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Abstract—Alzheimer’s disease (AD) is a neurodegenerative
disease caused by the progressive death of brain cells over
time. It represents the most frequent cause of dementia in the
western world, and affects an individual’s cognitive ability and
psychological capacity. While clinical diagnoses of AD are made
primarily on the basis of clinical evaluation and mental health
tests, diagnostic certainty is only possible through necropsy. One
non-invasive approach to investigating AD is to use electroen-
cephalograms (EEGs), which reflect brain electrical activity and
so can be used to detect electrical abnormalities in brain signals
with non-invasive cranial surface electrodes. Generally EEGs
in AD patients show a shift to lower frequencies in spectral
analysis and display less complexity and contain more regular
patterns compared to those of control subjects. Here we present
a method for differentiating AD patients from healthy ones based
on their EEG signals using Benford’s law and support vector
machines (SVMs) with a radial basis function (RBF) kernel.
EEG signals from eleven AD and eleven age-matched controls
were divided into artefact-free 5-sec epochs and used to train an
SVM. 10 fold cross validation was performed at both the epoch-
and subject-level to evaluate the importance of each electrode
in discriminating between AD and healthy subjects. Substantive
variability was seen across the different electrodes, with electrodes
O1, O2 and C4 particularly being important. Performance across
the electrodes was reduced when subject-level cross validation
was performed, but relative performance across the electrodes
was consistent with that found using epoch-level cross validation.

I. INTRODUCTION

Alzheimer’s disease (AD) is the most frequent cause of
dementia in the western world, and is caused by the progressive
death of brain cells over time (neurodegeneration) affecting
an individual’s cognitive ability as well as influencing their
psychological capacity [1]. Clinical diagnoses of AD are made
primarily on the basis of medical history, psychiatric evaluation
and memory and mental health tests [2], although an indis-
putable diagnosis is only possible through necropsy [3]. While
symptoms and their severity vary from patient to patient, early
diagnosis is vital for reducing their effects with available phar-
macological treatments and through lifestyle adjustments [4].

Electroencephalograms (EEGs) have been used in the in-
vestigation of dementia for several decades [5]–[13]. Given
that EEG signals reflect brain electrical activity from the cor-
tex, they can be used to detect electrical abnormalities in brain
signals with non-invasive cranial surface electrodes [14]. Gen-
erally EEGs in AD patients show a shift to lower frequencies
in spectral analysis, which suggests a decreased cohesion of
cognitive networks [14]. Moreover, AD patients’ EEGs display
less complexity and contain more regular patterns compared
to those of control subjects [9], [14]–[16]. However, due to the
intrinsic irregular and aperiodic nature of EEG signals, spectral
analysis techniques may be insufficient for characterising the
dynamics of the events underlying the EEG signals. Thus,
additional techniques, have been developed, including non-
linear time series analysis [17] (particularly utilising entropy
based methods [9], [15], [16]), for automatically distinguishing
AD patients from control ones. Recently in [18] such methods
were utilised for extracting features to a machine learning
classifier. An in-depth review of findings distinguishing AD
patients from control ones can be found in [10].

In 1881 Newcomb [19] observed that the first pages
of the decadic logarithmic tables were more heavily worn
than the last ones, indicating that the frequency of the first
(most significant) digits decreases from 1 to 9. In 1938
Benford [20] analysed the distributions of the first digit from
20, 000 different datasets and experimentally rediscovered and
proved the behaviour observed by Newcomb. Benford’s law
has subsequently been shown to be both scale [21] and base
invariant [22]. In 1978 Logan and Goudsmit [23] showed
that tables containing random numbers follow Benford’s law,
while in 1996 Hill [24] showed if distributions are selected
in a random (unbiased) manner and random samples taken
from each of the distributions, then the significant digits of
the combined sample will follow Benford’s law. In 2002
Wallace [25] showed that when the mean of the data are
greater than the median and the skewness is positive, the
data are also likely to follow Benford’s law. Benford’s law
has also been applied to problems in fields as diverse as
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accounting and neuroscience. In 1996 Nigrini [26] showed
that manipulated tax data deviate from Benford’s law, while
Durtschi et al.’s [27] work demonstrated the effectiveness of
Benford’s law by using it to detect fraud in accounting data due
to the data’s deviation from Benford’s law. Recently in 2014,
Kreuzer et al. [28] for the first time showed that normal brain
electrical activities analysed in form of EEG signals also follow
Benford’s law, and could be used to detect sevoflurane-induced
signal modulations. Our study also identifies a Benford’s law
pattern in EEG data and could prove useful in developing novel
automated methods for diagnosing disorders of the brain.

