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Abstract

In this paper we present a computational model which decodes the
spatio-temporal data from electro-physiological measurements of neuronal
networks and reconstructs the network structure on a macroscopic do-
main, representing the connectivity between neuronal units. The model
is based on reservoir computing network (RCN) approach, where exper-
imental data is used as training and validation data. Consequently, the
model can be used to study the functionality of different neuronal cultures
and simulate the network response to external stimuli.

1 Introduction

Electrophysiological study in neuroscience provides a wide-vision of the interplay
between cells of different types at different scales [1]. Such studies vary from
investigating the function of a single cell up to studying the dynamics of complex
systems consisting of a large number of cells [2], in the pursuit of obtaining a
comprehensive picture of the brain activity. In particular, in-vitro studies of
neurons give a simplified representation of the structure and functionality of
these networks in living organisms [3,4]. Such approach assists in decomposing
the extremely complex structure of living brain into smaller functional blocks.

As the complexity of the biological system increases, it becomes more and
more challenging to analyze or model the behavior in such systems. Numerous
models are designed to picture the dynamics behind neuronal activity, starting
from single cell models (e.g., Hodgkin–Huxley model [5]) up to models of large
populations [6, 7]. Various methods focus on the biophysical properties of the
cells (e.g. membrane voltage), while others focus on the point-process of in-
formation propagation (e.g., spike trains). Some approaches use experimental
observations to adapt a model which will be a computational counterpart to
the biological system [8–10]. Such methods use Machine- or Deep- Learning
techniques to train a given model to construct the desired outcome. While for
some research questions such approach could be very inefficient and/or compu-
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Figure 1: A general description of reservoir computing network (RCN). Time-
sequence u[n] is processed in a higher dimensional space by a non-linear reservoir
operator, which updates in recurrent manner, via complex interconnections, a
reservoir state x[n] according to the history of the input. This reservoir state is
then transformed in an output y[n].

tationally expensive, for others it can provide a practical solution to construct
a computational tool for various applications.

We propose in this work a simplified approach for interpreting electrophys-
iological signals from neuronal networks from which a functional connectivity
between neuronal populations is retrieved and an interplay between them can
be predicted at a macroscopic level. The model is based on Reservoir computer
network (RCN) [11], since the information emerged by sampling electrophysi-
ological signals from a cultured neuronal network is obtained from a complex
neural circuitry. The complexity of these circuits cannot be easily understood
from a standard measurement analysis, and hence they are modeled as nonlin-
ear networks with inner random connections. The general concept of RCN is
depicted in Fig. 1.

The general form of the RCN dynamics is given by:

x[n] = f
(
x[n− 1], u[n]

)
(1)

and,
y[n] = g

(
x[n]

)
(2)

where u[n], y[n] is the input and output signals, respectively, at a discrete time
n; x[n] is a reservoir state in a higher dimensional space at a discrete time n. f
and g are functions.

Using this model we are able to extract a macroscopic graph representing the
structure of the culture under test, where each node of the network represents
a neural circuit (population of neurons); and the connections (edges) between
them represent the weighted interaction between the populations.

2 Model description

We consider a multi-site measurement of electrophysiological signals from a neu-
ronal culture, such as 2D microelectrode array (MEA). We seek to represent the
tested culture as a network where each node corresponds to one measurement

2



electrode. Each electrode samples the electrophysiological signals from the neu-
ron ensemble (consisting of a few neurons) found in its vicinity. Therefore,
each node has to represent a complex neuronal circuit whose dynamics by it-
self is driven by many interacting neurons. We hence define the domain of the
measurement as the macroscopic domain, which is described by the network in
question; whereas the neuronal structure which is sampled by each node will
be referred as the microscopic domain (or later as the reservoir domain). The
data unit which is contained in each of these nodes is a sample of the elec-
trophysiological signals expressed in the instantaneous spike-rate measured in
a specified time window. By “data unit” we refer to a set of data sampled at
the network nodes in a definite time window, which contains information on the
status of the network, with a memory on the previous time steps, and the ability
to predict the next step accordingly. The time window is determined by a char-
acteristic rate of the network, which can be obtained, for example, by analyzing
the inter-spike interval (ISI) histogram [12]. This unit of time is dependent on
many properties of the network such as neuron density in the culture, age of the
culture and other [13], and it characterizes the signal integration time of each
node.

