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Abstract—EXplainable Artificial Intelligence (XAI) is a vibrant
research topic in the artificial intelligence community. It is raising
growing interest across methods and domains, especially those
involving high stake decision-making, such as the biomedical
sector. Much has been written about the subject, yet XAI still
lacks shared terminology and a framework capable of providing
structural soundness to explanations. In our work, we address
these issues by proposing a novel definition of explanation that
synthesizes what can be found in the literature. We recognize
that explanations are not atomic but the combination of evidence
stemming from the model and its input-output mapping, and
the human interpretation of this evidence. Furthermore, we fit
explanations into the properties of faithfulness (i.e., the expla-
nation is an accurate description of the model’s inner workings
and decision-making process) and plausibility (i.e., how much
the explanation seems convincing to the user). Our theoretical
framework simplifies how these properties are operationalized,
and it provides new insights into common explanation methods
that we analyze as case studies. We also discuss the impact
that our framework could have in biomedicine, a very sensitive
application domain where XAI can have a central role in
generating trust.

Index Terms—explainability, machine learning, biomedicine

I. INTRODUCTION

The advent of Deep-Learning (DL) allowed for raising the
accuracy bar of Machine Learning (ML) models for countless
tasks and domains. Riding the wave of enthusiasm around such
stunning results, DL models have been deployed even in high-
stake decision-making environments, not without criticism [1].
These kinds of environments require not only high predictive
accuracy but also an explanation of why that prediction
was made. The need for explanations initiated the discussion
around the explainability of DL models, which are known to
be “black boxes”. In other words, their inner workings are hard
for humans to be understood. Who should be accountable for
a model-based decision and how a model came to a certain
prediction are just some of the questions that drive research
on explaining ML models. This is particularly relevant, for in-

stance, in the biomedical field, where human lives are at stake,
and understanding the reasoning behind a model’s predictions
is essential to guarantee safety and avoid costly errors [2].
Furthermore, the ability to explain how a model arrived at
a certain conclusion can increase the understanding of the
underlying biological mechanisms, enabling more informed
support to decision-making for clinicians and researchers.
With the first recent attempts of the legislative machinery to
make explanations for automatic decisions a user’s right [3],
the pressure on generating explanations for the ML model’s
behaviors raised even more. Despite the endeavor of the XAI
community to develop either models that are explainable by
design [4]–[6] and methods to explain existing black-box
models [7]–[9], the way to DL explainability is paved with
results that are mostly preliminary and anecdotal in nature
(e.g., [10]–[12]). Most notably, it is hard to relate different
pieces of research due to a lack of common theoretical grounds
capable of supporting and guiding the discussion. In particular,
we detect a gap in the literature on foundational issues such
as a shared definition of the term “explanation” and the
users’ role in the design and deployment of explainability for
complex ML models. The XAI community suffers from the
paucity of common terminology, with only a few attempts
of establishing one, focusing more on the distinction among
the terms “interpretable”, “explainable”, and “transparent”
rather than the inner structure and meaning of an explanation
(e.g., [13]–[15]). Similarly, a lack of an outline of the main
theoretical components of the discussion around explainability
disperses research, while the current literature finds it hard to
provide the involved stakeholders with principled analytical
tools to operate on black-box models. This trend has been
detected in the delicate field of biomedicine and addressed
with context-specific guidelines [16]. In this work, we propose
a simple, general, and effective theoretical framework that
outlines the core components of the explainability machinery
and lays out grounds for a more coherent debate on how
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to explain the decisions of ML models. Such a framework
is not meant to be set in stone but rather to be used as a
common reference among researchers and iteratively improved
to fit more and more sophisticated explainability methods
and strategies. We hope to provide shared jargon and formal
definitions to inform and standardize the discussion around
crucial topics of XAI. The core of the proposed theoretical
framework is a novel definition of explanation, that draws
from existing literature in sociology and philosophy but, at
the same time, is easy to operationalize when analyzing
a specific approach to explain the predictions made by a
model. We conceive an explanation as the interaction of two
decoupled components, namely evidence and its interpretation.
Evidence is any sort of information stemming from a ML
model, while an interpretation is some semantic meaning that
human stakeholders attribute to the evidence to make sense
of the model’s inner workings. We relate these definitions
to crucial properties of explanations, especially faithfulness
and plausibility. Jacovi & Goldberg define faithfulness as “the
accurate representation of the causal chain of decision-making
processes in a model” [17]. We argue that faithfulness relates
in different ways to the elements of the proposed theoretical
framework because it assures the interpretation of the evidence
is true to how the model actually uses it within its inner
reasoning. A property orthogonal to faithfulness is plausibility,
namely “the degree to which some explanation is aligned with
the user’s understanding of the model’s decision process” [17].
A follow-up work by Jacovi & Goldberg addresses plausibility
as the “property of an explanation of being convincing towards
the model prediction, regardless of whether the model was
correct or whether the interpretation is faithful” [18]. We relate
plausibility to faithfulness and highlight a need for faithfulness
to be embedded in explainability methods and strategies, as
well as plausibility as an important (yet not indispensable)
property of the same. This is particularly true in the biomedical
field as a high stake environment, where it is crucial for
the explanation to portray the decision-making process of
the model accurately. As case studies, we zoom in on the
evaluation of faithfulness of some popular DL explanation
tools and strategies, such as “attention” [9], [19], Gradient-
weighted Class Activation Mapping (Grad-CAM) [20] and
SHapley Additive exPlanations (SHAP) [8]. In addition, we
look at the faithfulness of models traditionally considered
intrinsically interpretable (a notion with distance ourselves to)
such as a linear regressors and models based on fuzzy logic.

