Loading [a11y]/accessibility-menu.js
A simple recurrent neural network for solution of linear programming: Application to a Microgrid | IEEE Conference Publication | IEEE Xplore

A simple recurrent neural network for solution of linear programming: Application to a Microgrid


Abstract:

The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, ...Show More

Abstract:

The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.
Date of Conference: 09-12 December 2014
Date Added to IEEE Xplore: 19 January 2015
Electronic ISBN:978-1-4799-4546-7

ISSN Information:

Conference Location: Orlando, FL, USA

Contact IEEE to Subscribe

References

References is not available for this document.