
Vaccinating a Population is a Changing
Programming Problem

Sumaiya Amin
Computer Science

St. Francis Xavier University
Antigonish, NS, Canada

x2020gae@stfx.ca

Sheridan Houghten
Computer Science
Brock University

St. Catharines, ON, Canada
shoughten@brocku.ca

James Alexander Hughes
Computer Science

St. Francis Xavier University
Antigonish, NS, Canada

jhughes@stfx.ca

Given the new way of approaching the problem of vaccinat-
ing a population that has been developed, minimal related and
previous work exists. Most similar work involves the use of
evolutionary computation to discover graphs that, when having
an epidemic simulated on them, match real-world epidemic
profiles [5–8].

Although the main contribution this work provides is the
enhanced system, an analysis of the results generated by the
system is also provided. As every community will have differ-
ences that need to be accounted for in the system’s settings,
the strategies developed will vary in effectiveness from one
community to another. Further, although this work is inspired
by COVID-19 and other epidemics, it is broadly applicable to
the problem of the distribution of scarce resources.

II. GRAPH

Social contact networks are easily represented as graphs.
Each vertex/node represents an individual, and an edge repre-
sents a well-established connection between individuals such
that a disease may spread from one to the other1. If a
community’s corresponding graph, or at the very least, an ap-
proximation of a community’s graph is known, it is possible to
design and optimize vaccination strategies for that community.

By using NetworkX [9], the system is designed to work
with an arbitrary graph by reading an adjacency list. The
system also provides an easy way to generate random graphs.
Although it is trivial to add additional random graphs to the
system, the random graphs currently implemented within the
system are Erdős-Rényi (ER) [10], Newman-Watts-Strogatz
(NWS) [11], Barabási–Albert (BA) [12], and Powerlaw Clus-
ter Graphs (PCG) (Figure 1) [13].

ER graphs were the primary focus of our previous work
[3]. Here the focus is on the PCGs since they are scale-
free networks, which are thought to better resemble real-world
networks; however, there is evidence that this may not be the
case [14]. Regardless, PCGs are an improvement upon ER
graphs in this context.

Table I contains the parameters used to generate the
PCGs along with some approximate summary statistics of

1Here, ”community” is not necessarily defined by geography, but is based
on well-established connections.

Abstract—How best to apply vaccines to a population is an 
open problem. It is trivial to derive intuitive strategies, but until 
tested, their efficacy i s n ot k nown. T his p roblem i s particularly 
challenging when considering the dynamics of social contact 
networks and their changes over time.

A system for automatically discovering tested vaccination 
strategies with evolutionary computation has been improved upon 
to include additional graph metrics and to generate vaccination 
strategies for dynamic graphs, something that is expected of real 
social networks within communities.

The system’s ability to generate effective strategies was demon-
strated along with a comparison of the strategies developed when 
fit t o a  s tatic g raph v ersus a  d ynamic g raph. I t w as observed 
that the additional computational resources required to generate 
strategies on a dynamic graph may not be necessary as strategies 
developed for static graphs performed similarly well; however, 
the authors are careful to acknowledge that results may differ 
significantly w hen a djusting t he s ystems m any parameters.

Index Terms—COVID-19; Dynamic; Epidemic; Genetic Pro-
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I. INTRODUCTION

Incorporating social contact network dynamics, and how 
our communities change over time, may be important factors 
when searching for the best strategy for applying vaccines to 
a population such that the impact of an infectious disease is
minimized. The issue of including dynamic graphs is perhaps 
particularly important for low income areas and developing 
countries as it is typically the case that they must remain 
relatively mobile [1]. For example, the ability to work from
home, buying bulk groceries, unemployment, and reliance 
on public transit all disproportionately impacts lower income
individuals [2].

In previous work, a system for the automated discovery
of vaccination strategies for a given social contact network 
using evolutionary computation was developed [3]. The system
simulates epidemics with a given infectious disease model,
namely, the SEIR model [4], on a provided graph representing 
a social contact network. With the use of genetic programming
and a variety of graph metrics to use as parameters for the
programs being evolved, vaccination strategies are developed
with the objective of minimizing the impact of the disease.
In this work, additional default metrics are included and the
system’s functionality is expanded to evolve strategies based
on a dynamic graph.
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TABLE I: Graph and SEIR model settings. The summary statistics
are rough approximations as every randomly generated graph can be
quite different. Ranges are provided for some values, but note that
these values can vary significantly.

Number of Vertices 500
Number of Edges 4

Triangle Probability 0.66
Average Edge Count ∼ 1980

Min. Degree 4
Avg. Degree ∼ 8
Max. Degree ∼ (70− 120)

Min. Dist. 1
Avg. Dist. ∼ 3
Max. Dist. 5

Min. Clustering Coef. 0
Avg. Clustering Coef. ∼ (0.31− 0.33)
Max. Clustering Coef. 1

Add Edge prob. 0.01
Remove Edge prob. 0.01

Selection Distro. Uniform
β (Beta) 0.09

γ (Gamma) 0.133
α (Alpha) 6.4

I0 0.02

Fig. 1: Powerlaw Cluster Graph generated with 100 vertices, number
of edges set to 4, and a probability of creating a triangle of 66%.
Red vertices have a degree greater than 25, green have exactly 4, and
blue have all other edge counts.

the stochastically generated graph. These values were chosen
to create graphs that would last a reasonable duration for
simulation while keeping runtimes manageable. Even though
the values chosen are not arbitrary, they are not indicative of
a particular community. Each community will have different
features. Ultimately these are parameterized values for the
system that can be tuned for the user’s needs.