II. DESIGNING EXPLAINABILITY

Research in XAI seizes the problem of explaining models
for decision-making from multiple perspectives. First of all,
we observe that most of the existing literature uses the terms
“interpretable” and “explainable” interchangeably, while some
have highlighted the semantic nuance that distinguishes the
two words [21]. We argue that the term explainable (and, by
extension explainability) is more suited than the term inter-
pretable (similarly, by extension, interpretability) to describe
the property of a model for which effort is made to generate

human-understandable clarifications of its decision-making
process. The definition of explanation is thus crucial and will
be discussed extensively in section IV. Our claim follows
two rationales: (i) the term interpretation is used within our
proposed framework with a precise meaning that deviates from
the current literature and that we deem more accurate (see
Section IV-C); (ii) we argue against grouping models into
inherently interpretable and post-hoc explainable. Recently,
Molnar has defined “intrinsic interpretability” as a property
of ML models that are considered fully understandable due to
their simple structure (e.g., short decision trees or sparse linear
models), while “post hoc explainability” as the need for some
models to apply interpretation methods after training [22].
Although principled, we drop this hard distinction by claiming
that all models embed a certain degree of explainability.
Even though, to the best of our knowledge, no metrics can
quantify explainability yet, we can assert that this depends
on multiple factors. In particular, a model is as explainable
as the explanations that are proposed to the user to justify a
certain prediction are effective. Thus, bringing the human into
the explainability design loop is key to deploying models that
are actually explainable. Consequently, there are models for
which it is easier to design explanations (i.e., the so-called
white-box models, e.g., linear regression, decision trees, rule-
based systems, etc.) and models for which the same process
is more difficult (i.e., the so-called black-box models, e.g.,
artificial neural networks). The notion of difficulty here is
defined by the inner complexity of the model, which relates to
the amount of cognitive load the user can sustain. We highlight
that the degree of explainability moves along a gradient from
black-box to white-box models, without clear-cut thresholds.
Nevertheless, in section VI, we show that explanations for both
white-box and black-box models fit our proposed framework.
Thus they both can be structured homogeneously and more
deeply understood by leveraging theoretical tools. Most impor-
tantly, we advocate for explainability design as a crucial part of
Artificial Intelligence (AI) software development. We endorse
Chazette et al., in claiming that explainability should be
considered a non-functional requirement in the software design
process [23]. Thus explanations for any ML models (and,
especially, for DL models) should be accounted for within the
initial design of an AI-powered application. Even the most
accurate black-box model should not be deployed without an
explanation mechanism backing it up, as we cannot be sure
whether it learned to discriminate over meaningful or wrong
features. A classic example is a dog image classification model
learning to detect huskies because of the snowy setting instead
of the features of the animal itself, involuntarily deceiving
the users [7]. A design-oriented approach to AI development
should involve taking humans into the loop, thus fostering a
human-centered AI which is more intelligible by design and
is expected to increase trust in the end-users [24].



III. CHARACTERISING THE INFERENCE PROCESS OF A
MACHINE LEARNING MODEL

In this section, we provide a formal characterization of
the inference process of a general ML model, without any
constraint on the task. Such a characterization will be used
to introduce the terminology which substantiates the main
components of our proposed framework of explainability,
whose details are provided in section IV. To this end, we
define a ML model M as an arbitrarily complex function
mapping a model input to a model conclusion through a
sequential composition of transformation steps. The whole
characterization is exemplified in Figure 1.

A. Elements of the Characterization

Model Input. The model input consists of a set of features,
either coming from an observation or synthetically generated.
Model Conclusion. The model conclusion is the final output
of the model, which is the outcome of the last link in the chain
of transformations over the model input.
Transformation steps. Overall, the decision-making process
of M can be represented as a chain of N > 0 transformations
of the original model input, that are causally related. This
causal chain is enforced by model design (e.g., the sequence
of layers in the architecture of a neural network or the depth
of a decision tree). We call each stage of this causal chain
a “transformation step”, and we denote it with si, for i ∈
[1, N ]. The transformation steps advance the computation from
the model input to the model output through transformation
functions.
Transformation functions. Each transformation step si re-
lates to a set of ni “transformation functions” fi,mi

, where
mi ∈ [1, ni] indicates one of the possible learnable functions
at si. Note that, in general, the number of such functions
would be infinite, but we discretize it assuming that we are
working on a real scenario using some computational machine.
The transformation functions are mappings from a feature set
xi−1,j to a feature set xi,z , with j ∈ [1, ki−1], z ∈ [1, ki] (i.e.,
the arrows enclosed in the ellipses in Figure 1). The number
ki denotes the cardinality of the set of all possible feature sets
generated by all possible learnable transformation functions at
step si. These transformation functions are generally opaque
to the user in the context of the so-called black-box models.
At every step in the chain of transformation steps, the model
learns one of the possible transformation functions (i.e., the op-
timal function according to some learning scheme, highlighted
with a solid line in Figure 1). That is, the model learns the
function f̂i,mi

such that f̂ = f̂N,mN
◦ . . .◦ f̂i,mi

◦ . . .◦ f̂1,m1
is

the overall approximation of the true mapping from the model
input to the model conclusion. According to the notation
above, we denote the model input as x0,0 (or simply x) and
the model conclusion as ŷN,j , with j ∈ [1, kN ] (or simply ŷ).