Our contributions can thus be summarised as follows:

• Novel use of first digit features (FDFs). Although
FDFs from Benford’s law have been used extensively
as a feature descriptor in the fields of image and signal
processing, their application to analysing AD patients’
data are novel.

• Use of time-derivatives in EEG signals. We show
that time-derivatives of EEG signals follow Benford’s
law, and that these time-derivatives can be used to dis-
criminate between AD patients and control subjects.

• Proposal of FDF+SVM pipeline. FDFs can capture
the descriptive probabilities of first digits from the
EEG amplitudes. These features can be used as input
to an SVM for classification.

• Rigorous performance evaluation for EEG
data classification using half total error rates
(HTER). Although HTER has been used extensively
in the field of biometrics, its usage in biomedical
applications is not very well known. HTER has the
advantage of not being affected by the larger sample
size of one class versus another because both types
of errors are weighted equally, thus coercing equal
contributions from both errors. Therefore, it has an
advantage over traditional performance evaluation
techniques such as the F-score or accuracy.

The organisation of the paper is as follows: In section II
we present the Benford’s law methodology as well as the
evaluation criteria. In Section III we describe the dataset.
Experiments and results are discussed in section IV, includ-
ing data preprocessing. Finally, in section V we discuss the
conclusions that can be drawn from the results.

II. METHODOLOGY

In this section we present Benford’s law as applied to
EEGs, and use SVMs with a radial basis function (RBF)
kernel to distinguish between healthy and AD patients. The
classification performance is evaluated by the half total error
rate (HTER).

A. Benford’s Law

Benford’s law can be expressed mathematically as:

p(x) = log10(x+ 1)− log10(x)

= log10(
x+ 1

x
)

= log10(1 +
1

x
)

(1)

where the leading digit x ∈ {1, ..., 9} is the first digit of the
number and p(x) refers to the probability distribution of x.

Benford’s law [29] follows the observation that the first
significant digits are not uniformly distributed, but rather are
heavily skewed towards the smaller digits for any real world
distribution that spans across several orders of magnitude.
There is neither an accepted proof [29], [30] nor a unified
approach that explains the appearance of Benford’s law in
dynamical systems, number theory, statistics or real-world
data [30]–[32].

When the most significant digit (MSD) of logarithms of
the numbers are uniformly or randomly distributed, Benford’s
law can be expressed using the logarithmic scale such that the
space between x and x+1 on the logarithmic scale tallies with
the expected Benford’s law probability values. This implies
that when considering values from 1 to 10 for a number x,
for a number to start with digit 1 means that 1 ≤ x < 2. In
the same way, when taking x = 9 it means that 9 ≤ x < 10.
When considering the log scale, this implies that log10 1 ≤
x < log10 2 will obtain a digit that has a MSD of 1 and that
log log10 9 ≤ log10 x < log10 10 will obtain a digit that has
a MSD of 9. When the arithmetic scale is compared with the
logarithmic scale, as shown in Figure 1, we can see that the
blocks in the logarithmic scale are spaced differently when
compared to the equally spaced blocks of the arithmetic scale.

(a) Arithmetic scale

(b) logarithmic scale.

Fig. 1. Comparison between arithmetic and log scales.

One of the reasons for this can be explained by the intervals
between the digits not being the same in the logarithmic scale.
Whereas when considering the arithmetic scale there are equal
intervals between the digits. Thus, if we consider an interval
[log10 1, log10 2] it gives [0, 0.3010] as compared to an interval
of [log10 9, log10 10] which gives [0.9542425, 1]. This gives
values of 0.30 for digit 1 and 0.05 for digit 9, which tallies
with the expected Benford’s law probabilities of digits 1 and 9.

A typical distribution of digits according to Benford’s law
can be seen in Figure 2. Therefore, any data that closely follow
this pattern follows the standard Benford’s law [32].

B. Classification Details

The FDFs are given as input to the SVMs, which are used
as they are known for their high classification accuracy. For
the SVMs, an RBF kernel was used with kernel scale σ = 1
and box constraint value set to 1. Performance was evaluated
using 10-fold cross validation run for 20 iterations, with the
performance for each fold evaluated using the WER(HTER).

