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Abstract—Learning-to-rank, a machine learning technique
widely used in information retrieval, has recently been applied to
the problem of ligand-based virtual screening to accelerate the
early stages of new drug development. Ranking prediction models
learn based on ordinal relationships, making them suitable
for integrating assay data from various environments. Existing
studies of rank prediction in compound screening have generally
used a learning-to-rank method called RankSVM. However, they
have not been compared with or validated against the gradient
boosting decision tree (GBDT)-based learning-to-rank methods
that have gained popularity recently. Furthermore, although
the ranking metric called Normalized Discounted Cumulative
Gain (NDCG) is widely used in information retrieval, it only
determines whether the predictions are better than those of
other models. In other words, NDCG cannot recognize when
a prediction model produces worse than random results. Nev-
ertheless, NDCG is still used in the performance evaluation of
compound screening using learning-to-rank. This study used the
GBDT model with ranking loss functions, called lambdarank
and lambdaloss, for ligand-based virtual screening; results were
compared with existing RankSVM methods and GBDT models
using regression. We also proposed a new ranking metric,
Normalized Enrichment Discounted Cumulative Gain (NEDCG),
aiming to evaluate the goodness of ranking predictions properly.
In addition, the results showed that the GBDT model with
learning-to-rank outperformed existing regression methods using
GBDT and RankSVM on diverse datasets. Finally, NEDCG
showed that the predictions by regression were comparable
to random predictions in multi-assay, multi-family datasets,
demonstrating its usefulness for a more direct assessment of
compound screening performance.

Index Terms—Drug discovery, Cheminformatics, Learning-to-
rank, Machine learning, Virtual screening

I. INTRODUCTION

The development cost and time required to obtain approval
for a new drug increase every year, with some estimating a cost
of $2.6 billion per drug [1], and others reporting a development
time of more than 10 years from identifying lead compounds
to clinical trials [2]. Virtual screening (VS) is a process of
computationally searching an extensive compound library for
an active compound against a target protein in the early
stage of new drug development. Virtual screening technology

helps in the discovery process of hit compounds [3]. For
virtual screening in the drug repositioning context, the drug
Edaravone (Radicava), FDA-approved for cardiovascular indi-
cations, was identified as a neurotrophic [4]. Virtual screening
with the FDA-approved drug dataset was also implemented
for the Coronavirus Disease-2019 (COVID-19) virus, which
has caused a pandemic since December 2019 [5]. Improving
the predictive accuracy of virtual screening and extending its
applicability to a wide range of activity data are essential to
reducing the cost of developing new drugs.

Ligand-based virtual screening (LBVS) is a method that
uses activity information already obtained from assays and
mainly employs machine learning methods such as regres-
sion [6], [7] and classification [8]–[10] prediction. Recently,
a learning-to-rank method based on the ordinal relationship
of activity values was proposed for virtual screening [11]–
[18]. This approach has two advantages, of which the first
is that learning-to-rank is more accurate than regression for
ordinal predictions [15]. In drug discovery, potentially active
compounds selected through virtual screening are biochemi-
cally assayed to determine whether they are active. Therefore,
the goal of virtual screening is not to predict the exact
activity value but to list compounds that are even slightly
more active at the top of the prediction. For this reason,
learning-to-rank, predicting based on order, is appropriate for
virtual screening. The second advantage is that learning-by-
rank is dependent on ordering relationships in comparable
groups, such as assay, making it easy to integrate experimental
information from different situations. Affinity indices based
on biochemical assays, such as half the maximum inhibitory
concentration (IC50), vary widely from one assay system to
another. This aspect makes it challenging to integrate assay
data from different environments using regression methods.
In learning-to-rank, the distribution of measurements in each
assay need not be identical because the model learns based
on the ordinal relationship among compounds within each
assay [15].

