Identification of Botanical Specimens
using Artificial Neural Networks

Jonathan Y. Clark

Abstract—This paper describes a method of training an
artificial neural network, specifically a multilayer perceptren
(MLP), to identify plants using morphological characters
collected from herbarium specimens. A practical methedelogy is
presented to enable taxonomists to use neural networks as
advisory tools for identification purposes, by collating results
from a population of neural networks. A comparison is made
between the ability of the neural nmetwork and that of other
methods for identification by means of a case study in the
ornamental tree genus Tilia L. (Tiliaceae). In particular, a
comparison is made with taxonomic keys generated by means of
the DELTA system, a suite of programs commonly used by
botanists for that purpoese. In this study, the MLP was found to
perform better than the DELTA key generator.

Index Terms—Herbarium specimens, Multilayer perceptrons,
Neural network applications, Taxonomic keys, Tilia

L

AXONOMIC identification is an important issue, both for

those interested in biodiversity, and for others who need to
be certain which organism they are dealing with. Much of this
biological identification is still carried out using & "taxonomic
key", which is a classical paper-based kind of expert system.
An example of this is shown in the DELTA-generated key in
the Appendix. This kind of printed identification guide must
usually be followed manually, although on-line computer-
based methods are becoming more widespread. When using
such a key, the user makes a series of choices from successive
groups of contrasting statements, culminating in a name. Each
statement concerns the state of at least one character or
attribute. Often there are additional confirmatory characters,
although the first character state mentioned is usually the most
important. The success and accuracy of this identification
relies heavily on the experience of the expert who compiled it,
and the care of its interpretation by the user. Although
interactive computer-based systems are useful, and becoming
more popular, the performance of such systems is difficult to
compare with that of other methods, because characters can be
chosen in any order. The DELTA KEY program [1], however,
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can be used to generate a conventional printable taxonomic
key, whose performance can then be directly compared with
other methods. The interested reader is referred to [2] for a
good account of identification methods used by biologists.

A neura} network based system has the ability to learn from
examples and can perform generalized recognition of
previously unseen patterns. A multilayer perceptron (MLP} is
the kind of artificial neural network (ANN) most suitable for
identification, because it employs supervised training. Training
is carried out by presenting the network with a succession of
data records, constituting the training set, each one containing
data from a specimen or record of known identity. The
generalization ability of the network to recognize previously
unseen patierns is periodically tested using an independent
"validation" dataset, also containing known classes. By means
of testing the network's performance against this validation set,
training can be terminated before over-training occurs. A
completely independent test dataset, containing the data
records to be identified is then presented to the network.
Information derived from this test set must not be used to
optimize network parameters. For further information about
ANNS, see [3] and [4].

The case study presented here is of cultivated species of the
genus Tilia. This genus comprises about 30 species of woody
trees, widely distributed in the north temperate regions, of
which around 19 are cultivated in European gardens.
Commonly known in England as limes, they are unrelated to
the citrus tree of that name, and are otherwise referred to as
lindens or basswoods. Limes are deciduous trees, usually with
heart-shaped, pointed leaves.

Classical printed taxonomic keys have already been used for
the identification of species in the genus Tilia. An example of
a recent key to Tilia species is that by Pigott [5]. To date, there
are no known computer-based identification systems relating
to Tilia, except that of Rath [6], and earlier work by the author
[7]. In Rath's work, in which 13 species of woody trees (in 12
genera) were separated by means of a neural network using
leaf image data, Tilia cordata was the only lime.

The work presented here is the first involving both artificial
neural networks and the use of the DELTA system and key
generator in studies of a large number of Tilia species, and is
derived from earlier work by the author [7]. A similar study
has already been performed with respect to identification of 35
species of the genus Lithops {Alzoaceae) [8].

