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ABSTRACT

In this paper, we present two approaches to improve the
eigenvoice-based speaker adaptation. First, we present the
maximum a posteriori eigen-decomposition (MAPED),
where the linear combination coefficients for eigenvector
decomposition are estimated according to the MAP
criterion. By incorporating the prior decomposition
knowledge, here we use a Gaussian distribution, the
MAPED is established accordingly. MAPED is able to
achieve better performance than maximum likelihood
eigen-decomposition (MLED) with few adaptation data.
On the other hand, we exploit the adaptation of covariance
matrices of the hidden Markov model (HMM) in the
eigenvoice framework. Our method is to use the principal
component analysis (PCA) to project the speaker-specific
HMM parameters onto a smaller orthogonal feature space.
Then, we reliably calculate the HMM covariance matrices
using the observations in the reduced feature space. The
adapted HMM covariance matrices are estimated by
transforming the covariance matrices in the reduced
feature space to that in the original feature space. The
experimental results show that the eigenvoice speaker
adaptation using MAPED and incorporating covariance
adaptation can improve the performance of the original
eigenvoice adaptation in Mandarin speech recognition.

1. INTRODUCTION

It is no doubt that the performance of speech recognition
is significantly degraded by mismatches between training
and testing speakers/environments. To achieve the
robustness of speech recognition, many speaker
adaptation approaches have been proposed to adapt
speaker-independent (SI) hidden Markov models (HMM)
trained by a large amount of training speech, which
usually covers a wide range of speakers, to a specific
speaker.

Among various speaker adaptation techniques, there
are three major types of model-based adaptation

algorithms, namely maximum a posteriori (MAP) [3],
maximum likelihood linear regression (MLLR) [6] and
speaker clustering [8]. The eigenvoice speaker adaptation
belongs to the speaker clustering family. The basic
concept of eigenvoice adaptation is to apply the principal
component analysis (PCA) to construct the eigenvoice
space using the supervectors constructed from speaker-
dependent (SD) acoustic models [4]. The principal
components are then used to build the speaker-adaptive
acoustic models through maximum likelihood eigen-
decomposition (MLED) for a new speaker who enrolls
with some adaptation data. The linear combination
coefficients are estimated via the maximum likelihood
criterion.

During the past few years, much research has been
devoted to enhance the original eigenvoice approach. In
[5], maximum likelihood eigenspace (MLES) was
proposed to compact the eigenspace and MLLR was
adopted to minimize the mismatches caused by noise.
Chen et al. proposed an effective adaptation approach
using eigenspace-based MLLR, also known as eigen-
MLLR [1]. Although these approaches did enhance the
original eigenvoice, the better estimation of combination
coefficients and the joint adaptation of mean and
covariance have not been reported yet.

In this paper, we propose the maximum a posteriori
eigen-decomposition (MAPED) to estimate the linear
combination coefficients, which is believed to be more
robust than MLED, in particular with few adaptation data
available. We also propose a method for the adaptation of
HMM covariance matrices. The experimental results
indicate that both approaches can further enhance the
eigenvoice approach.

2. EIGENVOICE

Generally speaking, the eigenvoice approach is
implemented with two phases, namely eigenvoice
construction (the training phase) and coefficient
estimation (the adaptation phase). In the training phase, a
set of SD reference models from R speakers is prepared.
For each SD model, we “vectorize” the model parameters



and form a “supervector”. Traditionally, only the mean
vectors are considered to be the elements of supervectors.
Let the dimension of supervector be D. We can calculate a
D D× covariance matrix from the R supervectors. PCA is
then applied to this covariance matrix. The first K
eigenvectors are selected to form a K-dimensional
eigenspace. The selected eigenvectors possess most of the
information from the training data. We have the property

DRK <<< .
In the adaptation phase, we would like to adapt the

existing HMM parameters to a new speaker using speaker
specific adaptation data X . We first estimate the location
of a new speaker in the K-dimensional eigenspace. A set
of weight coefficients },,2,1),({ Kjjw …= corresponding to
K eigenvectors },,2,1),({ Kjje …= should be determined.
The supervector µ of a new speaker is constructed by
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where )0(e is the mean vector of R supervectors,
TKww )](,),1(,1[ …=w and )](,),0([ KeeE …= . The MLED can

be used to estimate the weight coefficients [5] by solving
ˆ arg max ( | )P=

w
w X w .  (2)