B. Observations

We asserted that, at each transformation step si, the model
picks one function f̂i,mi among ni such that f̂i,mi(xi−1, j) =
xi,z . This raises issues that increase model opacity. At step

Fig. 1: Example of transformation functions for two steps si.

si the chosen function f̂i,mi
can map different intermediate

transformations xi−1,j of the feature set at the previous
transformation step into the same transformation xi,z one step
further in the chain. This means that the same outcome in the
transformation chain, be it intermediate or conclusive, can be
achieved through different rationales, and it could be difficult
for a human user to understand which of them is the one the
model has actually learned. This can be a result of a high
dimensionality of the set of transformation functions, as well
as a high complexity of the transformed feature set.

For example, pictures of zebras and salmon can be discrim-
inated on the basis of either their anatomy (i.e., zebras have
stripes, salmon have gills) or the environment/habitat (i.e.,
zebras live in savannas and salmon in rivers). If we consider
a relatively complex model such as a Convolutional Neural
Network (CNN), where a transformation step coincides with a
layer within the network architecture, it is generally difficult to
understand which kind of transformation fi,mi

this represents,
if any that is human-understandable. Thus, how do we make
sense of which of the ni possible alternative mappings of
xi−1,j led to xi,z? This remains an open question, with major
implications for the discussion around faithfulness, which we
will enlarge in the next section.

IV. DEFINING EXPLANATIONS

Recent work on ML interpretability produced multiple
definitions for the term “explanation”. According to Lipton,
“explanation refers to numerous ways of exchanging infor-
mation about a phenomenon, in this case, the functionality
of a model or the rationale and criteria for a decision, to
different stakeholders” [25]. Similarly, for Guidotti et al. “an
explanation is an “interface” between humans and a decision-
maker that is at the same time both an accurate proxy of
the decision-maker and comprehensible to humans” [26].
Murdoch et al. add to how the explanation is delivered to
the user stating that “an explanation is some relevant knowl-
edge extracted from a machine-learning model concerning
relationships either contained in data or learned by the model.
[...] They can be produced in formats such as visualizations,
natural language, or mathematical equations, depending on the
context and audience” [27]. On a more general note, Mueller
et al. state that “the property of “being an explanation” is
not a property of the text, statements, narratives, diagrams,



or other forms of material. It is an interaction of (i) the
offered explanation, (ii) the learner’s knowledge and beliefs,
(iii) the context or situation and its immediate demands, and
(iv) the learner’s goals or purposes in that context” [28].
Finally, Miller tackles the challenge of defining explanations
from a sociological perspective. The author highlights a wide
taxonomy of explanations but focuses on those which are an
answer to a “why-question” [29].

The definitions mentioned above offer a well-rounded per-
spective on what constitutes an explanation. However, they
fail to highlight its atomic components and to characterize
their relationships. We synthesize our proposed definition of
explanation based on complementary aspects of the existing
definitions. The result is a concise definition that is easy to op-
erationalize for supporting the analysis of multiple approaches
to explainability. Our full proposed framework is reported in
the scheme in Figure 2, whose components will be discussed
in the following sections.

A. Explanation

Given a model M which takes an input x and returns a
prediction ŷ, we define explanation the output of an interpre-
tation function applied to some evidence, providing the answer
to a “why question” posed by the user.

B. Evidence

Evidence (e) is whatever kind of objective information
stemming from the model we wish to provide an explanation
for and that can reveal insights into its inner workings and
rationale for prediction (e.g., attention weights, model param-
eters, gradients, etc.).

1) Evidence Extractor: An evidence extractor (ξ) is a
method fetching some relevant information about either M , x,
ŷ, or a combination of the three. Then: e = ξ(x, ŷ,M). Ex-
amples of evidence extractors are, e.g., encoder plus attention
layers, gradient back-propagation, and random tree approxima-
tion, with the corresponding extracted evidence being attention
weights, gradient values, and random tree mimicking the
original model. In the peculiar case of a white-box approach,
that is, ML models designed to be easily interpretable by

Fig. 2: Overview of the theoretical framework of explainability.

the user (e.g., linear regression, fuzzy rule-based systems) the
extraction of evidence is straightforward since all components
of the model directly present a piece of semantic information
in a human-comprehensible format.

2) Explanatory Potential: We define explanatory potential
(ϵ(e)) of some evidence as the extent to which the evidence
influences the causal chain of transformations steps of a model.
Intuitively, the explanatory potential indicates “how much” of
a model the selected type of evidence can explain. It can be
computed either by counting how many transformation steps
are impacted by the evidence (i.e., breadth), or how much of
each single transformation step is impacted by the evidence
(i.e., depth).

C. Interpretation

An interpretation is a function g associating semantic mean-
ing to some evidence and mapping its instances into explana-
tions either for a given prediction or the whole model. Then
an explanation can be defined as either E = g(e, x, ŷ,M), or
E = g(e,M), respectively.

1) Local vs. Global Interpretations: In accordance with the
existing literature, we relate “evidence” and “interpretation”
to the concepts of locality and globality. Both evidence and
interpretations can either be local or global. Local evidence
(e.g., attention weights, gradient, etc.) relates relevant model
information to a particular model input x and correspond-
ing prediction ŷ. Global evidence (e.g. full set of model
parameters) is generally independent of specific inputs and
might explain higher level functioning (providing deeper or
wider info) of the model or some of its sub-components.
Similarly, interpretations can provide either a local or a global
semantic of the evidence. A local interpretation of attention
could be, e.g., “attention weights are descriptive of input
components’ importance to model output”. On the other hand,
a global interpretation of the same evidence may aggregate
all the attention weights’ heatmaps for a whole dataset and
highlight specific patterns. For example, in a dog vs. cat
classification problem, a global interpretation of attention may
be represented by clusters of similar parts of the animal’s body
(e.g., groups of ears, tails, etc.) highlighted by the attention
activations.

