1 λ=∑ I J H
r r rr e e , where re  is the eigenvector associated with 

the rth  largest eigenvalue λr , and then calculate R 
dominant eigenmatrices as follows: 

 ( , ) (( 1) ),       1,2,...,λ= − + =r r ri j i IJ j r RE e       (4) 

where , 1, 2,...,i j IJ= . According to [10], eigenmatrices 
{ ,  1,..., }=r r RE  are jointly diagonalizable if S  contain 
mutually independent columns, that is: 

= H
r rE MD M                                 (5) 

where 1, 1, ,diag( , ,..., )=r r r R rd d dD is a diagonal matrix with 
,l rd being its lth  diagonal entry, 1,...,=l R .  

- Constructing a 5th-order tensor CI J I J R× × × ×∈T  as: 

1 1 2 2 1 1 2 2( , , , , ) (( 1) , ( 1) )ri j i j r i J j i J j= − + − +ET      (6) 

and denoting 1, ,[ ,..., ]@ T
r r R rd dd , we have: 

* *
1=

= ∑ o o o oR
r r r r rr

a b a b dT                      (7) 

Noting further that *(( 1) , ) (( 1) , )i IJ j r j IJ i r− + = − +C C , 
which yields *(( 1) ) (( 1) )− + = − +r ri IJ j j IJ ie e , we come to 
the conclusion that rE  is Hermitian and thus rd  is real-
valued,  1, 2,...,=r R . As a result, the 5th-order CPD model 
in (7) is partially symmetric: 

1 1 2 2 2 2 1 1( , , , , ) ( , , , , )i j i j r i j i j r∗=T T                (8) 

Thus far, with equations (3) to (8) we have modeled the 
ICA-CPD problem as the CPD of a partially symmetric 5th-
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1 2
( 1) ,( 1) , , , , , , , ,1 1 1cum( , , , ) − −

− + − + = = =−∑ ∑ ∑@ T T T
i I j k I l i t j t k t l t i t j t k t l tt t tT x y z w T x y z wX Y Z W

2
, , , , , , , ,1 1 1 1- ( )−

= = = =⋅ +∑ ∑ ∑ ∑T T T T
i t k t j t l t i t l t j t k tt t t tT x z y w x w y z  

order CPD tensor T . 
 

3. PROPOSED ALGORITHM 
 
We use matrix decomposition and joint diagonalization (JD) 
to identify the CPD model in (7). More exactly, we matricize 
T  into 

2 2×∈ I J KCT  as follows: 

1 2 1 2 1 1 2 2(( 1) ,( 1) ( 1) ) ( , , , , )− + − + − + =i I i j JK j K k i j i j kT T (9) 

By definition, T  could be written in the following form:  

( ) ( )∗ ∗= ⋅e e e TT A A B B D                      (10) 

In addition, by performing singular value decomposition 
(SVD): H=T UV , and comparing it with (10) we have: 

* -

∗

∗

 =


=

e
e e T

A A UF
B B D V F

                        (11) 

where 
2

1[ ,..., ] C ×= ∈ I R
RU u u , 

2

1[ ,..., ] CJ K R
R

×= ∈V v v , and 
F  is a R by R invertible matrix. 

Next, we shall prove that F  is real-valued under partial 
symmetry of T  which intuitively yields the following:  

1 2 1 2

2 1 2 1

(( 1) , ( 1) ( 1) )
(( 1) , ( 1) ( 1) )∗

− + − + − +

= − + − + − +

i I i j JK j K k
i I i j JK j K k

T
T

       (12) 

Substituting = HT UΛV  into (12) yields following result 
after several derivations: 

1 2 1 2 2 1 2 1( , ) ( , , ) ( , ) ( , , )∗ ∗=r r r ri i j j k i i j j kU UV V        (13) 

where C ×∈ I I
rU , and C × ×∈ J J K

rV  are defined as follows: 

1 2 1 2

1 2 1 2

( , ) (( 1) )
( , , ) ( 1) ( 1) )

= − +
 = − + − +

r r

r r

i i i I i
j j k j JK j K k

U u
vV

       (14) 

Then we could prove the following theorem: 
Theorem 1: There exists a unit-modulus scalar α such 

that α rU  and (:,:, )α ∗
r kV  are both Hermitian if (13) holds 

(here we use matlab notation (:,:, )r kV  to denote the matrix 
obtained by fixing the third index of rV  to k). 

The proof of above theorem is similar to that of Theorem 
1 in [13]. The calculation of α  could be found in [13] as 
well. In the following, we assume rU  and rV  are already 
normalized by α  to possess Hermitianity properties.  