A. Dynamic Graph

In practice, social contact networks are not static objects.
Although much of the network is likely relatively static due
to routine, families, friends, public transit routes, work, clubs,
etc., some amount of the interactions will change over time.
One of the important questions of this work is how much these
changes impact the developed vaccination strategies and their
efficacy.

There are three core ideas used for making changes to
the graph throughout the simulation: (1) adding an edge; (2)
removing an edge; (3) selecting vertices to be modified.

For both adding and removing, a predefined value represent-
ing the proportion of vertices that will be modified in each step
of the simulation is set — the add/remove edge probabilities.

The method used for adding an edge is to select a vertex
v, choose a neighbour u, select one of us’s neighbours, w,
for which edge (v,W ) does not already exist and then add
the edge (v, w). If no such w exists (i.e. all of u’s neighbours
have an edge to v) a random vertex x is selected in the graph
and the edge (v, x) is added. For ease, if we are unlucky
enough for (v, x) to already exist then the add is skipped.

The method used for removing an edge is to select a vertex
v, randomly choose a neighbour u, and remove the edge (u, v).
For ease, if the edge removal causes the graph to become
disconnected, the edge is added back, i.e. we skip that remove.

For each step of the simulation, there is a proportion of the
vertices that will be selected for modification; however, not
each vertex should necessarily have the same likelihood for
being modified. A probability distribution is used to provide
control over this vertex selection.

The parameters used for making modifications to the graph
are provided in Table I. Since no two communities are the
same, it is difficult to select specific values for how much the
graph should change throughout a simulation of a pandemic.
Therefore, the system was parameterized with these values.
Here, 1% was used for the add and remove edge probabilities,
but again, this should not be thought of as representative and
would need to be adjusted for each situation. Additionally, in
this work the vertices were chosen randomly from a uniform
distribution for adding/removing edges. However, since com-
munities will have different behaviours during and values, this
too is parameterized — the user simply provides an a priori
probability distribution to the system. This enables the user to
simulate different scenarios. For example, should high degree
vertices be more likely to remove edges when compared to
lower degree vertices?

B. Graph Measures

Since the objective is to develop effective and human inter-
pretable vaccination strategies, they are designed to resemble
a program or function. Like many programs and functions,
the vaccination strategies are in need of relevant parameters
providing information about the system they operate in and
are to make a decision on (e.g. f(x1, x2, . . . xn)), namely,
information about the graph and current state of the epidemic.
Some measures only need to be calculated once, while others
need to be recalculated based on changes in the state of the
disease within the graph. All measures are calculated from V ,
the set of all vertices, and E, the set of all edges defining the
graph. Additionally, the simulation step and each vertex’s state
(susceptible, exposed, infectious, and removed — explained in
more detail in Section III) is also used for calculating the graph
measures.



TABLE II: Graph Measures implemented within the system. Boldface
text represents new measures not present in previous work. Many of
the measures are self-explanatory.

Graph Measures
Static

Identify Travellers Vertices connecting clusters
Graph Avg. Degree Degree of all vertices within the Graph

Min. Vert. Cover Generate minimum vertex cover of the graph
Shortest Dist. All-All Generate shortest path matrix

Avg. Short Dist. One-All Avg. shortest distances of vertices to all others
Avg. Short Dist. Avg. shortest distance within graph

Short Path All-All Generate all the shortest paths
Short Path Count Frequency of each vertex in shortest paths

Page Rank Calculate page rank vertex weights
Clustering Coefficient Clustering coefficient of each vertex

Global
Vertices of a Given State How many vertices are in a given state

Avg. Dist. Vertices in State† Avg. distance between vertices in a given state
Local

Vertex Status Status of a given vertex
Vertex Degree Degree of a given vertex

Avg. Neighbour Degree Avg. degree of the neighbours of a given vertex
Neighbours in State‡ Number of neighbours in a given state

Is Traveler Is a given vertex classified as a traveller
Dist. to Vert. in State† Shortest path length to a vertex in a given state

Vertex Avg. Dist. Avg. distance to all vertices from a given vertex
In min. Vertex Cover Is a given vertex in the minimum vertex cover

Short Path Count Frequency of a given vertex in shortest paths
Vertex Page Rank Page rank weight for a given vertex

Vertex Cluster Coef. Clustering coefficient for a given vertex
Extra

Mitigation Count† Number of mitigations currently available
Is Available† Are there any remaining mitigations available

Simulation Step† Current step of the simulation

† Included in system, but not used for generating results reported in this work.
‡ All were used except number of neighbours removed.

All graph measures implemented in the system to date,
and a summary of their function, are included in Table II. A
detailed description is included below for only the newly added
measures. All existing measures’ descriptions are available in
previous work [3].

1) Static Graph Measures: Static graph measures only need
to be calculated once before the execution of an evolutionary
search or any simulation of the epidemic/pandemic.

A critically important note is that the static measures
only stay the same for static graphs — graphs that do not
change throughout the epidemic simulation. For the dynamic
graphs described, although the duration of our simulations are
relatively small, these static measures become outdated as soon
as changes are made. Unfortunately, the computational cost of
re-calculating the static measures for each change in the graph
is prohibitive, thus, only the static measures for the initial state
are known throughout the simulation. Further, the graph, and
its changes throughout the course of the epidemic, would not
be known in practice2

• Minimum Vertex Cover — The set of vertices in
the minimum vertex cover of the graph. Implemented
with NetworkX’s min_weighted_vertex_cover
method. This calculation is a greedy approximation using
Bar-Yehuda & Evan’s strategy [15] and has a compu-

2We remind the reader that the goal is to generate strategies for the duration
of a pandemic/epidemic based on full simulations; the goal is not real-time
vaccination strategy development as the strategies tell us what would have
been effective.

tational complexity of O(|E|log|V |), where |V | is the
number of vertices and |E| is the number of edges.