2) Generating Interpretations: Given some evidence in-
volved in one or more steps si of M , we guess how this
evidence is involved in the opaque input-to-output transfor-
mations by formulating an interpretation g of some extent of
the decision-making process of the model. At a low level, we
generate a candidate g that encapsulates the approximations
f∗
i,mi

=̃f̂i,mi of the behavior of certain functions learned by
M at some steps si. On an abstract level, interpretations
can be seen as hypotheses about the role of evidence in the
explanation-generation process. Like a good experimental hy-
pothesis, a good interpretation satisfies two core properties: (i)
is testable, and (ii) clearly defines dependent and independent
variables. Interpretations can be formulated using different
forms of reasoning (e.g., deductive, inductive, abductive, etc.).
In particular, the survey on explanations and social sciences



by Miller reports that people usually make assumptions (i.e.,
in our context, choose an interpretation) via social attribution
of intent (to the evidence) [29]. Social attribution is concerned
with how people attribute or explain the behavior of others,
and not with the real causes of the behavior. Social attribution
is generally expressed through folk psychology, which is
the attribution of intentional behavior using everyday terms
such as beliefs, desires, intentions, emotions, and personality
traits. Such concepts may not truly be the cause of the
described behavior but are indeed those humans leverage to
model and predict each others’ behaviors. This may generate
misalignment between a hypothesized interpretation of some
evidence and its actual role within the inference process of the
model. In other words, reasoning on evidence through folk
psychology might generate interpretations that are plausible
but not necessarily faithful to the inference process of the
model (such terms will be further explored in section V).

D. Explanation Interface

Explanations are meant to be delivered to some target users.
We define eXplanation User Interface (XUI) as the format in
which some explanation is presented to the end user. This
could be, for example, in the form of text, plots, infographics,
etc. We argue that an XUI is characterized by three main
properties: (i) human understandability, (ii) informativeness,
and (iii) completeness. The human-understandability is the
degree to which users can understand the answer to their
“why” question via the XUI. This property depends on user
cognition, bias, expertise, goals, etc., and is influenced by
the complexity of the selected interpretation function. The
informativeness (i.e., depth) of an explanation is a measure
of the effectiveness of an XUI in answering the why question
posed by the user. That is the depth of information for some
si of great interest in the XUI. The completeness (i.e., width)
of an explanation is the accuracy of an XUI in describing the
overall model’s workings, and the degree to which it allows
for anticipating predictions. That is the width in terms of the
number of si the XAI spans. Note that both informativeness
and completeness are bound by the explanatory potential of
the evidence (e.g., attention weights do not explain the full
model, just some transformation steps, while the full set of
model parameters does).

V. CONCERNING FAITHFULNESS AND PLAUSIBILITY

In Section IV-C2 we observed that social attribution is a
double-edged sword for the interpretation generation process,
as it may incur in propelling plausibility without accounting
for faithfulness. This issue was highlighted by Jacovi &
Goldberg, who introduced a property of explanations called
aligned faithfulness [18]. In the words of the authors, an
explanation satisfies this property if “it is faithful and aligned
to the social attribution of the intent behind the causal chain of
decision-making processes”. Our proposed framework allows
us to go a step forward in the characterization of this property.
We note that the property of aligned faithfulness pertains
only to interpretations, not evidence. The latter by itself

Fig. 3: Overview of the outcome on the user of the interaction
between faithfulness and plausibility.

has no inherent meaning, its semantics is defined by some
interpretation that may or may not involve social attribution
of intent to the causal chain of inference processes.

A. Faithfulness

Given an interpretation function g describing some trans-
formation steps si within a model M ’s inference process, we
want to be able to prove that g is faithful (at least to some
extent) to the actual transformations made by M to an input
x to get a prediction ŷ. Namely, we define the property of
faithfulness of an interpretation ϕi(g, e), as the extent to which
an interpretation g accurately describes the behavior of some
transformation functions fi,mi

that some model learned to map
an output xi−1,j at si−1 into xi,z at si making use of some
instance evidence e. Given some evidence e and its interpre-
tation function g, we say that a related explanation is faithful
to some transformation steps if the following conditions hold:
(i) the evidence e has explanatory potential ϵi > 0, and (ii)
the interpretation g has faithfulness ϕi > 0. Then we can
define the faithfulness of an explanation (Φ) as a function
of the faithfulness of the interpretation of each step involved
and the related explanatory potential. For example, we could
define Φ =

∑
i ϵiϕi ∀i ∈ I ⊆ [1, N ] where I is the set of

indices of transformation steps si that involved the evidence
e. Thus the faithfulness of an explanation is the sum of the
faithfulness scores of its components, i.e., the faithfulness of
the interpretations of the evidence involved in the generation
of the explanation. Besides, the related explanatory power
weights the faithfulness of each interpretation, following the
intuition that evidence with higher ϵ should have a larger
impact on the overall faithfulness score of the interpretation.

We can have various measures of faithfulness that are
associated with different explanation types, in the same way
as we have different metrics to evaluate the ability of a ML
model to complete a task. Thus ϕi is implicitly bounded.

When designing a faithful explanatory method, we can opt
for two approaches. We can achieve faithfulness “structurally”
by enforcing this property on pre-selected interpretations in
model design (e.g., imposing constraints on transformation
steps limiting the range of learnable functions). This direction
has been recently explored by Jain et al. [30] and Jacovi &
Goldberg [18]. An alternative, naive, strategy is trial-and-error:
formulating interpretations and assessing their faithfulness via
formal proofs or requirements-based testing using proxy tasks.