C. Performance and Threshold Criteria

Although the output of an SVM can be used to make a
hard decision, we use a soft output, defined as the distance
of a test sample from the SVM decision hyperplane. For all
experiments, we label samples derived from AD patients’ EEG
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Fig. 2. Probability distribution of Benford’s law

signals as positive, and those derived from the healthy subjects
(i.e., the control) as negative.

Let T be the domain of the SVM output. A decision is
made by comparing the SVM output t ∈ T with a decision
threshold, ∆ ∈ T , as follows:

decision(t) =

{

positive if t > ∆
negative otherwise,

(2)

Let T+ ⊂ T be the set of scores for the postive samples;
and T− ⊂ T , the negative samples. By applying the decision
threshold ∆, the sytem can commit two types of errors,
namely, false rejection and false acceptance. Thier respective
error rates are calculated as follow:

FRR(∆) ≡ P (t ≤ ∆|T+) (3)

≈
|{t ∈ T+, t ≤ ∆}|

|T+|
(4)

FAR(∆) ≡ 1− P (t ≤ ∆|T−), (5)

≈
|{t ∈ T−, t > ∆}|

|T−|
(6)

Note that the FRR is an increasing function of the decision
threshold, whereas FAR is a decreasing function of it.

By plotting FRR versus FAR curve, one obtains a receiver’s
operating characteristic (ROC) curve. There are several useful
point-estimate criteria that are useful to find the operational
decision threshold, namely, equal error rate (EER), weighted
error rate (WER) and its special case, half-total error rate
(HTER).

The first one, EER, is the point where the two error rates
cross each other:

EER(∆∗) = FAR(∆∗) = FRR(∆∗) (7)

where ∆∗ ∈ T is the unique decision threshold of the EER.
In practice, the EER is found by searching for a threshold that
minimises the absolute difference between the FAR and FRR.

∆EER = argmin
∆

|FAR(∆)− FRR(∆)| (8)

The second threshold-optimizing criterion is WER, and is
defined as:

WER(∆) = α× FAR(∆) + (1− α)× FRR(∆)

When α = 1

2
, we have the HTER.

Throughout the experiments, we shall use EER to optimize
the decision threshold and report performance in HTER.

The significant advantage of reporing the performance in
HTER, is that it is not affected by the imbalance in the number
of samples in each class as both types of errors are weighted
equally, thus ensuring equal contribution from both errors (i.e.
enforcing equal prior probability for both classes) [33], [34]. In
our case, this is particularly desirable as the prior probability
of a patient’s EEG signal is difficult to estimate in practice. In
the absence of any additional information, using equal prior
probabilities is a reasonable option.

III. DATASET

The database used in this pilot study included 11 patients
with a diagnosis of probable AD (5 men; 6 women; age:
72.5±8.3 years, mean ± standard deviation (SD)) and 11 age-
matched controls (7 men; 4 women; age: 72.8±6.1 years, mean
± SD). The average Mini-Mental State Examination (MMSE)
score for the AD patients was 13.1 ± 5.9 (mean ± SD). All
control subjects had an MMSE score of 30.

AD patients were recruited from the Alzheimer’s Patients’
Relatives Association of Valladolid (AFAVA), Spain. Informed
consent was obtained for the recording of the EEG signals at
the Hospital Clnico Universitario de Valladolid (Spain) using
the international 10−20 system and electrodes (Fp1, Fp2, F3,
F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and
Pz) referenced to the linked ear lobes and with subjects sitting
on a chair and with eyes closed. More than 5 minutes of EEG
data were recorded for each subject using Oxford Instruments
Profile Study Room 2.3.411 (Oxford, UK). A hardware low-
pass filter with a cut-off frequency of 100 Hz was used before
signals were sampled at 256 Hz and digitised with a 12-bit
A-to-D converter. Five second epochs with little artefactual
activity were selected for offline analysis as ASCII files by a
specialist neurophysiologist, overseeing the recording of the
EEGs. Artefacts included noise induced by eye movement
and in no case electroencephalographic signs of sleep were
observed. The total number of artefact-free epochs available
for analysis was 9849 (5648 from AD patients and 4201 from
control subjects). On average, 28.0 ± 15.1 epochs (meanSD)
were available from each electrode and each subject.