However, there are several problems with existing studies
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of virtual screening using learning-to-rank. First, existing
studies [13], [15]–[18] mainly focus on RankSVM, a machine
learning method used for ranking prediction, and do not eval-
uate the effectiveness of new methods. Recently, a learning-
to-rank method called LambdaMART has been broadly used
in the information retrieval field [19]. LambdaMART is a
machine learning method that learns a gradient boosting deci-
sion tree (GBDT) with a ranking loss function. This method
has attracted attention in machine learning competitions. No
comparisons have been reported regarding whether Lamb-
daMART is superior to RankSVM or whether learning-to-
rank is superior to regression in order prediction, even in
the GBDT model, for virtual screening. Furthermore, previous
studies [15]–[17] have evaluated the performance of ranking
prediction using a metric called Normalized Discounted Cu-
mulative Gain (NDCG) [20]–[22], but the suitability of NDCG
for LBVS has not been adequately discussed. NDCG is a
metric designed for use in learning-to-rank performance evalu-
ation in information retrieval, which differs from the situation
in virtual screening. Specifically, NDCG reports a maximum
value of 1 to predict that a sequence is perfectly correct.
However, the value reported by NDCG does not express the
extent to which a prediction represents an improvement. In
LBVS, enrichment, i.e., the improvement degree relative to
the random prediction is essential. However, existing studies
use NDCG as a metric for evaluating virtual screening against
ranking prediction without considering these differences.

In this study, we evaluate the VS performance of a new
GBDT model with learning-to-rank and compare the perfor-
mance with existing models. Moreover, we develop a metric
that can evaluate the performance of ranking prediction ap-
propriately. The three main contributions of this study are:
• We modified the conventional NDCG and proposed

NEDCG (normalized enrichment DCG), a metric express-
ing the improvement ratio over random guess in ranking
prediction.

• We applied for the first time the GBDT model with lamb-
darank loss function to the virtual screening problem.

• We validated NEDCG based on a dataset constructed
for multiple situations where assay data was available.
The results showed that the prediction accuracy of the
proposed method using GBDT outperformed that of
the conventional method based on learning-to-rank. In
addition, the validation indicated that in some cases,
the learning-to-rank was more effective. In others cases,
the regression models were more accurate in prediction,
depending on the dataset.

II. MATERIALS AND METHODS

A. GBDT and LambdaMART
GBDT is a machine learning algorithm that minimizes

the cost function by iteratively ensembling weak prediction
models using decision trees. Moreover, GBDT is a widely
used algorithm, and several effective implementations exist,
including XGBoost [23] and LightGBM [24]. In this study,
we used LightGBM as an implementation of GBDT.

LambdaMART [19] is a method for learning GBDT with
a ranking loss function called lambdarank [25], designed to
directly optimize the value of NDCG [20]–[22]. The NDCG
for the top K cases from a group of N cases is as follows:

NDCG@K =

K∑
i=1

Gi
Di
,

Gi =
gaini

maxDCG
,

gaini = 2yi − 1,

Di = log2(i+ 1),

where i is the predicted rank, yi is the label at i, and maxDCG
is a normalization constant, which is the maximum discounted
cumulative gain (DCG) when the ranking prediction is cor-
rect. If the top of the ranking is correctly ordered, NDCG
approaches its maximum value of 1, while at its worst, it has
a minimum value of 0. The loss of lambdarank for each group
is as follows:

l1(y, s) =
∑
yi>yj

ρij |Gi −Gj | log(1 + e−σ(si−sj)),

ρij =

∣∣∣∣ 1

Di
− 1

Dj

∣∣∣∣ ,
where si and sj are the predicted ranking scores. Lamb-
darank learns order relationships by penalizing based on
∆NDCGij = ρij |Gi−Gj |, i.e., the difference in NDCG when
rank i is swapped with rank j.