While formal proofs are still missing in current literature,
a number of tests for faithfulness have been recently pro-
posed [10]–[12], [31].

B. Plausibility

The combined value of the three above-mentioned proper-
ties of XUIs (i.e., human understandability, informativeness,
and completeness) drives the plausibility of an explanation.
More specifically, we define plausibility as the degree to which
an explanation is aligned with the user’s understanding of
the model’s partial or overall inner workings. Plausibility is
a user-dependent property and as such, it is subject to the
user’s knowledge, bias, etc. Unlike faithfulness, the plausi-
bility of explanations can be assessed via user studies. Note
that a plausible explanation is not necessarily faithful, just
like a faithful explanation is not necessarily plausible. It is
desirable for both properties to be satisfied in the design of
some explanation. Interestingly, an unfaithful but plausible
explanation may deceive a user into believing that a model
behaves according to a rationale when it is actually not
the case. This raises ethical concerns around the possibility
that poorly designed explanations could spread inaccurate or
false knowledge among the end-users. Figure 3 provides a
simplified overview of the problem.

VI. FRAMING COMMON EXPLAINABILITY STRATEGIES

A. Attention

The introduction of attention mechanisms has been one
of the most notable breakthroughs in DL research in recent
years. Originally proposed for empowering neural machine
translation tasks [9], it is currently employed in many state-
of-the-art approaches for numerous cognitive tasks. The chain
of transformations in the simplest neural model making use of
self-attention is a three-step causal process: (i) encoding, (ii)
weight encodings by attention scores, and (iii) decoding into
model output. Then we can define the function learned by the
model as the composition f̂ = f3,m3

◦f2,m2
◦f1,m1

, where each
fi for i ∈ [1, 3] corresponds to the respective transformation
function in the causal chain.
Evidence. For an input x split into t sequentially related
tokens, let f1,m1

be an encoder function such that f1,m1
(x) =

X̄ is the vector of the encoded model input tokens. Then,
f2,m2(X̄) =

∑t
j=1 αj x̄j , for all model input tokens x̄j ∈ X̄ ,

is the linear combination of the encodings weighted by their
corresponding attention scores. Then eatt = {αj}t1.

eatt = {αj | f2,m2
(X̄) =

t∑
j=1

αj x̄j} (1)

That is, the evidence eatt related to a model input is the set
of weights αj produced by the attention layer. The explanatory
potential ϵ(eatt) is the ratio between the number of parameters
involved in the analyzed attention layer with respect to the total
number of parameters of the model.

Interpretation. The interpretation of the evidence is a func-
tion gatt(e(x, ŷ)) that describes function f3,m3 , i.e., how the
weighted encodings are decoded into the model conclusion.
Faithfulness. Note that we do not know the faithful interpre-
tation function, so we hypothesize its behavior by formulating
a candidate interpretation, a process that is usually guided
by the researcher’s intuition. In the case of attention, an
interpretation generally shared among researchers is that “the
value of each attention weight describes the importance of the
corresponding token in the original input to the model output”.
Unfortunately, albeit plausible, research in this field disproved
such an interpretation of attention weights [10]–[12], leaving
the role of attention for explainability (if any) still unclear.

B. Grad-CAM

A popular explanation called Grad-CAM [20] presents a
method to explain a prediction made by an image classifier
using the information encompassed in the back-propagated
gradient of a prediction. In short, Grad-CAM uses the infor-
mation about the gradient computed at the last convolutional
layer of a CNN given a certain input x to assign a feature
importance score for each input feature.
Evidence. The Grad-CAM evidence-extraction ξgrad method
consisted of using the feature activation map of a convolutional
layer from a given input x to compute the neurons’ importance
weights αi. The explanatory potential ϵ(egrad) is related, as for
the attention mechanism, to the number of parameters analyzed
w.r.t the total number of parameters of the method.
Interpretation. Grad-CAM claim that the computed neuron’s
weights αi corresponds to the part of the input features that
influence the final prediction the most.
Faithfulness. The authors measure the faithfulness of the
model using image occlusion. That is, they patched some part
of the input to the model, and they measured the correlation
with the difference in the final output. With this faithfulness
metric, a high correlation means a high faithfulness in the
explanation.

C. SHAP

Lundberg & Lee in 2017 proposed SHAP [8], a method to
assign an importance value to each feature used by an opaque
model M to explain a single prediction ŷ. SHAP has been
presented as a generalization of other well-known explanation
methods, such as Local Interpretable Model-agnostic Expla-
nations (LIME) [32], DeepLIFT [33], Layer-wise relevance
propagation [34], and classic Shapley value estimation [8].
The SHAP values are defined as:

h (z′) = β0 +

M∑
i=1

βiz
′
i (2)

where z′i ∈ {0, 1}M is a simplified version of the input x, M
is the number of features used in the explanation, and βi ∈ R
is a coefficient that represents the effect that the i− th feature
has on the output.



Evidence. The only evidence eshape = ξshap(M,x) used
by SHAP is the set of predictions made by the classifier in
a neighborhood of x. To compute the explanatory potential
ϵ (eshap), we can use the ratio of predictions employed to
compute the SHAP values w.r.t the total number of possible
samples in the countable (and possibly infinite) neighborhood
of x. Thus, the greater the number of predictions we have, the
higher the exploratory potential of the method.
Interpretation. The interpretation gshap of the evidence pro-
posed by SHAP is that, given eshap, we can locally reproduce
the behavior of a complex unknown model with a simple
additive model h (·), and analyzing h (·) we can get a local
explanation Eshap of the behavior of the initial model. That
is, the proposed interpretation of the evidence results from the
optimization problem in Equation 2.
Faithfulness. Even though the authors do not present a mea-
sure of the faithfulness of the explanation directly, they provide
three desirable properties that are i) local accuracy, ii) miss-
ingness, iii) consistency. The authors showed that their method
is the only one that satisfies all these properties, assessing a
requirements-based form of faithfulness as described in § V.