• Shortest Distance All-All — Shortest path lengths from
each vertex to every other. Implemented using Net-
workX’s shortest_path_length method. Using a
min-heap Dijkstra’s Algorithm implementation, the com-
putational complexity of calculating all shortest paths is
Θ(|V |(|V | + |E|)log(|V |)), where |V | is the number of
vertices and |E| is the number of edges in the graph.

• Average Shortest Distance One-All — Average shortest
distance each vertex has to all others. With the pre-
computed Shortest Distance All-All for simple lookup
of shortest path lengths, the computational complexity
is O(|V |2), where |V | is the number of vertices in the
graph.

• Average Shortest Distance — Average shortest distance
between all vertices. With the pre-computed Shortest Dis-
tance All-All for simple lookup of shortest path lengths,
the computational complexity is O(|V |2), where |V | is
the number of vertices in the graph.

• Shortest Path All-All — The shortest paths from all ver-
tices to all other vertices. Implemented with NetworkX’s
shortest_path method. Using a min-heap Dijkstra’s
Algorithm implementation, the computational complex-
ity of calculating all shortest paths is Θ(|V |(|V | +
|E|)log(|V |)), where |V | is the number of vertices and
|E| is the number of edges in the graph.

• Shortest Path Count — Count the number of times a
given vertex exists within a shortest path between any
two vertices. With the pre-computed Shortest Path All-
All for simple lookup of shortest paths, this method has
a computational complexity of O(|V |2 ∗ l) where |V |
is the number of vertices within the graph and l is the
length of the longest shortest path within the graph (the
graph diameter). The complexity is an upper bound, and
assuming the use of a graph representative of a real-world
community, l will typically be a small number.

• Page Rank — Calculates the page rank weight for each
vertex in the graph. Page rank is used as a means to quan-
tify vertex importance. Implemented with NetworkX’s
pagerank method. The computational complexity of
calculating page rank is dependent on the algorithm used
and is an iterative process that converges on a close
approximation.

• Clustering Coefficient — Calculate the clustering coef-
ficients for all vertices in the graph. The clustering coeffi-
cient of a given vertex is the fraction of possible triangles
through that vertex that exist. This was implemented with
NetworkX’s clustering method. O(|V |3) where |V |
is the number of vertices.

2) Local Measures: Local measures must be calculated
before vaccinations are applied.

• Distance to Vertex in State — Shortest path length
from a given vertex to the nearest vertex of a given
state. Given the pre-calculated Shortest Distance All-All



static measure and the Vertices in a Given State whole
graph measure calculated for each simulation step, this
is a O(k) operation, where k is the current number of
vertices in the graph having the given state.

• Vertex Average Distance — Average distance of a vertex
to all others. Simple lookup based on pre-calculated
Average Shortest Distance static measure O(1).

• In Minimum Vertex Cover — Is the given vertex within
the minimum vertex cover. Simple lookup based on pre-
calculated Minimum Vertex Cover static measure O(1).

• Vertex Shortest Path Count — Number of shortest paths
between any two vertices a given vertex is in. Simple
lookup based on pre-calculated Shortest Path Count static
measure O(1).

• Vertex Page Rank — A given vertex’s page rank weight.
Simple lookup based on pre-calculated Page Rank static
measure O(1).

• Vertex Clustering Coefficient — A given vertex’s clus-
tering coefficient. Simple lookup based on pre-calculated
Clustering Coefficient static measure O(1).

3) Extra-Graph Measures: The extra-graph measures are
those that are not directly related to the graph, but provide
additional information for the vaccination strategies.
• Simulation Step — The current step count of the sim-

ulation. Depending on the context, a step may represent
different units of time. In this work, each step is treated
as one day — O(1).

III. SEIR MODEL

The epidemic model used in this work is the Susceptible-
Exposed-Infectious-Removed (SEIR) infectious disease model
[4]. This model is similar to the classic Susceptible-Infections-
Removed (SIR) model [16]; however, it includes the exposed
state, a state representing an individual who currently has the
disease, does not show symptoms, and is currently not infec-
tious. With this model, individuals transition from Susceptible
to Exposed (S → E), Exposed to Infectious (E → I), and
Infectious to Removed (I → R). The SEIR model has three
parameters: β (probability to infect, controlling S → E),
α (latent period, controlling E → I) and γ (probability to
be removed, controlling I → R). For a simulation of the
epidemic, a starting infectious I0 set of individuals is selected.
In our work, the choice of 2% (10 individuals) was made to
have the simulation last a reasonable amount of time, but was
ultimately arbitrary.

Table I includes the parameters for the SEIR model. These
values are based on those presented by Prem et al. [17]. These
values were obtained in 2020, and although not arbitrary,
would need to be tuned by the user for their needs as
every community is different and the observed infection and
mortality rates and incubation periods can vary significantly
over space and time [18–20].