Because the incomplete data problem is inherent in the
HMM framework, we need to use the expectation and
maximization (EM) algorithm [2] to solve Eq. (2). In the
E-step, we calculate the expectation as
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where ( ) ( ) ( , | , )s
m t tt P s s m mγ = = = X w is the occupation

probability that the observation tx stays at state s and
mixture component m and

( ) ( ) 1 ( )( , , ) ( ) ( )s T s s
t m t m m th s m Cµ µ−= − −x x x . (4)

After replacing )(s
mµ with the corresponding linear

combination of eigenvoices, the M-step is performed to
maximize )ˆ( wwQ via ˆ( | ) / ( ) 0, 1, ,Q w j j K∂ ∂ = =w w … . For
each j, we have
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There are a total of K equations established to solve the K
new weights ˆ ˆ(1), , ( )w w K… . The current estimate is used
to update the occupation probability ( ) ( )s

m tγ . The EM
algorithm can guarantee the convergence of likelihood
improvement.

3. MAXIMUM A POSTERIORI EIGEN-
DECOMPOSITION

In general, the eigenvoices characterize the principal
directions of speaker variations. The adapted models are
determined through linear interpolation of eigenvoices.
The MLED is likely to output biased estimates of
combination coefficients with few adaptation data. We
can restrict the variations of coefficient using a prior
distribution.

To estimate the combination coefficients of
eigenvoices under the MAP criterion, we define the
auxiliary R function as follows
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The coefficient, ( )w j , is modeled by a Gaussian
distribution with mean,

( )w jµ , and variance, 2
( )w jσ , i.e.

2
( ) ( )( ( )) ( , )w j w jP w j N µ σ= . The combination coefficients

can be obtained through maximizing the R function

ˆ
ˆ ˆarg max ( | ).MAP R=

w
w w w (7)

By taking the partial derivative with respect to ˆ ( )w j , we
obtain
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After setting Eq. (8) to zero, the combination coefficients
are estimated by the following K linear equations:
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Finally, the new MAP estimates ˆ ˆ{ (1), , ( )}w w K… are
found by solving the K K× linear system.

4. EIGENVOICE-BASED COVARIANCE
ADAPTATION

In [9], the covariance matrices were shown to be effective
to serve as the evaluation measurement for speaker
recognition. However, the eigenvoice approach based on
PCA was developed only for the adaptation of HMM
mean vectors [5]. Herein, we present the PCA approach to
the adaptation of HMM mean vectors as well as
covariance matrices.

The covariance matrices can be adapted using the
approach similar to the adaptation of mean vectors. We
hope that the adapted model can precisely characterize a
specific speaker and, thus, improve the speech recognition
performance. We first vectorize the covariance matrices
of each reference speaker’s model. Here, we assume that
all the covariance matrices are diagonal. The diagonal
elements of the covariance matrices are concatenated to
form the supervector for each speaker. The supervector of
covariance matrices of a new speaker’s model can be
expressed in a form of linear combination of eigenvectors
{ }( ) ( )s

mC j of covariance matrices,
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Like the adaptation of mean vectors, we can perform
MLED to find ( )ˆ s

mC by setting the differentiation of the Q
function with respect to ˆ ( )w j to zero,
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where d is the index of parameter dimension. The
coefficients are calculated according to the linear
equations as follows
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Unfortunately, there is no unique solution to this system.
Therefore, we look for an alternative approach using the
transformation scheme. First, the training observations
and the corresponding mean vectors are used to calculate
the full covariance matrix )(s

fullC . We then apply PCA to
obtain the eigenvector set ( )sE . During adaptation, we use
the adaptation data of a new speaker to perform feature
transformation by

( ) .r s T
t tE=x x (15)

Subsequently, the MLED/MAPED is applied to obtain the
adapted mean vectors using

( ) ( ) ( )ˆ ˆ .r s s T s
m mEµ µ= (16)

The covariance matrix of mixture component m in this
reduced feature subspace is obtained by

( ) ( ) ( )
( )

( )

( )( )( )
.