Moreover, we experimented with a loss function based on
the lambdaloss framework, called NDCGloss2 [26], which
minimizes a cost function called NDCGcost. The lambdaloss
function for each group and NDCGcost is as follows:

l2(y, s) =
∑
yi>yj

δij |Gi −Gj | log(1 + e−σ(si−sj)),

δij =

∣∣∣∣ 1

D|i−j|
− 1

D|i−j|+1

∣∣∣∣ ,
NDCGcost =

N∑
i=1

Gi −
N∑
i=1

Gi
Di
.

B. Normalized enrichment DCG

NDCG is one of the primary metrics used to measure the
performance of learning-to-rank models. In particular, NDCG
is appropriate for comparative analysis of different models and
determining which hyperparameters are better. However, this
method lacks information on the degree of improvement of
the ranking predictions from the pre-training situation. For
example, an area under the receiver operating characteristic
curve (AUROC) of 0.5, used in the classification task, implies
that the model makes random predictions. Therefore, we pro-
pose a new normalized enrichment DCG (NEDCG), inspired
by AUROC, removing the effect of random prediction (pre-
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Fig. 1: Experimental procedure for (a) Dataset 1 (complicated
task) and (b) Dataset 2 (simple task).

training state) from NDCG. NEDCG for the top K cases are
defined as follows:

NEDCG@K =
DCG@K − randomDCG@K

maxDCG@K − randomDCG@K
, (1)

DCG@K =

K∑
i=1

gaini
log2(i+ 1)

, (2)

where randomDCG@K is the discounted cumulative gain
DCG@K for the top K cases when predicting randomly.
When calculating randomDCG@K, the average gainmean of
the gains for a group of N cases is used as follows:

randomDCG@K =

K∑
i=1

gainmean
log2(i+ 1)

,

gainmean =
1

N

N∑
j=1

gainj .

III. EXPERIMENTS

A. Dataset

In this section, we describe two datasets for different
experimental situations. Dataset 1 (complicated task) includes
experimental data from various assays for different proteins of
the same family are used as training data. Dataset 2 (simple
task) is a typical LBVS case where data from a single assay
is randomly split into training and test data.

In Dataset 1, assay data for the phosphodiesterase
(PDE) family were collected for IC50 from the ChEMBL
database [27] with reference to existing studies [15], [16]. Data
with the same assay ID were treated as a group, and assays
with a group size of 5 or more were selected. The objective
variable was IC50 converted to pIC50 = − log10(IC50). For
inactive data (cases with no value data were described as
inactive), pIC50 = 0 based on [17]. Table I shows the details
of Dataset 1. In addition, Table II lists the ChEMBL Assay IDs
of the assays used as test data and the number of compounds
in each.

In Dataset 2, the Luciferase dataset (AID: 1006) for the
inhibition rate measurement experiment was used following a
previous study [17]. The Luciferase dataset was obtained from
PubChem BioAssay [28], a compound activity information

TABLE I: Details of Dataset 1 (PDE family dataset). Target
proteins in bold were excluded from the training step.

protein name #assays #compounds
PDE 1A 4 76
PDE 1B 9 101
PDE 1C 7 106
PDE 2A 41 999
PDE 3A 22 324
PDE 3B 8 121
PDE 4A 36 685
PDE 4B 69 1,457
PDE 4C 9 110
PDE 4D 57 985
PDE 5A 87 2,889
PDE 6A 1 47
PDE 6C 3 33
PDE 6D 1 24
PDE 7A 22 659
PDE 7B 2 15
PDE 8A 4 43
PDE 8B 2 168
PDE 9A 23 568

PDE 10A 79 3,848
PDE 11A 12 181

TABLE II: Dataset 1: Assays used as tests and their sizes.