The scope of the project was restricted to species grown in
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gardens in Europe, and included in the account of the genus in
the European Garden Flora [5]. Of these, Tilia neglecta is
omitted, because it is now generally included in T. americana.
Cultivated species were chosen for this study because trees and
herbarium specimens were readily available. Furthermore,
cultivated Tilig trees present a particular difficulty with respect
to identification because many species readily hybridize. A
total of 19 species are thus considered here.

It is valuable at this point to discuss the selection of
characters. The neural network key generated here is intended
for identification of mature flowering specimens, taken from
the crown of the tree, since the morphology of the leaves often
varies considerably on different parts of the tree. Leaves
sprouting from the base of the trunk, called ‘sprout leaves’,
cannot usually be identified, as they are often completely
different from the normal leaves. Although fruit characters are
often of great diagnostic importance [9], it was decided to omit
them from this study in order to avoid destruction of fruits on
important specimens (e.g. nomenclatural types). In fact, some
authors have produced separate keys to flowering and fruiting
specimens [10].

A decision was made to concentrate on measurements rather
than subjective descriptions of characters, since they can be
more objectively evaluated by unskilled workers. Therefore,
the descriptive character of leaf shape was rejected in favor of
the more objective measurements of leaf length and width. (In
this paper, the term leaf is used to refer to the flat part of the
leaf, or blade, and excluding the leaf stalk, or petiole.) Some
characters, such as presence or absence of staminodes, are
usuaily invariable within a species, whereas many others, such
as leaf length are extremely variable. Here, 3-4 separate
measurements were recorded and the mean calculated. The
vanability of many character states within taxa, between
seasons and even between branches on the same tree is
extreme. Much of this variation results from different ages of
leaves; therefore atypically small and immature leaves were
not included here.

II. MATERIALS AND METHODS

A. Datasets

Training was carried out using three examples of each
species, that is, using three different data records for each of
19 cultivated species, and each derived from a different
(mostly wild-collected) herbarium specimen. This resulted in
57 training records, each containing data from a single
herbarium specimen, including type material where possible
and practical.

The training and validation datasets were constructed from
herbarium specimens held in the herbaria of the Royal Botanic
Gardens, Kew (K) and the Natural History Museum in South
Kensington, London (BM). Data for 22 morphological
characters were extracted from three field-collected specimens
of each of the 19 species considered here. Flowering
specimens were choscn because extra characters such as
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‘number of flowers in inflorescence’ and ‘presence or absence
of staminodes’ would also be available. Furthermore, the
character of the number of flowers in the inflorescence is more
reliable in flowering specimens — fruits readily drop off and
are lost. It is rare for a single specimen to have both flowers
and fruits, so only flowering specimens were used.

In the neural network study, the validation dataset, against
which the network was tested periodically to determine when
to stop training, consisted of data from one specimen of each
species, the remaining two being left in the training set. Three
different pairs (A, B and C) of training and validation sets
were produced in which the one record to be transferred to the
validation set was chosen randomly, the remaining records
then being placed in the respective training set. The ANN tests
outlined below were carried out using each partition pair.

The data for the test set were collected from cultivated
herbarium specimens of known identity, but ones whose
identity was not provided to the network. Testing was thus
carried out using an independent data set derived from 30
herbarium specimens of lime trees cultivated in the Arboretum
at the Royal Botanic Gardens, Kew, the specimens themselves
being held in the cultivated folders of the Kew Herbarium. In a
few cases some characters were not visible on the specimen
and it was necessary to collect further material (from the
original tree), which was pressed, dried, and mounted before
examination.

The primary data were held in the DELTA format [1], [11],
[12] and [13] for consistency and standardization of method
with other computer-based botanical data analyses. This was to
facilitate direct comparison of the neural network results with
those obtained using the standard methods. The variant items
methodology [13] was used. That is, the extra items were
denoted by the appropriate 3-letter species acronym in the
name field. Thus, data for each exira specimen or item was
logically included in the concept of the species when
processed by the KEY generator. A list of sources of material
is available in {7]; the species acronyms are given in Table 8.