We rewrite the first equation of (11) as: 

 1 2 1 21
( , ) ( , ) ( , ) ( , )∗

=
⋅ = ⋅∑ R

rr
i i r u i u i uU F A A         (15) 

Then we have the following by calculating the conjugate 
of (15) and taking into account the Hermitianity of rU : 

*
2 1 2 11

( , ) ( , ) ( , ) ( , )∗
=

⋅ = ⋅∑ R
rr

i i r u i u i uU F A A        (16) 



Comparing (15) and (16) we come to the conclusion that 
F  is real-valued. As a result, if we look back to (11), the 
CPD problem now amounts to finding the real-valued matrix 
F  such that UF  is of Khatri-Rao structure and * -TV F  is 
of double Khatri-Rao structure.  

We borrow two rank-1 detecting tensors from [12] to 
solve the above problem, which are defined as:  

1 , , , , , , , , , , ,

2 , , , , , , , , , , , , , , , , , , , , ,

[ ( , )]     - -
[ ( , )] - -

Φ = +
 Φ = +

i j k l i k j l j l i k i l j k j k i l

i j k l m n i k m j l n j l n i k m j k m i l n i l n j k m

x y x y x y x y
x y x y x y x y

X Y
X Y

 (17) 

and use them upon rU  and rV  to construct 2 tensors as: 

, 1 , 2( , ),        ( , )= Φ = Φr u r u r u r uU UP Q V V         (18) 

We note that 1( , )Φ =X X O  iff X  is rank-1 (O  denotes 
a tensor with all zeros), and 2 ( , )Φ =X X O  iff the mode-1 
matricization of X , denoted by 1X  and defined by 

1( ,( 1) ) ( , , )i j K k i j k− +X @ X , is rank-1. It is important to 
note that in our case there is no need to detect the rank-1 
structure of the mode-2 matricization of rV , as is done in 
[12], mainly due to the Hermitianity of (:,:, )r kV . 

As a result, with a few similar derivations to those in [12] 
given 1( , )Φ H H

k k r ra a a a and 2 ( , )∗ ∗Φ o o o ok k k r r rb b d b b d  are 
linearly independent for k r≠ , we conclude that there exist 
2 sets of R linearly independent complex matrices 

, C ×∈ R R
r rM W , r = 1,…,R, such that:  

, , , ,
, 1 , 1

( ) ,        ( )
= =

= =∑ ∑
R R

r s t s t r s t s t
s t s t

M WP O Q O       (19) 

and -, TF F  diagonalize these 2 sets of matrices, respectively: 

1
        1,2,...,

− −

 = =
=

T
r r

T
r r

r R
M FΣ F

W F Λ F
            (20) 

Noting that -1 -1= T
r rW FΛ F  and F  is real-valued, F  

could be finally obtained by performing real-valued non-
orthogonal JD (RNJD) upon the union set of Re( )rM , 
Im( )rM , -1Re( )rW , and -1Im( )rW , r = 1,2,…,R. Several 
options for RNJD are available in the open literature [14, 15]. 

When F  is estimated, we could calculate ∗eA A  and 
∗e eB B D  via (11). Therefore, the loading matrices could 

be finally obtained with the rank-1 approximation based 
scheme upon ∗eA A  and ∗e eB B D . Details about rank-
1 approximation could be found in [12]. We summarize the 
proposed 5th-order CPD with Partial Symmetry via JD 
(CPS5-JD) in TABLE I. We note that the proposed method 
calculates the loading matrices with 3 major mathematical 
tools including SVD, RNJD, and rank-1 approximation, 
which are all computa-tionally efficient and involve no 
updating iterations for the loading matrices. Therefore, 
CPS5-JD is expected to be faster than the ALS-ELS based 

CPD in [10]. Moreover, the proposed CPS5-JD algorithm, 
as far as we know, is the first JD based 5th-order CPD 
algorithm which takes into account partial symmetry, and 
this distincts itself from the methods in [13] that use super-
symmetry of 4th-order tensors. 

TABLE I. 
FIFTH-ORDER CPD WITH PARTIAL SYMMETRY VIA JD (CPS5-JD) 

Input: C × × × ×∈ I J I J RT  with partial symmetry (8), and rank R 
1: Matricize T  into T  via (9), and do SVD on T : H=T UV ; 
2: Calculate tensors ,r uP , and ,r uQ , , 1,...,r u R=  via (14), (17), and (18); 
3: Obtain matrices ,r rM W , 1,2,...,r R=  by solving (19); 
4: Calculate F  via RNJD upon the union set of Re( )rM , Im( )rM , 

-1Re( )rW , and -1Im( )rW , r = 1,2,…,R; 
5: Estimate , ,A B D  from UF and * -TV F via rank-1 approximation; 
Output: The loading matrices , ,A B D  
 

4. SIMULATIONS 
 
In this section, we use numerical simulations to demonstrate 
the performance of the proposed algorithm. The proposed 
CPS5-JD algorithm is compared with 5th-order CPD with 
partial symmetry based on ELS and ALS (CPS5-EALS). We 
note here that CPS5-EALS is initialized with randomly 
generated orthonormal factor matrices. Computing 
configurations for performing the simulations are 
summarized as follows, CPU: Intel Core i7 2.93GHz; 
Memory: 16GB; System: 64bit Windows 7; Matlab R2010b. 