Given the extended incubation period of COVID-19, the
SEIR model is a better fit when compared to the SIR model.
Further, the SEIR model has been popular for modelling
the spread of SARS-CoV-2 within the literature [17]. The

authors make clear that they are not suggesting that the SEIR
model is the best for COVID-19 modelling as it does have
shortcomings, for example, presymptomatic and asymptomatic
individuals can transmit SARS-CoV-2 [21]. Fortunately, like
much of the system, the actual choice of model is parameter-
ized and it is easy to use a different epidemic model within
the system.

The Network Diffusion Library (NDlib) was used for im-
plementing the epidemic models [22]. The library includes
several epidemic models to choose from and makes it easy to
simulate the spread of the disease over a graph.

IV. METHODS

With the exception of simple parameter values, the addi-
tional graph measures, the choice of graph (all three ultimately
being parameters), and the fact that the graph is now dynamic,
the methods used are the same as previous work. Here we
briefly summarize important details; however, one should refer
to previous work for a more detailed explanation [3].

A. Genetic Programming Implementation

The evolutionary computation framework used was Dis-
tributed Evolutionary Algorithms in Python (DEAP) [23, 24].

Genetic programming was used as the algorithm for discov-
ering vaccination strategies. Simply, the vaccination strategies
are the programs being evolved. A strategy’s fitness is calcu-
lated by testing the strategies being evolved in a simulation
of an epidemic. All parameters used, including the language,
are presented in Table III. The variables/parameters for the
programs being evolved are the graph measures outlined in
Section II-B.

We also treat the problem as having multiple objectives.
Fortunately with DEAP, this is trivial and therefore it is easy to
change out objectives and how many are being optimized. This
is important since it is difficult to define what it means to find a
vaccination strategy that minimizes the impact of an infectious
disease scenario: for example, should we maximize the number
of individuals never infected throughout the simulation, or
should we look for a strategy that minimizes the maximum
number of individuals infected at any given time (thereby
“flattening the curve”)? Ultimately, this ambiguity is alleviated
since it is easy to change the objectives and optimize more than
one at once.

B. Simulation

A whole SEIR model simulation of the epidemic is used to
evaluate each vaccination strategy in each generation. A full
description of the simulation, excluding the new addition of
making the graph dynamic, as discussed in Section II-A, can
be found in previous work [3].

The settings provided in Table IV are based on previous
work with minor changes. Specifically, (a) the simulation
duration is shorter, which allows the simulation to end at a
more appropriate time for the SEIR model parameters, and
(b) the number of vaccines available for each vaccination day
has been increased from 20 to 30 (or 6% of the population).



TABLE III: GP system parameters.

Hyperparameters
Population 1000

Generations 500
Elitism 1

Initialization Ramped Half-and-Half
Init. Max. Depth. 3

Crossover One Point
Crossover Rate 0.80

Mutation New Sub-Tree Uniformly Applied
Mutation Rate 0.10

Selection Tournament
Tournament Size 2

Depth Limit 4
Tree Node Limit 32

Language
Arithmetic Operators +

−
×
÷ (protected)†

Boolean Operators and
or
not

Comparison and >
Conditional <

==
≥†
≤†
6=†
If, Then, Else: Return Boolean
If, Then, Else: Return Number

Constants/Terminals TRUE & FALSE
Integers 0 – 33
Float 0 – 1000

† Operators included in the system, but not used when generating results presented in
this article.

Note that each step of the simulation is considered one day,
and since vaccines are only applied once a week, there are only
14 vaccination days in a simulation of 98 days. This means
that only a maximum of 420 vaccines may be used despite
having a total of 500 vertices; however, this was by design.

Rollover and Use All are flags included in the system
but not used in this work. These are included in the system
since vaccination strategies may not use all available on a
given vaccination day if there are no eligible vertices. For
example, if the strategy says to vaccinate those that have at
least 15 infected neighbours, it is possible no vertex meets this
criterion. Rollover allows unused vaccines from a vaccination
day to be stockpiled for future use. The Use All flag forces
the system to apply all left over vaccines based on a backup
strategy, such as first come first serve. Enabling Use All greatly
improves performance; however, this option was not used
in this work as we expect this feature to impact the static
and dynamic graphs differently. Further, by not forcing every
vaccine to be used, it is easier to compare how many vaccines
the strategies would be using on their own.

C. Testing

In previous work, the objectives being optimized were
maximizing the number of individuals left susceptible (i.e.
never infected) while minimizing the number of vaccines

TABLE IV: Pandemic simulation Settings. Beta, gamma, alpha and
I0, along with the dynamic graph parameters are taken directly from
Table I for ease of reference.

SEIR Model Settings
β (Beta) 0.09

γ (Gamma) 0.133
α (Alpha) 6.4

I0 0.02
Simulation Settings

Iteration Time Frame 1 day
Iterations 98 days

Apply Vaccines Every 7 days
Vacs. Avail. When Applying 30

Rollover False
Use All False

Dynamic True
Dynamic Graph Settings

Add Edge prob. 0.01
Remove Edge prob. 0.01

Selection Distro. Uniform

used [3]. Both these objectives put pressure on the system to
select strategies that minimize the number of vaccines used.
Here, the maximum and total number of individuals infected
were minimized. Note that the total number of individuals
infected is the sum of the number of individuals infected
over time — the area under the infected curve. For example,
since individuals stay infected for variable lengths of time,
if an individual was infected for 6 days, that would add 6
to the total. This should not suggest that other metrics are
not important for consideration when ultimately choosing a
strategy.

A total of 100 evolutionary searches are done for both
the static and dynamic graphs to ensure a suite of high
quality candidates. From each of these runs, a population
of 1,000 candidates are present, therefore 100,000 candidate
vaccination strategies are evaluated for both the static and
dynamic graphs.