IV. EXPERIMENTS AND RESULTS

Our experiments in this study are enumerated below:

1) Do EEG signals follow Benford’s law? As most
natural data follows Benford’s law, in this experiment
we investigate whether EEG signals conform to this
trend and follow Benford’s law.

2) Effect of time-derivatives of EEG signals. In this
experiment we investigate whether temporal deriva-
tive in EEG signals can improve the classification
performance.



3) Importance of electrode. In this experiment we
investigate the performance obtained using each elec-
trode, in terms of the WER(HTER).

4) Cross subject evaluation. Instead of performing
cross validation at epoch level, where the training
and test set may contain EEG signals from the
same subjects, in this experiment we use subject-level
cross validation. This ensures that each patient’s data
belongs to a single fold, thereby ensuring that we
train on a set of subjects distinct from those used for
testing.

For both experiments 3 and 4 above, the FDF features
obtained from the time-derivatives in EEG signals identified
in experiment 2 were used. We discuss the performance of
our proposed pipeline and discuss the results in detail in the
following subsections.

A. Do EEG signals follow Benford’s law?

Although Kreuzer et al.’s [28] work showed that normal
brain electrical activities analysed in the form of EEG signals
follow Benford’s law, our results from Fig. 3 show that most of
the raw EEG signal did not follow Benford’s law for both AD
patients and the controls as their deviation from the Benford’s
law is greater.
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Fig. 3. χ
2 divergence of first digit probabilities of all the electrodes from

raw EEG signals as well as EEG with its time-derivatives. The kernel density
values are calculated from 10332 epochs which includes AD patients as well
as control ones. Greater divergence values indicate greater deviation from
Benford’s law. Hence lower the better.

A closer look into the first digit probabilities of electrode
O1 on raw EEG signals reveal large amounts of outlier points
for both AD patients as well as for control ones (Fig. 4).

The classification performance achieved was approximately
30 percent in WER(HTER) across all the electrodes, as shown
in Table I.

Since most of the raw EEG signals did not follow Benford’s
law (Fig. 4) and the result yielded a high WER(HTER)
(Table I), we wanted to see if time-derivatives in EEG signals
follow Benford’s law. The motivation for this comes from our
recent work in detecting intrusion attacks from network traffic
flows [31], where we discuss why time-derivatives in data may
follow Benford’s law. The rationale of this is that by taking
the time-derivative, the magnitudes are cancelled out and so
we look at the first derivatives of the EEG signal. The signals
in raw EEG may be slower when compared to time-derivative
in EEG signals.
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Fig. 4. First digit probabilities of electrode O1 on raw EEG signals. (Top)
Alzheimer’s patients and (bottom) control subjects. * in the Figure represents
the true probabilities of first digits according to Benford’s law. There are 364

and 263 measurements for each bar across all the electrodes for AD patients
and control subjects respectively.

TABLE I. MEANS AND STANDARD DEVIATIONS OF THE HALF TOTAL

ERROR RATE OVER 20 RUNS OF 10 FOLD CROSS VALIDATION.

Electrode WER(HTER) (mean ± std)

EEG signals time-derivatives of EEG

C3 0.3136 ± 0.0407 0.1925 ± 0.0313

C4 0.2592 ± 0.0326 0.1432 ± 0.0300

F3 0.2793 ± 0.0375 0.1549 ± 0.0287

F4 0.3080 ± 0.0319 0.2699 ± 0.0417

F7 0.3358 ± 0.0391 0.2535 ± 0.0395

F8 0.2676 ± 0.0364 0.1975 ± 0.0305

Fp1 0.3016 ± 0.0393 0.1956 ± 0.0301

Fp2 0.2807 ± 0.0348 0.1976 ± 0.0341

O2 0.3435 ± 0.0395 0.1854 ± 0.0326

O1 0.3219 ± 0.0367 0.1441 ± 0.0289

P3 0.3465 ± 0.0370 0.1693 ± 0.0277

P4 0.3296 ± 0.0323 0.2279 ± 0.0327

T3 0.2825 ± 0.0389 0.2973 ± 0.0483

T4 0.2775 ± 0.0410 0.1957 ± 0.0299

T5 0.2715 ± 0.0380 0.1803 ± 0.0332

T6 0.3372 ± 0.0345 0.2454 ± 0.0316
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Fig. 5. First digit probabilities of time-derivatives in electrode O1 EEG
signals. (Top) AD patients and (bottom) control subjects.