D. Linear regression models

Linear regression models are not an explanation method but
are normally considered intrinsically interpretable. Following
our proposed framework, we claim that defining them, among
other models, as intrinsically interpretable is inaccurate and
often misleading. In fact, the definition of what is simple to
be interpreted by humans is not well-defined, and we can
enumerate various examples of models that are easy to be
interpreted by a practitioner but are almost black-boxed for
non-expert users.

A linear regressor f̂lin(·) is typically formulated as:

f̂lin(x) = β0 +

N∑
i=1

βix
′
i (3)

where βi are the weights of the learned features, and N is the
feature space dimension.
Evidence. The implicit assumption, claiming that a lin-
ear model is intrinsically interpretable, is that the weights
βi, 1 ≤ i ≤ M are a good explanation for the model. Thus
elin = {βi}N1 . With a linear model, we have the maximum
explanatory potential ξlin because with elin we can fully
describe the model.
Interpretation. Assuming a normalization of the features,
we can say that the higher the value of βi, the higher the
contribution of the feature xi to the model prediction.
Faithfulness. There are no doubts about the faithfulness of
the interpretation of the predictions given the normalization
assumption, and in fact, a linear model is normally consid-
ered an intrinsically interpretable method. However, in a real
scenario, its plausibility to a non-expert user is not guaranteed.

E. Fuzzy models

Fuzzy models, especially in the form of Fuzzy Rule-Based
Systems (FRBS), represent effective tools for the modeling of

complex systems by using a human-comprehensible linguistic
approach. Thanks to these characteristics, they are generally
considered white or gray boxes and are often mentioned
as good options for interpretable AI [35]. FRBSs perform
their inference (i.e., calculate a conclusion) by exploiting a
knowledge base composed of linguistic terms and rules. A
fuzzy rule is usually expressed as a sentence in the form:

IF <antecedent> THEN <consequent> (4)

where antecedent is a logic formula created by concatenat-
ing clauses like ‘X IS a’ with some logical operators, where
T is a linguistic variable (associated with one input feature)
and a is a linguistic term. Thanks to this representation,
the antecedent of each rule give an intuitive and human-
understandable characterization of some class/group.
Evidence. The rules are good evidence for a large part of
the model: they characterize the feature space by using a
self-explanatory formalism that can be read and validated, by
human operators.
Interpretation. The fuzzy sets, that are used to create the
fuzzy terms and evaluate the satisfaction of the antecedents,
have self-explanatory interpretations: they define how much a
value belongs to a given set by means of membership func-
tions. The fuzzy rules are also self-explanatory. The only part
that requires a proper interpretation is the output calculation
function. In the case of Sugeno reasoning, such functions can
be seen as linear regression models, hence all considerations
discussed in Section VI-D remain valid also in the case of
fuzzy models.
Faithfulness. Similarly to the case of linear regression models,
there are no doubts about the faithfulness of the interpretation
of the predictions given a normalization step. However, in
the case of special transformations (e.g., log-transformation),
some of the intrinsic interpretability might be lost in favor of
better fitting to training data [35]. Since it is often the case that
features in biomedicine (see, e.g., clinical parameters) follow a
log-normal distribution, such transformations are very frequent
and delicate.

VII. ON THE IMPACT ON BIOMEDICINE

AI models have revolutionized the field of biomedicine,
enabling advanced analyses, predictions, and decision-making
processes. However, the increasing complexity of AI models,
such as deep learning neural networks, has raised concerns re-
garding their lack of explainability. The present paper provides
a common ground on theoretical notions of explainability,
as a pre-requisite to a principled discussion and evaluation.
The final aim is to catalyze a coherent examination of the
impact of AI and explainability by highlighting its significance
in facilitating trust, regulatory compliance, and accelerating
research and development. Such a topic is particularly well-
suited for high-stake environments, such as biomedicine.

The use of black box machine learning models in the
biomedical field has been steadily increasing, with many
researchers relying on them to make predictions and gain



insights from complex datasets. However, the opacity of these
models poses a challenge to their explainability, leading to
the question of what criteria should be used to evaluate their
explanations [36]. Two key criteria that have been proposed are
faithfulness and plausibility. Faithfulness is important because
it allows researchers to understand how the model arrived at
its conclusions, identify potential sources of error or bias, and
ultimately increase the trustworthiness of the model. In the
biomedical field, this is particularly important as the stakes
are high when it comes to making accurate predictions about
patient outcomes and the decision maker wants to have the
most accurate motivation behind the model suggestions. On
the other hand, while a faithful explanation may accurately re-
flect the model’s inner workings, it may not be understandable
or useful to stakeholders who lack expertise in the technical
details of the model. Plausibility is therefore important because
all the people involved in the decision-making process gain
insights from the model that they can act upon and can
communicate these insights to other stakeholders in a way that
is meaningful and actionable. Both faithfulness and plausibility
are important criteria for evaluating explanations of black-box
machine-learning models in the biomedical field. Researchers
should strive to balance these criteria to provide the best
explanations to the stakeholders involved; this can be achieved
by involving them during the entire development of the AI
machine models and tools.