These data were converted to a standard ASCII tabulated
numeric format suitable for input to the neural network. In this
case, each record for each taxon consisted of a single line,
starting with a short acronym representing the taxon name
followed by the character states, with each record terminated
by the class number, corresponding to the species. During
conversion from DELTA format, extreme wvalues were
removed, and ranges replaced by their mean value, as when a
key is generated using DELTA.

B. Neural Netwark

A simple feed-forward MLP with one input layer, one
hidden layer, and one output layer was used for this study. One
input node was designated for each character, the number of
hidden nodes was variable, and one output node was assigned
to represent each species to be identified. There were no
connections between nodes in the same layer, and no recurrent
connections. A representation of the architecture is presented
in Fig. 1, although the actual number of nodes in each layer is
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Fig. 1. MLP neural network for identification of taxa.

different from that shown. The input vectors were normalized
in the range + 0.9 to reduce the training time required for the
inputs to the hidden nodes to reach the domain of the sigmeid
activation function. This normalization was carried out for
each character independently over all training records to
preclude initial character weighting. The maximum and
minimum values for each character were retained for use
during normalization of the validation and test data to ensure
comparable scaling.

The network weights were initialized to small random
values in the range + 0.5 [3]. The presentation order of input
vectors was randomized between epochs and a bias input of
1.0 was used. For further details on the parameters of the
network and the training algorithms used, see [8]. The error
value reported was the Squared Error Percentage (E) [14],

with corrections [7], given by
P N
2
Z Z(Opi — tpi)

p=1li=1

E=100

1
NP(0max — Omin)? "

where 0., and ¢,;, are the maximum and minimum of the
output values that could be used in training, in this case 0.9
and 0.1 respectively. N is the number of output nodes (here
equal (o the number of species), and P is the number of
records (patterns, or examples) in the data set under
consideration. o, is the actual output at cutput node i when
input pattern p 1s presented. £, is the target (desired} output at
output node i when pattern p is presented.

Training was initially carried out with a constant learning
rate of 0.1, and a single fixed random seed, varying only the
number of nodes in the single hidden layer. Momentum was
not applied. After determining the optimum number of hidden
nodes, that was then fixed, and the learning rate varied to find
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the best value.

After the network parameters were set to these values, the
tests were run again using the same set of 10 different random
seeds on each of the training/validation partition sets. Thus a
population of networks and their results was established. The
overall neural network results were collated from the results
obtained by this population.

C. DELTA Key generation

Although it would have been possible to generate an
interactive computerized key using the INTKEY program [14]
included with the DELTA system, it was decided to focus on
the traditional key generator to enable a better comparison
with the MLP technique. The interactive key would have
introduced the problem of choosing the order of character
selection.

The DELTA keys were all produced from the MLP training
and validation data. Each species was given its own record in
the DELTA ITEMS file, with each specimen of the species
being treated as a variant item. In effect, this was to cause the
key generator to regard all three specimens of each species to
be the same species.

A completely unweighted key, shown in full in the
Appendix, was generated using the DELTA KEY program, in
order to force the KEY generator to choose the most useful
characters itself, together with the order of their presentation.
Continuous characters were divided into ranges specified in
the TOKEY file; the same ranges used for character analysis
tests performed earlier [7]. All other DELTA parameters
(directives) were allowed to remain set to the default values
and settings. This meant that no additional CONFIRMATORY
CHARACTERS were sought - each statement in the key would
be concerned with contrasting states of only one character.