B. Time-derivatives of EEG signals vs Benford’s law

Results from Fig. 3 show that most of the time-derivatives
in EEG signals follow Benford’s law for both AD patients and



the controls as their deviation from the Benford’s law is lower
when compared to raw EEG signals. Indeed from Fig. 5 we can
see that time-derivatives in EEG signal epochs contained fewer
outlier points suggesting that they have followed Benford’s
law in both AD patients and controls. The results using the
WER(HTER) criterion showed approximately a 10 percentage
point improvement in performance over the results obtained
using raw EEG signals (Table I).

C. Importance of electrodes

From Table I, we can see that electrode C4 gave a
WER(HTER) of 0.1432 ± 0.03, which is the minimum
when compared to other electrodes followed by O1 with
a WER(HTER) of 0.1441 ± 0.03. Both electrodes showed
consistently low WER(HTER) values, as can be observed from
Fig. 6.

D. Subject-level cross-validation

In the previous experiments, we evaluated performance at
the epoch level, where EEG signals from a single subject could
be contained in both the training and test sets. We suspect
that this will have positively biased the performance of our
classification model. Therefore, we created 10 cross validation
folds at the subject level, as shown in Table II, to enable
training on one set of subjects and testing the performance
on a separate set of subjects. At least one subject with AD is
always present in the test set.

TABLE II. NUMBER OF SUBJECTS CONSIDERED IN THE TRAINING AND

TEST SETS ACROSS 10 FOLDS.

Train size 20 19 19 20 20 20 20 20 20 20

Test size 2 3 3 2 2 2 2 2 2 2

The results from Table III show an increase in the
WER(HTER) across all electrodes. This proves our hypothesis
that the classification model was positively biased when cross
validation was not performed at the subject level.

TABLE III. MEANS AND STANDARD DEVIATIONS OF WEIGHTED

ERROR RATES OVER 20 RUNS OF 10 FOLD CROSS VALIDATION PERFORMED

AT THE SUBJECT LEVEL.

Electrode WER(HTER) (mean ± std)

C3 0.3660 ± 0.1431

C4 0.2530 ± 0.1545

F3 0.2813 ± 0.1422

F4 0.3555 ± 0.1336

F7 0.3572 ± 0.1344

F8 0.3132 ± 0.1600

Fp1 0.2926 ± 0.1683

Fp2 0.3121 ± 0.1600

O2 0.2567 ± 0.1561

O1 0.2222 ± 0.1866

P3 0.3262 ± 0.1479

P4 0.3563 ± 0.1493

T3 0.4367 ± 0.0842

T4 0.2804 ± 0.1449

T5 0.2876 ± 0.1392

T6 0.3886 ± 0.1454

Although we see an increase in the WER(HTER) across
all the electrodes, the results in Fig. I are consistent with the
results shown in Fig. III. Electrodes O1 and C4 still proved
to be the best at discriminating between the AD patients and
the controls. With the relevance of this to a neurophysiological
point of view, electrode O2 is one of the electrodes we tend to

see differences between in both groups, but C4 is not usually
flagged up with the non-linear methods.

V. DISCUSSIONS AND CONCLUSIONS

The quick and accurate detection of AD is vital for slowing
the progression of the disease, mitigating its symptoms and
extending the patients’ quality of life years. However, the
extensive medical evaluation and testing needed before a di-
agnosis can be made can leave long periods between the onset
of symptoms and a final diagnosis, with diagnostic certainty
still not being possible without post-mortem examination. A
quick and accurate method for identifying patients with AD
would therefore fill an unmet clinical need. To this end we
present a method for discriminating between AD and healthy
patients based on their EEG signals using first digit features
from Benford’s law and SVMs with an RBF kernel.

We found that mean HTER varies substantively between
electrodes both in the epoch- and subject-level experiments. In
the case of the epoch-level experiments, electrodes covering
the frontal and temporal lobes were consistently less useful
in discriminating between AD and healthy subjects. However,
this pattern was not observed in the subject-level experiments,
with no discernible trend in performance across lobes or
hemispheres. Despite this, electrodes O1, C4 and O2 showed
high discriminating power across both experiments. With the
relevance of this from a neurophysiological point of view,
electrode O2 is one of the electrodes we tend to see differences
between both groups, but C4 is not usually flagged up with
the non-linear methods [9], [15]–[17].
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