( )

s r r s r r s T
m t m t mr s t

m s
mt

t
C

t
γ µ µ

γ
− −

= ∑
∑

x x (17)

After extracting the diagonal elements ( )diag( )r s
mC of

( )r s
mC , the adapted covariance matrix can be computed

using the inverse transformation
( ) ( ) ( ) ( )diag( )s s r s s T
m mE C E=C .                     (18)

In this way, we can adapt the covariance matrices
associated with the seen data, while keeping the
covariance matrices associated with the unseen data
unchanged.

5. EXPERIMENTS

The proposed approach was evaluated on two tasks,
namely the large vocabulary continuous Mandarin speech
recognition and the connected Mandarin digit recognition.
For the task of continuous speech recognition, we used
the benchmark TCC300 microphone speech database. The
speech of 100 speakers was used for training, and the
speech of the other 20 speakers was used for testing. First
of all, the SI model was trained from all the training data.
For each training speaker, the SD model was generated
via the MAP adaptation. The Initial/Final HMM’s were
adopted here. Each Initial HMM has three states, while
each Final HMM has six states. The number of Gaussian
mixture components was 32 at most. The acoustic feature
vector contained 26 dimensions, including twelve MFCCs,
one log energy, and their derivatives. The dimension D of



supervector is 137000. For the task of connected digit
recognition, 1000 clean utterances spoken by 50 males
and 50 females were used to train the SI model. A noisy
speech database was adopted to evaluate the performance
of speaker/noise adaptation. The speech was recorded in
the 50km/hour car driving environment. There are ten
speakers, and each speaker had 15 sentences, in which
five were used for adaptation and ten for recognition.
Each digit was modeled using a HMM with six states.
Each state has sixteen mixture components. The
dimension of supervector is 24960( 6 10 16 26× × × ).

The first experiment was conducted to evaluate the
proposed MAPED and covariance adaptation. The first 20
eigenvoices were used as the bases of eigenspace The
experimental results, as shown in Table 1, were averaged
over all testing speakers and reported in terms of syllable
recognition rates. From Table 1, we find that the
performance of MAPED mean adaptation is higher than
that of MLED mean adaptation in both the continuous
speech recognition and connected digit recognition tasks.
If both the covariance matrices and mean vectors were
adapted, the performance was further improved, though
the improvement was moderate. Different from the
isolated word recognition task conducted in [4], the
number of parameters for the continuous speech
recognition task here is very large so that the amount of
speaker specific training utterances is relatively
insufficient. In the case of connected digit recognition, the
improvement is relatively significant because the training
data are relatively sufficient.

Syllable Recognition Rate (%)
TCC300 connected digits

Baseline 64.3 75.7
MLED mean adapt. 66.1 78.1
MAPED mean adapt. 66.8 78.6
MLED mean adapt. +
covariance adapt.

67.0 79.1

MAPED mean adapt. +
covariance adapt.

67.3 79.4

Table 1. Performance comparison between different
methods

Syllable Recognition Rate (%)Number of eigenvoices
(K) TCC300 Connected digits
K=20 66.1 78.1
K=40 67.5 79.4
K=60 68.4 80.4
Table 2. Recognition rates using MLED with different
number of eigenvoices

We have also tested the recognition performance
using 20, 40 and 60 eigenvoices. The experimental results
are summarized in Table 2. It is clear that the more the

eigenvoices kept, the better the recognition rates achieved
for both tasks. The best performance in this experiment is
achieved when we keep as many as 60 eigenvoices.

6. CONCLUSION

We proposed the MAPED and covariance adaptation to
improve the eigenvoice speaker adaptation. MAPED
constrained the estimation of combination coefficients of
eigenvoices by a prior distribution, and accordingly
improved the robustness of speaker adaptation.
Covariance adaptation provided better modeling of
speaker variations so that the adaptation performance
could be further improved. It is desirable that both the
MAPED and covariance adaptation can improve the
recognition accuracy according to the experimental results.
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