ChEMBL Assay ID #compounds
PDE 2A CHEMBL3706318 146
PDE 7A CHEMBL3706063 170
PDE 8B CHEMBL2073616 111

database. The activity value for Dataset 2 was %Inhibition.
However, because the gain used in the NDCG calculation
was a power of 2 of the activity value, the inhibition rate
value was divided by 10 and converted so that the maximum
value is 10. Note that the measured inhibition rate ranged
from −∞ to 100%, but the negative values were converted
to set the inhibition rate to 0. Dataset 2 contains 2,976
active compounds (inhibition rate ≥ 50) and 192,588 inactive
compounds (inhibition rate < 50).

B. Procedure

We compare the following 4 prediction models:
1) lambdaloss (rank): GBDT ranking prediction model us-

ing the lambdaloss function
2) lambdarank (rank): GBDT ranking prediction model

using the lambdarank loss function
3) RankSVM (rank): RBF Kernel RankSVM model based

on PKRank [16] for Dataset 1. Linear kernel RankSVM
model based on SPDRank for Dataset 2.

4) GBDT regression (regression): GBDT regression model
with L2 loss

The experiments with regression were intended to compare
the use of a ranking loss function with a regression loss
function. The experiments with RankSVM were intended to
compare the other learning-to-rank methods with the proposed
method.

We adopted RankSVM as a representative of the existing
learning-to-rank models because it was the best learning-to-
rank model in a previous study [15]. In Dataset 2, we used SP-



DRank, unlike Dataset 1, because training with the SPDRank
model using stochastic gradient descent was successful.

C. Features

The 1-D and 2-D descriptors (1,613 dimensions) from
mordred [29] (Version: 1.2.0) were used as descriptors for
the compounds. However, we removed descriptors taking null
values for more than half of the compounds in the training
data, resulting in 1,452 dimensions in Dataset 1 and 1,447
dimensions in Dataset 2. In addition, the normalized Smith-
Waterman scores with targets in the training data were used
as protein features.

However, for RankSVM in Dataset 2, we used ECFP4
(2,048 bit) [30] features computed with RDKit [31] because
SPDRank can learn only sparse features.

D. Training and hyperparameters

The number of rounds in the GBDT model was 100 when
tuning the hyperparameters, and the number of rounds for val-
idation was decided by early_stopping = 1000 based
on NDCG@10. The test data predictions were made using
a model with 1.1 times the number of rounds determined for
the validation data. For tuning the GBDT hyperparameters, the
number of leaves in the decision tree num_leaves were (15,
31, 63, 127, 255, 511, 1023, 2047, 4095), and the minimum
number of data assigned to a leaf min_data_in_leaf
were (10, 25, 50, 100, 200). The other hyperparameters
were set as follows: lambda_l1 = 0, lambda_l2 =
0, feature_fraction = 0.7, bagging_fraction =
1.0, and bagging_freq = 0. For the learning rate, we
used learning_rate = 0.1 for hyperparameter tuning and
learning_rate = 0.05 for all other learning.

For Dataset 1, when using the lambdarank and
lambdaloss loss functions in the GBDT model, the
lambdarank_truncation__level was fixed at
30, and the label_gain step width δ was fixed at
1.0. For Dataset 2, when using the lambdarank and
lambdaloss loss functions in the GBDT model, the
lambdarank_truncation__level was fixed at
200, and the label_gain step width δ was fixed at 0.01.

In the RankSVM experiments, the PKRank-based method
used the implementation presented by Kuo et al. [32], and the
SPDRank-based method used the implementation presented
by Ohue et al. [17]. The PKRank method searches for the
cost parameter C (10−9, 10−8, ..., 100) and the parameter γ
(10−6, 10−5, 10−4, 10−3) using an RBF kernel.

Figure 1(a) shows the training and evaluation procedure
for Dataset 1. The test data are those listed in Table II.
The validation data used for hyperparameter tuning does not
contain information related to the proteins in the test. For
example, when predicting the CHEMBL3706318 assay of
PDE 2A as test data, 22 assays of PDE 7A and 2 assays of
PDE 8B were used as validation data, and the assays of PDE
2A were not used. The metric used for tuning parameters was
NDCG@10.