Beyond the need for faithfulness and plausibility, the con-
crete impact of explainability on AI for biomedicine is broad.
Explainability plays a crucial role in establishing trust between
healthcare professionals and AI systems. In critical biomedi-
cal applications, such as disease diagnosis, treatment recom-
mendation, and patient monitoring, transparency in decision-
making is essential for clinicians to make informed decisions.
By providing interpretable explanations, AI models can help
healthcare professionals understand the reasoning behind the
model’s predictions, leading to increased trust and acceptance
[37]. Moreover, regulatory bodies of biomedicine, such as the
Food and Drug Administration (FDA) in the United States,
require transparency and accountability for AI models used in
clinical decision-making. XAI techniques provide an opportu-
nity to meet regulatory standards by enabling model auditing
and validation. Through explainability, clinicians and regula-
tory bodies can assess the risk associated with the deployment
of AI models, ensuring patient safety and compliance with
ethical guidelines [38]. Finally, explainability can significantly
enhance the research and development process in biomedicine.
By uncovering the underlying factors and features that con-
tribute to an AI model’s decision, researchers can gain valuable
insights into disease mechanisms, biomarkers, and potential
therapeutic targets.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel theoretical framework
that brings order and opportunities for a better design of
explanations to the XAI community by introducing formal
terminology. The framework allows dissecting explanations

into evidence (factual data coming from the model) and
interpretation (a hypothesized function that describes how the
model uses the evidence). The explanation is the product of
the application of the interpretation to the evidence and is
presented to the target user via some form of explanation
interface. These components allow for designing more princi-
pled explanations by defining the atomic components and the
properties that enable them. There are three core properties:
(i) the explanatory potential for the evidence (i.e., how much
of the model the evidence can tell about); (ii) the faithfulness
of the interpretation (i.e., whether the interpretation is true
to the decision-making of the model); (iii) the plausibility
of the explanation interface (i.e., how much the explanation
makes sense to the user and is intelligible). We show that the
theoretical framework can be applied to explanations coming
from a variety of methods, which fit the atomic components
we propose. The lesson learned from analyzing explanations
over the lent of our proposed framework is that humans
(both stakeholder and researcher) should be involved in the
design of explainability as soon as possible in the AI-powered
software design process, especially in sensitive application
domains like biomedicine, where a blind application of black-
box approaches hampers the right to an explanation. Involving
stakeholders allows for a proper filling of each component
in the theoretical framework of explainability, and informs
model design. The top-down approach that is established this
way propels the human understanding of how AI (and ML in
particular) works, possibly fostering user trust in the system.
We believe that high stake decision-making domains such as
biomedicine would be those which will benefit the most from
a more rigorous definition of core concepts of explainability,
with opportunities to cement a conscious aid of AI-assisted
decisions. Therefore, in future work, we want to apply our
theoretical study to a real-case scenario in the biomedical
sector and analyze its implementation with the help of human
feedback, to better focus on the plausibility analysis of our
theoretical framework.

REFERENCES

[1] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nat Mach Intell,
vol. 1, no. 5, pp. 206–215, May 2019.

[2] S. Kundu, “Ai in medicine must be explainable,” Nature Medicine,
vol. 27, no. 8, pp. 1328–1328, Aug 2021.

[3] B. Goodman and S. Flaxman, “European union regulations on algorith-
mic Decision-Making and a “right to explanation”,” AIMag, vol. 38,
no. 3, pp. 50–57, Oct. 2017.

[4] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin, “This
looks like that: Deep learning for interpretable image recognition,” in
Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Red Hook, NY, USA: Curran Associates Inc.,
2019.

[5] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable convolutional neural
networks,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8827–8836.

[6] B.-J. Hou and Z.-H. Zhou, “Learning with interpretable structure from
gated RNN,” IEEE Trans Neural Netw Learn Syst, vol. 31, no. 7, pp.
2267–2279, Jul. 2020.

[7] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and



Data Mining, ser. KDD ’16. New York, NY, USA: Association for
Computing Machinery, Aug. 2016, pp. 1135–1144.

[8] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, p. 4768–4777.

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.0473

[10] S. Jain and B. C. Wallace, “Attention is not explanation,” in Proceed-
ings of the 2019 Conference of the North. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2019.

[11] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA,
USA: Association for Computational Linguistics, 2019, pp. 11–20.

[12] S. Serrano and N. A. Smith, “Is attention interpretable?” in Proceedings
of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics,
Jul. 2019, pp. 2931–2951.

[13] M. Graziani, L. Dutkiewicz, D. Calvaresi, J. Amorim, K. Yordanova,
M. Vered, R. Nair, P. Henriques Abreu, T. Blanke, V. Pulignano,
J. Prior, L. Lauwaert, W. Reijers, A. Depeursinge, V. Andrearczyk,
and H. Müller, “A global taxonomy of interpretable ai: unifying the
terminology for the technical and social sciences,” Artificial Intelligence
Review, 09 2022.

[14] M.-A. Clinciu and H. Hastie, “A survey of explainable AI terminology,”
in Proceedings of the 1st Workshop on Interactive Natural Language
Technology for Explainable Artificial Intelligence (NL4XAI 2019).
Association for Computational Linguistics, 2019, pp. 8–13. [Online].
Available: https://aclanthology.org/W19-8403

[15] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu,
“Definitions, methods, and applications in interpretable machine
learning,” Proceedings of the National Academy of Sciences, vol. 116,
no. 44, pp. 22 071–22 080, Oct. 2019, company: National Academy
of Sciences Distributor: National Academy of Sciences Institution:
National Academy of Sciences Label: National Academy of Sciences
Publisher: Proceedings of the National Academy of Sciences. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.1900654116

[16] L. Arbelaez Ossa, G. Starke, G. Lorenzini, J. E. Vogt, D. M. Shaw,
and B. S. Elger, “Re-focusing explainability in medicine,” Digit Health,
vol. 8, p. 20552076221074488, Feb. 2022.