For strategy selection after evolution, each candidate is
applied to 50 different PCGs and their results are recorded.
These 50 PCGs are the same 50 for each of the candidates
being evaluated, but will have different starting conditions.
Once results are compiled, 6 of the best strategies (based on
the median maximum and total infection metrics) are selected
for both the static and dynamic graphs. These 12 vaccination
strategies are be compared to each other and to a set of simple
base strategies one may intuitively come up with.

To generate testing results for analysis, the base strategies,
the 6 strategies fit to a static graph, and the 6 fit to the dynamic
graphs are each applied to 100 static graph simulations and
an additional 100 dynamic graph simulations.

V. RESULTS AND DISCUSSION

Tables V and VI contain a summary of the vaccination
strategy results for the strategies applied to static graphs and
dynamic graphs respectively. The median value of the 100
simulations are presented along with their interquartile range.
Note that removed’ is the total number of individuals in the
removed state (I → R) plus the total number of effectively



TABLE V: Median values obtained by each strategy over the 100 simulations on a static graph. Interquartile range is provided within
parentheses.

Strategy Susceptible Max Infected Total Infected Removed’ Mitigations Effective Ineffective
None 29.0 (± 4.5) 209.0 (± 10.25) 3565.0 (± 137.88) 471.0 (± 4.5) 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)
Random 0.0 (± 0.0) 189.5 (± 10.75) 3049.5 (± 123.62) 408.0 (± 8.5) 101.0 (± 7.12) 92.0 (± 8.5) 9.0 (± 2.0)
Traveller 34.0 (± 5.5) 184.5 (± 8.75) 3129.5 (± 131.12) 417.5 (± 9.12) 55.0 (± 6.75) 48.0 (± 6.25) 7.0 (± 1.5)
Deg. 5 42.0 (± 7.0) 183.0 (± 12.0) 3021.5 (± 129.12) 404.5 (± 9.62) 66.0 (± 4.0) 57.0 (± 4.12) 9.0 (± 2.0)
Deg. 6 47.5 (± 8.0) 183.0 (± 9.62) 3075.0 (± 112.25) 405.0 (± 9.12) 58.0 (± 5.0) 47.0 (± 4.5) 9.0 (± 2.0)
Deg. 7 55.0 (± 11.0) 178.5 (± 12.5) 3029.5 (± 149.0) 406.0 (± 15.62) 46.0 (± 5.5) 39.0 (± 5.5) 7.0 (± 2.0)
Deg. 8 53.5 (± 9.62) 180.0 (± 10.62) 3098.5 (± 123.62) 413.5 (± 12.5) 39.0 (± 4.12) 32.0 (± 4.0) 7.0 (± 1.0)
Deg. 9 60.0 (± 9.25) 172.5 (± 11.62) 3058.0 (± 114.12) 411.5 (± 11.12) 36.0 (± 4.0) 31.0 (± 3.62) 6.0 (± 1.12)
Deg. 10 60.5 (± 9.38) 174.0 (± 13.12) 3092.0 (± 138.25) 413.5 (± 10.62) 33.0 (± 2.5) 27.0 (± 3.0) 6.0 (± 1.5)
S1 0.0 (± 0.0) 171.0 (± 16.0) 2900.5 (± 133.75) 389.0 (± 10.5) 119.5 (± 9.62) 108.0 (± 9.12) 12.0 (± 2.5)
S2 58.5 (± 12.25) 168.0 (± 16.62) 3195.0 (± 173.0) 424.5 (± 16.0) 20.0 (± 3.5) 16.0 (± 4.12) 3.5 (± 1.5)
S3 62.0 (± 11.75) 165.5 (± 14.88) 3112.0 (± 143.12) 411.5 (± 14.0) 30.0 (± 2.5) 25.0 (± 3.0) 4.0 (± 1.5)
S4 29.0 (± 8.38) 166.5 (± 14.5) 2957.0 (± 149.25) 393.0 (± 12.0) 89.0 (± 4.5) 78.0 (± 5.62) 11.0 (± 2.5)
S5 0.0 (± 0.0) 163.0 (± 16.88) 2804.5 (± 156.0) 376.5 (± 19.88) 129.0 (± 17.25) 117.5 (± 17.38) 11.0 (± 2.5)
S6 0.0 (± 0.0) 168.5 (± 19.25) 2925.5 (± 201.5) 383.5 (± 22.25) 128.0 (± 22.62) 116.5 (± 22.25) 10.0 (± 2.0)
D1 0.0 (± 0.0) 172.0 (± 11.88) 2903.0 (± 143.12) 390.0 (± 13.25) 118.5 (± 12.0) 110.0 (± 12.75) 9.0 (± 2.5)
D2 54.5 (± 11.25) 172.0 (± 14.12) 2986.5 (± 167.0) 398.0 (± 12.0) 61.0 (± 3.0) 49.0 (± 3.5) 12.0 (± 2.0)
D3 0.0 (± 0.0) 179.0 (± 18.62) 2987.0 (± 180.25) 398.0 (± 16.5) 113.5 (± 15.0) 102.0 (± 16.5) 11.0 (± 2.5)
D4 0.0 (± 0.0) 183.5 (± 19.38) 3034.5 (± 210.12) 411.5 (± 22.75) 99.0 (± 21.62) 88.5 (± 22.75) 8.0 (± 2.12)
D5 0.0 (± 0.0) 176.0 (± 14.5) 2967.5 (± 201.38) 396.0 (± 14.38) 113.5 (± 15.12) 104.0 (± 14.38) 9.0 (± 2.0)
D6 27.0 (± 5.12) 167.5 (± 15.25) 2797.5 (± 146.0) 375.0 (± 17.0) 106.5 (± 11.5) 97.5 (± 14.0) 10.0 (± 3.0)

TABLE VI: Median values obtained by each strategy over the 100 simulations on a dynamic graph. Interquartile range is provided within
parentheses.