Figure 1(b) shows the procedure for Dataset 2. For Dataset
2, data were randomly split into training and test sets in a
1 : 1 ratio. The training data size differs substantially from that
of Dataset 1. Thus, the training data were sampled randomly
so that the number of instances was 10000. Moreover, the
parameter tuning was performed by 5-fold cross-validation,
which was sampled randomly so that the number of training
instances for each fold was 10000. The metric used for tuning
parameters was NDCG%10, representing the performance of
the top 10% of the prediction.

IV. RESULTS

Figure 2 shows the experimental results for the 2 datasets
using 2 metrics, NDCG@K and NEDCG@K. A higher score
for a few samples indicates that the model can rank the active
compounds at the top of the prediction.

Figure 2(a) shows that the NDCG@K for the top dozen
cases are lambdaloss, lambdarank, RankSVM, and regres-
sion, in that order. This result indicates that learning-to-rank
with GBDT provides more appropriate insights than existing
RankSVM or GBDT with regression in a compound screening
of novel targets using assays with various environments, such
as Dataset 1.

In Figure 2(b), for the 97,782 test samples, the regression
is best for NDCG@1, while RankSVM and lambdaloss are
better for NDCG@10. After that, no significant difference is
present in the overall performance between lambdarank and
regression. These results indicate that learning-to-rank is less
effective for single assays such as Dataset 2. Moreover, this
method does not consistently outperform regression methods.
Note that RankSVM exhibited the lowest prediction accuracy;
however, this was not an exact comparison, as RankSVM with
fingerprinted features and linear kernels was used for Dataset
2.

In Figure 2(c), lambdaloss shows the best NEDCG value,
followed by lambdarank, RankSVM, and regression, in that
order. Here, the NEDCG values for the regression method are
generally equal to or less than 0.0, making it less accurate than
random guessing. Therefore, a learning-to-rank method rather
than regression learning is appropriate for LBVS that uses data
on different assay systems and multiple proteins. As in Dataset
1, it is essential to consider how much the prediction of a new
target has improved from a random prediction, and NEDCG
is available for this assessment.

Figure 2(d) is almost the same as Figure 2(b). This is
because the prediction is improved at least a dozen times
compared to the random prediction in each model.

Table III summarizes the NDCG and NEDCG scores of the
top 10 and top 10 % for Dataset 1 and Dataset 2 for each
model, respectively. The top 10 % comprises 11 samples for
Dataset 1 and 9,778 samples for Dataset 2. The scores for
the top 10 samples indicate how well they predict compounds
with good activity at the limited top of the prediction. The
scores for the top 10 % indicate the performance of observing
the top cases in the dataset.
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Fig. 2: Prediction results for Dataset 1 and Dataset 2. The evaluation metrics are NDCG and NEDCG of top K samples,
and the lines indicate the metrics for increasing values of K. The dashed lines in NEDCG plots represent random guessing
(NEDCG = 0).
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TABLE III: NDCG and NEDCG scores of the top 10 and top 10% samples for Dataset 1 and Dataset 2 for each model. Boldface
indicates the value for the method exhibiting the highest prediction accuracy for each dataset. Italics indicate methods judged
to have negative values in NEDCG, i.e., worse than random guessing.

lambdaloss (rank) lambdarank (rank) RankSVM (rank) GBDT regression
NDCG NEDCG NDCG NEDCG NDCG NEDCG NDCG NEDCG

Dataset 1 (top 10, K = 10) 0.593 0.286 0.543 0.212 0.465 0.077 0.404 −0.056
Dataset 1 (top 10%, K = 11) 0.600 0.600 0.541 0.541 0.472 0.472 0.413 0.413
Dataset 2 (top 10, K = 10) 0.342 0.340 0.278 0.275 0.368 0.366 0.239 0.236
Dataset 2 (top 10%, K = 9,778) 0.405 0.364 0.526 0.494 0.310 0.263 0.559 0.529