A second DELTA key was then generated, with
CHARACTER RELIABILITIES set to reflect the importance
of the chosen characters, as far as is possibie to determine
from the traditional published key [5]. Here, the number of
instances each character was used at a decision point in the key
was counted. The CHARACTER RELIABILITIES were then
set in the KEY file to reflect the relative number of instances.
If the human-developed key did not use a character used in this
study, then a value of zero was used. The character with the
highest number of usage instances was given a value of ten.
The other characters were given values normalized within this
range.
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TABLE |

DETERMINATION OF OPTIMIZED NUMBER OF HIDDEN NODES

H nodes 64 72 B0 88 96 104
DataSet Evai Ruat Evar Roat Evat Roat Evat Reat Evar Ryat Evat Roat
A 3.00 73.68 3.06 68.42 3.03 68.42 2.84 68.42 2.82 73.68 2.77 73.68
B 3.04 73.68 303 78.95 275 78.95 2.62 78.95 263 73.68 295 68.42
C 2.89 78.95 325 78.95 3.30 57.89 273 7368 292 78.95 2775 73.68
Mean 2.98 75.44 3 75.44 3.03 68.42 .73 73.68 279 75.44 2.82 71.93
TABLE 2 DETERMINATION OF OPTIMIZED LEARNING RATE
Learning rate 0.05 0.10 0.15 0.20 0.25 0.30
DataSet Ewl Rual Eval Rual Eual Rual Eva Ruat Eval Rual Eva Ruat
A 2.85 68.42 2.84 68.42 2.85 73.68 282 68.42 2.81 68.42 2.82 68.42
B 2.62 78.95 2.62 78.95 2.61 78.95 2.63 84.21 2.76 78.95 272 84.21
C 2.74 68.42 2.73 73.68 2.76 73.68 272 73.68 2.89 68.42 2.89 68.42
Mean 174 71.93 2.73 73.68 2.74 75.44 2,72 75.44 2.82 71.93 2.81 73.68
TABLE 3 SPECIES-BASED MISIDENTIFICATION MATRIX
Species| AME |AMU|CAR| CHI |COR|DAS|HEN |HET{ INS | JAP | KIU |[MAN|MAX| MIQ [MON| OLI | PLA |TOMI TUA | Ruyin
TAME { 100 100
TAMU 0.0 6.7 3.3 80.0 | 10.0 0
TCOR 15.0 47.5| 0.8 15.8 20.8 100
ITDAS [ 33 ] 33 6.7 333 233 30.0 0
THEN 6.7 133 80.0 1]
THET 0.0 33 33 9313 1]
TINS 1.1 1.1 ] 22141322 33.3| 144 5.6 100
TKIU 100 100
TMAX 6.7 933 100
TMIQ 98.3 1.7 100
TMON | 33 33 933 100
TOLI 10.0 22 1444 378 5.6 ]
TPLA Q.7 993 100
TTOM 1.7 225175117 35.8 30.8 0
%Conf|84.91 0.0 - - |95.5:15.2| 100 0.0 |19.3| - |100| - |73.8|68.7]|53.8|48.1|63.8|23.8| - |57.1

The generated keys were then parsed manually using the test
data, that is, the key was used for identification in the
traditional way. [f any given character state was valid for more
than one key statement in a couplet, then the closest match was
chosen. For instance, if the choice was between a character
state of 3-7 cm or 7-12 cm and the character on the specimen
had a value of 6-11 cm, then the second path would be
followed. If the matches were equally favorable, then the
subsequent paths from both key statements were followed. If a
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species name was reached without any branching of the
decision path, then the identification reached was given a level
of 100%. If a name was reached after only one branching of
the decision path, then that species was considered to be
identified to a 50% level (unless the other branch resulted in
the same diagnosis). If after a 50% branch, there was a further
branch, the identification reached was said to be at a 25%
level. This process was continved until all branches had
reached a name. Then percentage totals for all the species
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reached were collated to produce percentages for each species
to which the specimen was referred.

D. Assessment of performance

The R, results could not be used for comparison because
they were ANN-specific. Instead, in both the ANN and
DELTA key trials, a misidentification matrix was produced
showing the species identifications. This is a confusion matrix
similar in concept to the misclassification matrix [15] and
misidentification matrix [16] of Boddy ef al., in that it shows
the percentage of identifications referred to each species by the
system. All identification attempts by the network were
summed to produce the results in the table.