Strategy Susceptible Max Infected Total Infected Removed’ Mitigations Effective Ineffective
None 34.5 (± 4.62) 207.5 (± 9.75) 3511.5 (± 117.25) 465.5 (± 4.62) 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0)
Random 0.0 (± 0.0) 186.5 (± 9.62) 3059.5 (± 139.62) 406.5 (± 7.5) 103.0 (± 6.5) 93.5 (± 7.5) 9.0 (± 2.0)
Traveller 32.5 (± 5.0) 184.0 (± 10.0) 3202.5 (± 115.75) 418.0 (± 9.0) 56.5 (± 7.5) 49.5 (± 7.12) 7.0 (± 1.5)
Deg. 5 32.5 (± 4.62) 181.5 (± 10.5) 2982.5 (± 126.5) 397.0 (± 8.62) 79.0 (± 5.0) 69.0 (± 6.0) 9.0 (± 1.62)
Deg. 6 45.0 (± 6.62) 181.5 (± 9.0) 2974.0 (± 139.0) 399.0 (± 10.25) 66.0 (± 6.0) 57.0 (± 6.0) 9.0 (± 1.5)
Deg. 7 50.5 (± 8.62) 177.5 (± 11.75) 3033.5 (± 163.75) 405.5 (± 16.0) 53.0 (± 7.12) 45.0 (± 7.0) 8.0 (± 1.5)
Deg. 8 56.0 (± 10.62) 174.0 (± 11.12) 3020.0 (± 158.88) 406.5 (± 15.12) 44.0 (± 5.5) 37.5 (± 5.0) 7.0 (± 1.62)
Deg. 9 57.5 (± 9.62) 172.0 (± 12.25) 3088.0 (± 142.12) 412.0 (± 13.0) 38.0 (± 4.0) 32.0 (± 4.0) 6.0 (± 1.5)
Deg. 10 59.0 (± 9.12) 171.0 (± 12.62) 3088.5 (± 134.88) 411.0 (± 11.25) 34.5 (± 2.0) 29.0 (± 3.12) 6.0 (± 1.5)
S1 0.0 (± 0.0) 171.0 (± 16.0) 2928.5 (± 172.38) 389.0 (± 14.12) 121.5 (± 10.75) 108.0 (± 10.0) 12.0 (± 3.0)
S2 55.0 (± 11.0) 172.5 (± 17.12) 3205.5 (± 131.5) 430.0 (± 13.62) 19.0 (± 5.12) 15.5 (± 4.62) 3.0 (± 1.5)
S3 65.0 (± 11.5) 164.5 (± 14.38) 3067.5 (± 158.25) 409.0 (± 13.12) 30.0 (± 3.0) 25.0 (± 3.5) 5.0 (± 1.5)
S4 25.0 (± 9.62) 165.0 (± 18.12) 2911.5 (± 177.12) 389.0 (± 15.25) 99.0 (± 8.0) 88.0 (± 8.75) 11.0 (± 2.0)
S5 0.0 (± 0.0) 167.0 (± 11.5) 2864.5 (± 146.12) 380.5 (± 15.75) 128.5 (± 13.5) 118.0 (± 14.12) 10.0 (± 2.0)
S6 0.0 (± 0.0) 168.5 (± 16.62) 2870.5 (± 209.25) 384.0 (± 22.5) 127.0 (± 20.5) 116.0 (± 22.5) 9.0 (± 2.12)
D1 0.0 (± 0.0) 171.5 (± 12.75) 2878.5 (± 126.0) 389.0 (± 12.12) 121.0 (± 11.75) 111.0 (± 12.12) 10.0 (± 2.0)
D2 53.5 (± 12.12) 178.5 (± 12.62) 2972.0 (± 160.38) 399.0 (± 16.25) 60.5 (± 4.0) 48.0 (± 4.0) 12.0 (± 3.0)
D3 0.0 (± 0.0) 169.0 (± 16.12) 2900.5 (± 186.12) 393.5 (± 16.0) 120.0 (± 14.62) 106.5 (± 16.0) 12.0 (± 3.0)
D4 0.0 (± 0.0) 183.0 (± 17.12) 3061.0 (± 169.62) 410.0 (± 18.75) 99.0 (± 19.75) 90.0 (± 18.75) 9.0 (± 2.0)
D5 0.0 (± 0.0) 174.0 (± 17.0) 2983.0 (± 155.12) 396.0 (± 13.88) 113.5 (± 14.62) 104.0 (± 13.88) 9.0 (± 1.5)
D6 24.0 (± 5.5) 168.5 (± 14.25) 2835.0 (± 117.38) 376.0 (± 13.62) 109.5 (± 9.12) 99.0 (± 10.12) 10.0 (± 2.5)

vaccinated individuals. The mitigations (vaccinations) value is
the total number of vaccinations applied during the simulation.
This value is further broken down into effective and ineffective
vaccinations. As described in previous work [3], since exposed
individuals show no symptoms, we assume the distinction
between susceptible and exposed is not known in real-time,
therefore both cohorts are eligible for a vaccine, but only
vaccines applied to susceptible individuals will be effective
in protecting them from the disease.