V. DISCUSSION

A. Training of the GBDT

Figure 3 shows the convergence of validation scores in the
training of the GBDT model. The validation data in Dataset 1
consists of assay data for target proteins that the training data
does not contain. Thus, the model overfits the training data as
the number of iterations increases. In contrast, the validation
data in Dataset 2 are randomly split from the training data.
We believe that the similar distribution of the training and
validation data is why the scores did not decrease during
training. In this experiment, the early stopping parameter was
set to 1000 rounds; thus, no concern regarding overfitting was
present even with Dataset 1.

B. NEDCG is an intuitive metric

The proposed metric, NEDCG, is effective for complicated
tasks such as Dataset 1. In Dataset 1, the NEDCG of the
GBDT regression is negative. This score implies that GBDT
regression predicts worse than random prediction. If we had
used NDCG, we would not have noticed this problem. Using
the NEDCG score, we could detect such hazards for the first
time. Thus, in a complicated task such as Dataset 1, examining
whether the prediction accuracy is sufficient is crucial. How-
ever, the difference between the NDCG and NEDCG values
was slight because the Dataset 2 results improved substantially
from the random predictions. For such datasets, either NEDCG
or NDCG provide similar results.

C. Comparison of RankSVM and GBDT

From Dataset 1, the GBDT ranking method was more
accurate than RankSVM. The RankSVM method learns or-
dinal relations for all pairs, whereas the methods using the
lambdarank and lambdaloss loss functions aim to optimize
NDCG directly. In addition, the GBDT model is more practical
than RankSVM for large datasets because the computation
time of the RankSVM method increases in the order of the
cube of the number of training instances. Thus, the GBDT-
based method with lambdarank and lambdaloss outperforms
the RankSVM-based method regarding prediction accuracy for
LBVS and their applicability to a large dataset.

D. Regression vs. learning-to-rank

This section discusses when to use the learning-to-rank.
Although learning-to-rank is superior because it can integrate
assay data from different environments to make predictions, as

shown in the results section, this approach has the following
disadvantages compared to regression.

RankSVM, lambdarank, and lambdaloss train in pairs or
listwise, which can be slower than regression. However,
in learning-to-rank with GBDT, some techniques reduce
the computational complexity, such as branch pruning with
lambdarank_truncation_level, which is a parame-
ter of LightGBM. Similarly, SPDRank can reduce training
time for large datasets by ignoring meaningless order [17].
Therefore, no considerable difference in training time between
regression and learning-to-rank methods was observed in most
cases.

Thus, the ranking prediction should be used as an alternative
when regression prediction cannot achieve practical accuracy,
for example, in Dataset 1. The information on activity values
obtained in regression is lost in the ranking score. The exper-
imental results with a single assay in Dataset 2 showed little
effect of learning-to-rank, and the predictions from regression
learning seem to be somewhat reliable. Conversely, in Dataset
1, the regression method was comparable to random predic-
tion, indicating that learning-to-rank was effective for datasets
with multiple assays and targets. If the NEDCG is near 0.0,
we can quantitatively judge that the model is not predicting
adequately. Therefore, we can answer when to use learning-to-
rank based on the newly proposed evaluation metric, NEDCG.

VI. CONCLUSION

We evaluated the ranking prediction performance of the
GBDT model using a lambdarank loss function aimed to
directly optimize the NDCG to improve the accuracy of VS
through learning-to-rank. The comparison between the pro-
posed method with RankSVM and GBDT regression models
showed that the proposed method outperformed the other mod-
els on a dataset that integrated biochemical assay data from
various environments, a case generally considered challenging
for regression prediction. We also examined the range of
effectiveness of learning-to-rank and found that the effective-
ness was not superior to regression methods for all ranking
predictions and that learning-to-rank was particularly effective
in situations where data integration was essential. In addition,
the proposed NEDCG provided a more intuitive evaluation
of prediction favorability than the existing NDCG because a
value of NEDCG greater than or equal to 0 indicates that the
prediction is better than a random prediction.