On the bottom row, the matrix also shows the confidence of
correct identification (%Cenf). This is identical to the
confidence of correct classification used by Morgan er al.
(1998}, and is a measure of the likelihood that a given species
identification is correct, given that the network has identified
an unknown specimen as that taxon. It is calculated by
expressing as a percentage the proportion of correct

identifications with respect to the total number of
1dentifications {including wrong identifications).
correct
%Conf = x 100 o))

correct + incorrect

For each species, a winner-takes-all percentage value (R.;,)
was evaluated. This was given a value of 100% if a correct
identification had the highest percentage identification, or
shared between joint winners e.g. If the winning identification
was equal for two species, then R,;, was 50%. The mean R,;,
over all species is presented at the bottom of the R,;, column in
the mistdentification matrix.

Statistical significance tests were then carried out to
evaluate the differences between these results. The R, result
for each test specimen in turn was extracted from raw
specimen-based misidentification matrices, resulting in an
ordered set for each kind of test. This was also done in the
case of the comparable misidentification matrices from the
MLP studies. Although both specimen-based and species-
based matrices were produced, the statistical calculations were
made using the specimen-based matrices. For clarity and
simplicity, however, only the species-based matrices are
shown here. Thus three sets of these matrices were produced:
one from the MLP results, one from the DELTA key with
default parameters, and one from the DELTA key with
character weightings. The significance of differences between
each pair of sets was evaluated using a standard paired t-test
(18].

III. RESULTS

In Table 1, the error (E,,) and recognition accuracy (R,,)
produced by the network on presentation of the validation set
at the point of training termination are shown. The results are
given for different numbers of nodes in the single hidden layer,
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varied between 64 to 104.

The number of hidden nodes which resulted in the lowest
mean validation error (E,,;) was 88; this also gave the highest
mean R, Table 2 shows results produced using networks with
88 hidden nodes, with the learning rate varied between .05
and 0.30. Having fixed the number of hidden nodes to 88, the
optimized learning rate was found to be 0.2.

A summary of the results from tests using the above network
parameters with the 10 different random seeds is shown in
Table 5. As described by Prechelt [14], Total Epochs is the
total number of iterations through the training set when
training is actually terminated. Relevant Epochs is the number
of training epochs at the point of minimum validation error.
Also at the point of minimum validation error, E,,, and R, are
the error and recognition accuracy respectively on the training
set; £, and R,y are the error and the recognition accuracy
using the validation set. E,, and R,, are the error and
recognition accuracy resulting from presentation of the test set
to the trained network saved from the point of minimum
validation error. The sample standard deviation (StDev) is also
provided for all the results.

The species-based misidentification matrix is shown in
Table 3. The rows refer to the species in the test set (T...).
Similarly, the columns are the species to which the test plants
are referred by the neural network. Percentages are shown of
the total samples of the row test species that are identified as
belonging to the corresponding column species. Ideal (correct)
identifications are shown in bold. The confidence of correct
identification is given for each species for which there was a
test specimen.

Table 6 shows the misidentification table results from the
MLP neural network tests and the DELTA tests. This table
compares results for the MLP neural network tests with those
from the DELTA tests using no a priori character weighting
(7D22), and those using character weightings (TDC22)
suggested by the existing traditional botanical key {5].