Simulation 1: We construct a partially symmetric 5th-
order tensor by (7) and (8). The loading matrices 6 5, C ×∈A B  
are generated to incorporate highly collinear structures as 
follows: The jth and (j-1)th columns of A  are generated as: 

1 0.08−= +j j ja a v , j = 2,3,…, 5, and 1 1=a v , with both the 
real and imaginary parts of jv  drawn from standard normal 
distributions. The loading matrix B  is generated in the same 
way as A . The entries of the loading matrix 6 5R ×∈C  at the 
5th mode are drawn from standard normal distributions. By 
definition we note here that the target tensor is of size 

6 6 6 6 6C × × × ×∈T , with the tensor rank 5=R . We add a noise 
term into the target tensor in the following way: 

= + ⋅%
F F

σT N
T

T N
                    (21) 

where σ  denotes the noise level. Therefore, we could define 
the signal-to-noise ratio (SNR) as 1010 log= −snr σ . We 
evaluate the performance of all the compared algorithms by 
Amari’s performance index (PI). 

We let SNR vary from 20 – 80 dB, take 200 independent 
runs for each fixed SNR point, and draw the PI curves for 
both estimates of A  and B  for all the compared algorithms. 
The results are given in Figure 1. At the meantime, we 
collect in TABLE II the averaged running times for all the 
competitors as well.  



From the results we could clearly see that the proposed 
CPS5-JD algorithm generates much faster computation than 
CPS5-EALS, as well as improved accuracy in the presence 
of high collinearities.  
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(a) Average PI of A  versus SNR 
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(b) Average PI of B  versus SNR 

Figure 1. Comparison of CPS5-JD and CPS5-EALS in the 
presence of high collinearities. 

TABLE II  
RUNNING TIMES VERSUS SNR WITH HIGH COLLINEARITIES (IN SECOND) 

SNR(dB) 
Methods 

20 30 40 50 60 

CPS5-JD 0.2974 0.3496 0.3140 0.2985 0.2532 

CPS5-EALS 0.9363 2.2213 2.7386 2.7578 2.1896 

Simulation 2: We apply the proposed algorithm in ICA-
CPD problem. More exactly, we construct three-way dataset 

6 5 1000C × ×∈X  following (1), The loading matrices 6 3C ×∈A  
are generated to incorporate highly collinear structures as 
follows: The jth and (j-1)th columns of A  are generated as: 

1 0.1j j j−= +a a v , j = 2,3, and 1 1=a v , with both the real and 
imaginary parts of jv  drawn from standard normal 
distributions. The loading matrix B  is generated in the same 
way as A . 3 sources exist that are taken to be random phase 
signals. Gaussian white noises are added. SNR in this case is 
defined as 1

1010log ( )n ssnr p p−@ , with np  and sp  being the 
noise power and signal power, respectively. We perform 
ICA-CPD outlined in (3) to (8), with CPS5-JD and CPS5-
EALS as candidates for the decomposition of the CPD 
model in (7).  

We let SNR vary from 10 – 50 dB, take 200 independent 
runs for each fixed SNR points, and draw the PI curves for 
both estimates of A  and B  for all the compared algorithms. 
The results are given in Figure 2. Meanwhile, we collect the 
average running times for all the competitors in TABLE III.  

From the results we observe that the proposed CPS5-JD 
yields much improved accuracy than CPS5-EALS in the 
presence of high collinearities. In addition, we could see 
from TABLE III that the running times for CPS5-JD across 

distinct SNR values are quite consistent, which are much 
less than CPS5-EALS (note here that the runtimes of CPS5-
EALS at low SNR’s make no sense as for these SNR values 
CPS5-EALS fails to generate correct results). 
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(a) Average PI of A  versus SNR 
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(b) Average PI of B  versus SNR 

Figure 2. Comparison of CPS5-JD, CPS5-EALS in ICA-CPD 
applications. 

TABLE III  
RUNNING TIMES VERSUS SNR IN ICA-CPD (IN SECOND) 

SNR(dB) 
Methods 

10 20 30 40 50 

CPS5-JD 0.0413 0.0437 0.0432 0.0400 0.0281 

CPS5-EALS 0.0020 0.0020 1.0597 1.2270 1.1543 

 
5. CONCLUSION 

 
This study presents a new 5th-order partially symmetric 
canonical polyadic decomposition (CPD) algorithm (CPS5-
JD), for the problem of combined independent component 
analysis and canonical polyadic decomposition (ICA-CPD), 
via real-valued non-orthogonal joint diagonalization. 
Simulations have shown that the main merit of the proposed 
algorithm is the much improved computation speed over the 
existing method with alternating least squares and enhanced 
line search (CPS5-EALS) as well as improved accuracy, 
particularly in difficult situations with collinearities present.  
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