[17] A. Jacovi and Y. Goldberg, “Towards faithfully interpretable NLP
systems: How should we define and evaluate faithfulness?” in
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, Jul. 2020, pp. 4198–4205. [Online]. Available: https:
//aclanthology.org/2020.acl-main.386

[18] ——, “Aligning faithful interpretations with their social attribution,”
Trans. Assoc. Comput. Linguist., vol. 9, pp. 294–310, Mar. 2021.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[20] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in 2017 IEEE International Conference on
Computer Vision (ICCV), 2017, pp. 618–626.

[21] B. Mittelstadt, C. Russell, and S. Wachter, “Explaining explanations in
AI,” in Proceedings of the Conference on Fairness, Accountability, and
Transparency, ser. FAT* ’19. New York, NY, USA: Association for
Computing Machinery, Jan. 2019, pp. 279–288.

[22] C. Molnar, Interpretable Machine Learning, 2nd ed. Independently

published (February 28, 2022), 2022. [Online]. Available: https:
//christophm.github.io/interpretable-ml-book

[23] L. Chazette and K. Schneider, “Explainability as a non-functional
requirement: challenges and recommendations,” Requirements Engineer-
ing, vol. 25, no. 4, pp. 493–514, Dec. 2020.

[24] B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, and B. Zhou, “Trustworthy
AI: From principles to practices,” ACM Comput. Surv., Aug. 2022.

[25] Z. C. Lipton, “The mythos of model interpretability: In machine
learning, the concept of interpretability is both important and slippery.”
Queue, vol. 16, no. 3, p. 31–57, jun 2018.

[26] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Comput. Surv., vol. 51, no. 5, aug 2018.

[27] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Def-
initions, methods, and applications in interpretable machine learning,”
Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 44, pp. 22 071–22 080, Oct.
2019.

[28] S. T. Mueller, R. R. Hoffman, W. J. Clancey, A. Emrey, and
G. Klein, “Explanation in human-ai systems: A literature meta-
review, synopsis of key ideas and publications, and bibliography for
explainable AI,” CoRR, vol. abs/1902.01876, 2019. [Online]. Available:
http://arxiv.org/abs/1902.01876

[29] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artif. Intell., vol. 267, pp. 1–38, 2019. [Online]. Available:
https://doi.org/10.1016/j.artint.2018.07.007

[30] S. Jain, S. Wiegreffe, Y. Pinter, and B. C. Wallace, “Learning to
faithfully rationalize by construction,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, Jul. 2020, pp. 4459–4473.
[Online]. Available: https://aclanthology.org/2020.acl-main.409

[31] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and
B. Kim, “Sanity checks for saliency maps,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems, ser.
NIPS’18. Red Hook, NY, USA: Curran Associates Inc., Dec. 2018,
pp. 9525–9536.

[32] M. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Demonstrations. San Diego, California:
Association for Computational Linguistics, Jun. 2016, pp. 97–101.
[Online]. Available: https://aclanthology.org/N16-3020

[33] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important fea-
tures through propagating activation differences,” in Proceedings of the
34th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
Sydney, NSW, Australia: PMLR, 2017, pp. 3145–3153.

[34] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On Pixel-Wise explanations for Non-Linear classifier deci-
sions by Layer-Wise relevance propagation,” PLoS One, vol. 10, no. 7,
p. e0130140, Jul. 2015.

[35] C. Fuchs, S. Spolaor, U. Kaymak, and M. S. Nobile, “The impact
of variable selection and transformation on the interpretability and
accuracy of fuzzy models,” in 2022 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB).
IEEE, 2022, pp. 1–8.

[36] C. Combi, B. Amico, R. Bellazzi, A. Holzinger, J. H. Moore, M. Zitnik,
and J. H. Holmes, “A manifesto on explainability for artificial intelli-
gence in medicine,” Artif Intell Med, vol. 133, p. 102423, Oct. 2022.

[37] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad,
“Intelligible models for healthcare: Predicting pneumonia risk and
hospital 30-day readmission,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 1721–1730. [Online]. Available:
https://doi.org/10.1145/2783258.2788613

[38] H. Suresh and J. Guttag, A Framework for Understanding Sources of
Harm throughout the Machine Learning Life Cycle. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3465416.3483305

http://arxiv.org/abs/1409.0473
https://aclanthology.org/W19-8403
https://www.pnas.org/doi/abs/10.1073/pnas.1900654116
https://aclanthology.org/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
http://arxiv.org/abs/1902.01876
https://doi.org/10.1016/j.artint.2018.07.007
https://aclanthology.org/2020.acl-main.409
https://aclanthology.org/N16-3020
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/3465416.3483305

	Introduction
	Designing Explainability
	Characterising the Inference Process of a Machine Learning Model
	Elements of the Characterization
	Observations

	Defining explanations
	Explanation
	Evidence
	Evidence Extractor
	Explanatory Potential

	Interpretation
	Local vs. Global Interpretations
	Generating Interpretations

	Explanation Interface

	Concerning Faithfulness and Plausibility
	Faithfulness
	Plausibility

	Framing Common Explainability Strategies
	Attention
	Grad-CAM
	SHAP
	Linear regression models
	Fuzzy models

	On the impact on biomedicine
	Conclusions and Future Work
	References