The results compared in the statistical tests are the mean
R, values obtained using the winner-takes-all approach
described ecarlier, performed on the appropriate specimen-
based misidentification matrices, that provided the raw data for
the species-based matrices. Since the recognition of each test
specimen was tested in turn, and in the same order for each
test, a paired t-test was sufficient, and it was not necessary to
carry out a prior F-test. The probabilities returned by the t-test
for each comparison are shown in Table 7, explained as
follows:

Comparison between the MLP (Tifia22) performance and
DELTA key with default parameters: the null hypothesis is
that there is not a significant difference between the results of
the two tests, A paired 2-tailed t-test, not assuming equal
variance, shows that this hypothesis is refuted, there being a
significant difference at the 5% level.
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TABLE4 DELTAKEY SPECIES-BASED MISIDENTIFICATION MATRIX

Species | AME |AMU|CAR| CHI |COR|DAS |HEN|HET | INS | JAP | KIU |MAN [MAX | MIQ IMON| OLI | PLA | TOM| TUA | Ru
TAME | 100 100
TAMU 0.0 100 0
TCOR 250 50.0 12.5 12.3 100
TDAS 50.0 1 50.0 50
THEN | 100 0.0 0
THET 0.0 100 0
TINS  [333] 83 25.0]33.3 0.0 0
TKIU 100 100
TMAX 160 0.0 0
TMIQ 100 100
TMON 50.0 50,0 0.0 0
TOLI 66.7 333 0.0 0
TPLA 100 100
TTOM 5.0 6.3 6.3 313 33 50
oConf |429] 00| - | - |18.2|60.0|l00}00 |00} - |100| - |00 |41.7| 00| 0.0|889| 100| - |429

TABLE 5 TRAINING, VALIDATION AND TEST RESULTS

Tilia22 Total Epochs Relevant
DataSet Epochs Eim Rimm Evn Ral B Riex
Mean 135.10 60.90 1.28 96.58 2.86 70.00 3.75 55.34
A StDev 85.74 30.07 037 1.52 0.15 4.99 0.19 5.02
Best Ryt 77.00 63.00 117 97.37 2.92 73.68 3.68 63.33
Lowest Eua 182.00 63.00 1.01 97.37 2.65 78.95 3.71 56.67
Mean 133.70 70.70 1.09 98.42 2.73 78.42 363 60.33
StDev 59.25 15.28 Q.30 1.84 0.17 6.30 0.i6 4.57
B Best Ree 133.00 70.60 L1l 100.00 2.79 78.95 3.58 66.67
Lowest Eya 154.00 84.00 0.9¢  100.00 2.49 84.21 3.67 63.33
Mean 93.80 62.30 1.27 96.05 281 74.21 3.78 56.33
c StDev 45.63 22.00 0.50 5.58 0.19 4.61 0.17 6.37
Best Ry 119.00 77.00 1.02 97.37 279 73.68 3.75 63.33
Lowest Eq 77.00 56.00 113 100.00 2.56 78.95 1.76 60.00
Overall Mean 120.87 64.63 121 97.02 2.80 74.21 372 57.33
Overall StDev 66.30 22 86 039 395 017 6.24 0.18 5.63
Best Reet Mean 109.67 70.00 1.10 98.25 283 75.44 3.67 64.44
Best Rees StDev 29.14 7.00 0.08 1.52 0.07 3.04 0.09 1.93
Lowest Evyt Mean 137.67 67.67 1.01 99.12 2.56 80.70 37 60.00
Lowest Eva StDev 5437 1457 0.12 1.52 0.08 3.04 0.04 333

b). Comparison between the MLP (Tilia22) performance parameters (7D22) and DELTA key with character weighting
and DELTA key with character weighting (TDC22): the null  (7DC22): the null hypothesis is that there is not a significant
hypothesis is that there is not a significant difference between  difference between the results of the two tests. A paired 2-
the results of the two tests. A paired 2-tailed t-test, not tailed t-test, not assuming equal variance, shows that this
assuming equal variance, shows that this hypothesis is refuted,  hypothesis is not refuted, there being no significant difference
there being a significant difference at the 5% level. found at the 3% level.

c). Comparison between the DELTA key with default
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IV. DISCUSSION AND CONCLUSIONS

in conclusion, the results presented here (sece Table 6)
demonstrate that the MLP neural network has a recognition
performance consistently better than that of a key genecrated