It is difficult to find glaring differences between the results
presented in Tables V and VI. The largest difference between
the vaccination strategies when applied to static vs. dynamic
graphs presented in these tables is the total infected metric
between the vaccination strategies. Also, the base strategies
do not appear as effective relative to the evolved strategies.
One can also notice that, when considering max infected,
the random strategy (effectively “first come, first served”),
although not bad, is the second worst next to doing nothing.

This demonstrates that some level of nuance in the strategies
can improve results over the “first come first, first served” strat-
egy typically employed en masse. Interestingly, the random
strategy is more competitive with the total infected metric,
but still one of the worst performing strategies in that metric.

Although the mitigation count was not directly optimized,
this metric may be critically important if a very limited
supply of vaccines are available. For example, Static 2 (S2)
does a reasonably effective job at reducing the impact of the
pandemic while using the fewest vaccines among all strategies
(excluding doing nothing).

Algorithm 1 is vaccination strategy Dynamic 6 (D6). This
algorithm is presented since it is arguably the best performing
strategy when applied to either static or dynamic graphs
in terms of the number of individuals left susceptible, max
infected, total infected, and removed’ metrics. Upon investi-
gation, if the individual is within the minimal vertex cover,
then d will be large if the individual exists within many of the



Algorithm 1: Dynamic 6 (D6).
1 if minimal vertex cover then
2 d ← short path cnt+ clus coef ;
3 else
4 d ← num removed× nbr inf ;
5 g ← 4× avg deg × num susexp× clus coef ;
6 return d > g;

shortest paths between individuals (the addition of clustering
coefficient is likely inconsequential as it is a value between 0
and 1). If the individual is not in the minimal vertex cover, and
since the number of removed grows over time, d will be large
only if the individual has infected neighbours. Lastly, since
the number of susceptible and exposed individuals will shrink
over time, g will be large if the vertex has a sufficiently large
clustering coefficient. In other words, the intuition appears to
suggest: (a) vaccinate if the individual is considered important
based on graph centrality measures, and (b) vaccinate more
individuals indiscriminately as time progresses, but only if they
are reasonably close to infected individuals.

Although not presented here, both Static 3 (S3) and Static
4 (S4) can be simplified to deg > avg nbr degree (the
individual’s degree is greater than the average degree of their
neighbours) with some differences in scaling and edge cases.
This simple strategy is rather interesting as it suggests the
relatively high degree individuals be vaccinated. This idea
combines the natural and intuitive idea to vaccinate the high
degree individuals (people coming into contact with many
others), but putting it into a relative context. For example, a
“high degree individual” may mean something very different
within a dense city versus a rural town. This suggests that it is
similarly important to vaccinate the higher degree individuals
in less dense and connected communities despite potentially
having a lower absolute degree.

Another interesting note about S3 and S4 is their difference
in results in Tables V and VI. Although very similar strategies,
there are some notable differences in total infected and mitiga-
tions used. This may be accounted for in the minor differences
in strategies in their edge cases, or perhaps, in spite of the 100
simulations, the very stochastic nature of the simulations.

To simplify the analysis, the top 4 performing strategies
from each group (base, static, and dynamic) are selected for
further analysis. These strategies are highlighted within Tables
V and VI.

For the purpose of understanding the distribution of results,
Figures 2 and 3 show scatter plots and histograms for the
maximum and total infected for the vaccination strategies
applied to static and dynamic graphs respectively. Only the
100 results from the emphasized subset are included in this
plot for interpretability. In both figures, octagons ranging in
colours purple to cyan represent the four base strategies,
triangles ranging from green to orange represent the static
strategies, and squares ranging from red to pink represent the
dynamic strategies. The histograms are aggregate distributions
of all strategies from each group and are coloured accordingly.

Within Figures 2 and 3, other than some of the evolved
strategies obtaining the best results, and the green and red
(static and dynamic) distributions being closer to zero, it is
difficult to see any notable differences in the efficacy of the
strategies.

To compare the base strategies, static graph generated
strategies, and dynamic graph generated strategies, each vac-
cination strategy’s results are aggregated with those within
the same group (base, static, and dynamic) and compared
— the histograms presented in Figures 2 and 3. Table VII
shows each group’s median value for max and total infected
values along with probability values generated with a Mann-
Whitney U test comparing the distribution of results from the
aggregate groups. The table presents the values obtained when
comparing all 21 strategies and the subset of 12 strategies
described above. Note that the non-subset base strategies’
group includes the none and random strategies, which will
skew the results; however, one can see that the base strategies,
regardless of comparing all or the subset, perform the worst by
a significant amount, with the exception of the max infected
comparison between the base vs. dynamic subset of functions
when applied to dynamic graphs, which had a probability value
of 0.2716.

In all cases for the max infected metric, the aggregated
static group obtained the best results based on the median
values by significant amounts; all compared distributions have
probability values less than 1.519 × 10−3. The dynamic
strategies performed the best based on the median values of
the total infected. Ultimately, some of the largest probability
values are found when comparing distributions between static
and dynamic strategies, indicating a relatively small difference
between static and dynamic strategies’ efficacies. This is
further emphasized by the inconsistency in the metrics; while
strategies developed on static graphs obtained the best results
in terms of max infected, those fit to dynamic graphs did better
in terms of total infected. This minimal difference confirms
what is visually observed in Figures 2 and 3.