We focused on the GBDT method using learning-to-rank.
However, deep learning models, which have been gaining pop-



ularity in recent years, may further improve the performance
of LBVS using learning-to-rank [33]. Although learning-to-
rank with deep learning models is not necessarily superior to
descriptor-based machine learning methods such as GBDT and
RankSVM, an examination of their limitations is required.

Furthermore, learning-to-rank may apply to other tasks in
chemoinformatics besides affinity prediction, such as ADMET
(absorption, distribution, metabolism, excretion, and toxicity)
prediction [34], QSAR (Quantitative Structure-Activity Rela-
tionship) [18], and drug-target interaction prediction [35]. For
these tasks, ranking predictions may be practical for small
datasets for regression prediction or when integrating assay
data from various environments.
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[8] N. Schneider, C. Jäckels, C. Andres, and M. C. Hutter, “Gradual in silico
filtering for druglike substances,” J. Chem. Inf. Model., vol. 48, no. 3,
pp. 613–628, 2008.

[9] F. Nigsch, A. Bender, J. L. Jenkins, and J. B. Mitchell, “Ligand-
target prediction using Winnow and naive Bayesian algorithms and the
implications of overall performance statistics,” J. Chem. Inf. Model.,
vol. 48, no. 12, pp. 2313–2325, 2008.

[10] Y. O. Adeshina, E. J. Deeds, and J. Karanicolas, “Machine learning clas-
sification can reduce false positives in structure-based virtual screening,”
Proc. Natl. Acad. Sci., vol. 117, no. 31, pp. 18477–18488, 2020.

[11] A. M. Wassermann, H. Geppert, and J. Bajorath, “Searching for target-
selective compounds using different combinations of multiclass support
vector machine ranking methods, kernel functions, and fingerprint de-
scriptors,” J. Chem. Inf. Model., vol. 49, no. 3, pp. 582–592, 2009.

[12] T. Joachims, “Optimizing search engines using clickthrough data,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2002, pp.
133–142.

[13] S. Agarwal, D. Dugar, and S. Sengupta, “Ranking chemical structures
for drug discovery: a new machine learning approach,” J. Chem. Inf.
Model., vol. 50, no. 5, pp. 716–731, 2010.

[14] F. Rathke, K. Hansen, U. Brefeld, and K.-R. Müller, “StructRank: a
new approach for ligand-based virtual screening,” J. Chem. Inf. Model.,
vol. 51, no. 1, pp. 83–92, 2011.

[15] W. Zhang, L. Ji, Y. Chen, K. Tang, H. Wang, R. Zhu, W. Jia, Z. Cao,
and Q. Liu, “When drug discovery meets web search: learning to rank
for ligand-based virtual screening,” J. Cheminform., vol. 7, no. 1, p. 5,
2015.

[16] S. D. Suzuki, M. Ohue, and Y. Akiyama, “PKRank: a novel learning-
to-rank method for ligand-based virtual screening using pairwise kernel
and ranksvm,” Artif. Life Robot., vol. 23, no. 2, pp. 205–212, 2018.

[17] M. Ohue, S. D. Suzuki, and Y. Akiyama, “Learning-to-rank technique
based on ignoring meaningless ranking orders between compounds,” J.
Mol. Graph. Model., vol. 92, pp. 192–200, 2019.

[18] K. Matsumoto, T. Miyao, and K. Funatsu, “Ranking-Oriented Quanti-
tative Structure–Activity Relationship Modeling Combined with Assay-
Wise Data Integration,” ACS Omega, vol. 6, no. 18, pp. 11964–11973,
2021.

[19] C. J. Burges, “From RankNet to LambdaRank to LambdaMART: An
Overview,” Tech. Rep. MSR-TR-2010-82, 2010.
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