TABLE 6 \
IDENTIFICATION PERFORMANCE

Identification

Method Mean Rwin Confidence
Specimen  Species  >50%  [00%
ANN MLP 66.7 57.1 8 2
DELTA TD22: 417 29 4 2
unweighted
DELTA TDC22: 439 393 6 4
weighted
" TABLE 7
STATISTICAL TESTS
Paired T-test TD22: TDXC22:
unweighted wieighted
ANN MLP 0.02 0.03
DELTA TD22
(unweighted) N/A 0.81
TABLE 8
ACRONYMS AND SPECIES NAMES
Acronym  Species Acronym Species
AME americana KU kiusiana
AMU amurensis MAN mandshurica
CAR caraliniana MAX maximowicziana
CHI chinensis MIQ migueliana
COR cordata MON mongolica
DAS dosystyla OLI oliveri
HEN henryana PLA platvphylios
HET heterophylla TOM tomentosa
INS insularis TUA tuan
JAP Japonica

using the DELTA system, when using characters obtained
from herbarium specimens. Indeed, the results obtained here
are better than those obtained in an earlier similar study of the
genus Lithops [8]. This may be because the training data for
the Lithops study were obtained from published species
descriptions, whereas the Tilia study was based on real data
obtained from three actual specimens of each species.

The neural network methodelogy, like any other
identification system, is clearly of wuse in suggesting
inadequacies with existing classifications. The T. amurensis
test specimen (TAMU) was consistently identified as its close
ally, 7. insularis (INS). This is coincident with a human expert
on the genus also concluding that they should both be
considered T. amurensis [19]. In theory, after such
reclassification, the system would perform even better.

Although further research is needed, it seems likely that the
trec from which the T. heterophylia test specimen (THET) was

taken was incorrectly labeled, and is actually 7. X molikei, a
putative hybrid between T. americana and T. tomentosa (or its
‘Petiolaris’ cultivar). This test specimen was identified by the
neural network to be 7. fomenrosa (TOM), which it clearly
was not, since the fruits differ significantly from those of that
species. However, this implied that the tree might have
contained some characters from T. tomentosa. On further
mvestigation, that test specimen seems to be a close match to
specimens labeled as being the hybrid in the Kew Herbarium,
and it is also identified as the hybrid when Pigott’s key [3] is
used. Although the neural network could not identify that
specimen as the hybrid, because a class for the hybrid was not
included in training, the neural network's confusion is now
understandable. The neural network tool was therefore not
completely wrong, showing that such incorrect identifications
should be investigated further, and can highlight problems with
the specimen data. Inclusion of training data from such hybrids
might be useful for neural network-based identification, where
the specimens to be identified are suspected of being of hybrid
origin.

It is interesting that the statistical tests reveal no statistically
significant difference between the performance of the two
DELTA key tests. This suggests that no significant value was
added by the inclusion of expert-determined character weights.
However, that conclusion might be premature, since characters
in the human-derived key were ignored if they had not already
been chosen for the neural network tests.

The limitations of the neural network method are largely the
same as those of a human expert, namely that success depends
on the quantity, validity, and accuracy of training data. It is
well known that neural networks train best and leam to
generalize best when presented with data rich in variation.
Herbarium specimens are a good source of such data, and
furthermore are the traditional primary source of information
for the botanical taxonomist. The use of neural networks as
tools for herbarium systematics therefore shows much promise
in this field. In this study, the neural network results were
collated from a population of trained networks. The variation
in performance suggests that evolutionary computation would
be useful for future further refinement of network parameters
to enhance identification performance. Existing work in this
field [20] and [21] shows that such evclutionary artificial
neural networks (EANNSs) can have an advantage over neural
networks or evolutionary algorithms alone.