Since Table VII shows the grouped aggregate comparison,
Figures 4 and 5 are provided to show the probability value
comparison on the individual strategy level. These p-values are
obtained by comparing the distributions with a Mann-Whitney
U test. It is interesting to observe the similarities in the matri-
ces between the static and dynamic simulations. For example,
note strategy D4’s similarity to the base group regardless of
the simulation type. Note S3 and S4, the strategies resembling
deg > avg nbr deg, have high similarity with respect to the
max infected metric, but little similarity for total infected.
Unsurprisingly, the degree based base strategies show a strong
similarity to each other and there is perhaps some consistency
within the groups for the max infected metric, but overall it
is hard to make this conclusion in general, especially for the
total infected results.

VI. CONCLUSIONS AND FUTURE WORK

An updated system for developing vaccination strategies
based on the topology of a graph was presented. This system
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Fig. 2: Scatter plot and histograms of the max and total infected values obtained by the subset of strategies when simulated on a static graph.
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Fig. 3: Scatter plot and histograms of the max and total infected values obtained by the subset of strategies when simulated on a dynamic
graph.

TABLE VII: Median results and probability values comparing the distribution of the results from each vaccination strategy aggregated into
groups. Max and total infected values are compared for both the full set of 21 strategies and the subset of 12 (full result / subset result).

Static Graphs
Max Infected Total Infected

Function Set Median Base v. Static Base v. Dynamic Static v. Dynamic Median Base v. Static Base v. Dynamic Static v. Dynamic
Base 184.0 / 176.0 8.510× 10−41 1.776× 10−17 1.184× 10−5 3102.0 / 3071.5 5.258× 10−21 1.334× 10−32 1.535× 10−2

Static 167.0 / 166.0 / / / 2985.0 / 2954.0 / / /
Dynamic 175.0 / 173.0 1.534× 10−10 1.026× 10−3 1.519× 10−3 2943.5 / 2914.5 1.184× 10−11 7.872× 10−19 4.534× 10−2

Dynamic Graphs
Max Infected Total Infected

Function Set Median Base v. Static Base v. Dynamic Static v. Dynamic Median Base v. Static Base v. Dynamic Static v. Dynamic
Base 182.0 / 174.0 4.736× 10−29 2.386× 10−11 1.358× 10−5 3085.0 / 3066.0 3.085× 10−20 2.415× 10−32 1.432× 10−2

Static 168.0 / 166.0 / / / 2970.5 / 2917.5 / / /
Dynamic 174.0 / 172.8 4.258× 10−6 2.716× 10−1 1.627× 10−4 2930.0 / 2885.0 3.549× 10−14 3.978× 10−20 1.023× 10−1
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Fig. 4: Probability value matrix comparing all strategies to all other strategies with a Mann-Whitney U test. The values presented here are
from the strategies being simulated and tested on static graphs.
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Fig. 5: Probability value matrix comparing all strategies to all other strategies with a Mann-Whitney U test. The values presented here are
from the strategies being simulated and tested on dynamic graphs.

is built upon the one presented in [3], which simulates a
pandemic on a static graph representing a community’s social
contact network and uses genetic programming to discover
vaccination strategies that reduce the impact of the disease.
The update includes additional graph measures, features, and
most importantly, the ability to develop strategies based on a
dynamic graph — one that changes throughout the simulation,
something that would happen in a real-world scenario.

Although the major contribution is the system itself, an
investigation into the effectiveness of the generated vaccination
strategies was done, along with evaluating how effective
strategies fit to a static graph are when applied to a dynamic
graph, and vice versa.

The strategies developed by the system are shown to be
more effective than the base, simple strategies one may in-
tuitively develop. Despite being evolved independently, two

of the vaccination strategies generated were very similar, and
were based on deg > avg nbr deg, which can be intuitively
thought of as vaccinating the relatively high degree nodes
based on their local context.

There is a minimal difference between the results of strate-
gies adapted to static graphs and those adapted to dynamic
graphs, regardless of whether they have been tested on static
or dynamic graphs. Overall, there are more noteworthy dif-
ferences between the individual strategies than between the
groups. This suggests that the additional computational costs
associated with evolving strategies to fit dynamic graphs may
not be necessary, therefore simplifying this complex problem.
However, the authors are careful to not make a broad assertion
at this stage as the number of parameters one may tune in
the system is large and differences may arise after further
investigation. Exploring a variety of parameters is of interest



to the authors, in particular, different probability distributions
and larger values for the add/remove edge to simulate “shock”
changes caused by events such as lockdowns and reopenings.

It is not known why the total number of infected individuals
varies as much as it does. Although it is expected that it is
a consequence of the amount of randomness involved in that
metric specifically, this should be investigated further.

Despite being deliberately avoided, to continue evaluating
the dynamic graphs, it is possible to recalculate all static
measures for each iteration of the simulation, or perhaps have
a series of pre-generated graphs with pre-calculated static
measures. However, given the results presented here, and how
the strategies developed for static graphs performed very well
on dynamic graph simulations, it is unclear how much this
will impact results.

One of the major areas to be investigated in the future is
the impact of changing the epidemic model within the system.
Initial work with a more sophisticated model was done by
Chao [25], but this should be continued with multiple different
infections disease models.

The authors encourage other researchers to take the system
to use in their own work and contribute to the larger project.
Up-to-date software is available on GitHub — https://github.
com/convergencelab/eCov-GP.
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and C. Gagné, “Deap: A python framework for evolutionary
algorithms,” in Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation, 2012, pp.
85–92.

[24] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau,
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