APPENDIX

DELTA Key to Flowering Specimens of Tifia species

cultivated in European Gardens
1(0). Leafunderside: stellate hairs absent ...
Leaf underside: stellate hairs few
Leaf underside: stetlate hairs clearly present
Leafwidth 2.1 to 2.7 cm.
Leafwidth 4.1 to 10.8 ¢,

2D
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3(2). Leaf top: simple hairs absent .........cocovieiieeiccicviennn, S 4
Leaf top: simple hairs few.
Leaf top: simple hairs clearly present
Leaflength 3.9 t0 6.9 ¢cm
Leaflength 7.5to 11.3 cm
Bract petiole length 2.5 to 9.3 mm
Bract petiole length 10.8 to 11.5 mm....
Bract petiole length 13 to 13.8 mm..,
Bract petiole length 16 to 16.5 mm...
Bract petiole length 19.8 to 21.8 mm...
Leaf top: small brown hairs absent
Leaf top: small brown hairs few.....
Leaf base cordate
Leaf base truncate
Leaf base cuneate.
Staminodes absent
Staminodes clearly present...........cooiicnnsinniennns
Style hairless
Style partty hairy (i.e.for at least 1/4 length, but
not full length)..........

Bract length 4.3 to 5.9 ¢m
Bract length 6.4 to 7.4 cm
Staminodes absent
Staminodes clearly present .
Leaf underside: simple hairs absent........c..cccoeeremreccrrennenee
Leaf underside: simple hairs few.
13(12).Bract length 4.3 t0 5.9 cm

Bract length 6.4 to 7.4 cm

Bract length 8 to 12.1 cm
14(12).Bract petiole length 2.5 to 9.3 mm...,

Bract petiole length 10.8 to 11.5 mm ..

4(3).

5(4).

6(5).

6).

8(5).

9(5).

10(9).

11(4).

123).

Bract petiole length 19.8 to 21.8 mm INS
15(1). Leaf top: simple hairs absent...........cocoeveecieoicccnncens AME
Leaf top: simple hairs few..........cocoinnnnien. DAS
Leaf top: simple hairs clearly present...........c.ocoeieennnes KIU
16(1). Axillary tufts absent 17
Axillary tufis indistinct or sparse.................ccoeieen L 22

Axillary tufis clearly present
17(16).Bract length free 1.9 to 5.9 cm o,

Bract length free 6.5 to 6.8 cm...
18(17).Bract length 6.4 to 7.4 em

Bract length 8 to 12.1 em
19¢18).Peduncle length 4.8 to 22.5 mm ...

TOM or OLI

Peduncle length 25.3 to 36.3 mm MIQ
20(18).Leaf top: small brown hairs absent MAN
Leaf top: small brown hairs few.... MAN

Leaf top: small brown hairs clearly present.
21(20).Bract petiole length O to 1.5 mm.

Bract petiole tength 2.5 t0 9.3 mm.... MIQ
22(16).Bract width 8.3 to 17.5 mm ... CAR
Bract width 20 t0 21.5 M. e HET
Bract width 27.3 to 31.3 mm MAX
23(16).Bract length 4.3 to 5.9 cm CHI

Bract length 6.4 to 7.4 cm 24
Bract length 8 to 12.1 cm.... 25
Bract length (3.8 to 14.2 cm.. 28

24(23).Leat length 3.9 10 6.9 cm
Leaf length 7.5 to 11.3 cm

25(23). Leaf margin teeth: pitch 1.7 to 4.6 mm.... 26
Leaf margin teeth: pitch 5.1 10 5.9 mm.... 27
Leaf margin teeth: pitch 7.4 to 8.1 mm. HEN
26(25). Leaf underside: smali brown hairs few.... CAR
Leaf underside: small brown hairs clearly present . MAX
27(25).Bract length free 1.9to 5.9 eme oo TUA

Bract length free 6.5 to 6.8 cm
28(23).Leaf margin teeth: pitch 1.7 to 4.6 mm....
Leaf margin teeth: pitch 5.1 t0 5.9 MMt e e,
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