Let us represent the macro-domain state of the network at each time step
n = 1, 2, 3... with a vector y[n], where each component of the vector describes
the state of a single node, i.e., y[n] is the signal representation of each electrode
at time n. The purpose of this work is to find a time propagation operator Ô,
such that:

y[n+ 1] = Ô
{
y[n]

}
(3)

where the operator Ô, which is likely to be non-linear due to the nature of
neuronal networks, should describe as closely as possible the experimental ob-
servation in the electrophysiological measurements, i.e., we aim to fit a model
to an observation which can mimic or predict the spatio-temporal patterns of
the neuronal activity in the culture under test.

We then consider the fact that each node in the macro-domain network rep-
resents a complex neuronal signal-processing-unit. It arises from the fact that
typically every measurement site is surrounded by neurons which may be as
many as a dozen. The morphology and functionality of each of these micro-
circuits embedded in each node of the macro-domain network cannot be easily
obtained from the electrophysiological measurements of standard recording sys-
tems. Also modeling of such neuronal structures is not an easy task and has been
studied for decades, with numerous models for different scales of dimensions and
time [6, 7]. No strong consensus however is achieved about the authenticity of
these models.

Hence our approach is to represent each measurement node (electrode) as
a gate to a particular neuronal circuit (reservoir), where the signals measured
at each node are an outcome of a complex operation involving each circuit and
the whole network. We therefore propose the artificial neural network (ANN)
structure depicted in Fig. 2. This structure represents a simplification of the
neuronal dynamics, where each of the neuronal circuits is a black box, whose

3



Figure 2: A scheme of data processing for each time step of the data sequence
y[n],y[n + 1],y[n + 2] . . . At each time step n a state y[n], representing the
instantaneous activity of the macro-domain network (here encoded in color-
scale), is processed by three layers: input, reservoir and output (detailed below)
and eventually transformed to the next state of the network, y[n + 1]. The
whole process is described by the operator Ô as was defined in (3).

morphology and functionality are not known but assumed to be reasonably
random. As seen in Fig. 2, we assume that the signal sampled at each node
is an input to and an output from a higher dimensional domain with a specific
connectivity and functionality. At the input of the ANN, the signal at each
node is transformed to a corresponding reservoir-state (in the reservoir domain)
by a set of uncoupled weighted connections (Input layer). Each micro-reservoir,
associated with a node in the macro-domain, represents a micro-neuronal circuit
embedded at each of the measurement sites, and has inner interconnections
which represent the connectivity of the micro-circuits (Reservoir Layer). Each
such circuit performs a nonlinear transformation, creating an updated reservoir
state, which on one side is stored as a memory to be integrated to the next time
steps, and on the other side is used to form the next state of the macro-domain
network by weighting and coupling all the micro-reservoir states (Output Layer);
then the whole process repeats cyclically. This kind of recurrent network is
known as Reservoir Computing Network (RCN) and has been widely studied.

3 Model Design

3.1 Domains and Dimensions

As mentioned above, the model distinguishes between two domains: The macro-
domain which refers to the experimental observations, represented by the cor-
responding network; and the micro- (or reservoir) domain which refers to the
neuronal units embedded in each of the macro network nodes, with no experi-
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mental data. We denote by Nch the dimension of the macro-network which in
fact represents the number of nodes in the network, where each node is directly
associated with an electrode (or a channel) in the experimental measurement.
Nres is the dimension of the reservoir.

Assuming that the neurons are uniformly distributed in the culture, we ap-
point a fixed number of connections between each node and the corresponding
micro-circuit, such that for each node of the network there is one micro-reservoir
(see Fig. 2):

Nres = mNch (4)

where m is an integer number. It follows that each m components in the vector
space of the reservoir domain correspond to one node in the macro domain. In
fact, we may associate m with a relative size of each micro-circuit.

3.2 Input Layer

The input layer refers to the stage between the macro domain and the reservoir
one. Here we assume that the data at each of the nodes is a linear transformation
of the corresponding input state to the reservoir, such that each component
in the macro-domain transforms directly to corresponding m inputs of Nres

components in the reservoir domain, and refer to a single micro-circuit. This is
done with the following transformation:

xin[n] = Winy[n] (5)

where y ∈ RNch×1 is the vector representing the state of the network nodes.
xin ∈ RNres×1 is the corresponding vector in the reservoir domain. Therefore,
Win ∈ RNres×Nch is a linear transformation. Since Win maps each node to a
corresponding micro-reservoir, it is represented by the following matrix:

Win =



(
w

(1)
in

)
0 0 · · · 0

0
(
w

(2)
in

)
0 · · · 0

0 0
(
w

(3)
in

)
0

...
...

. . .

0 0 0
(
w

(Nch)
in

)


(6)

where each w
(i)
in ∈ Rm×1, i = 1, 2, ..., Nch is a vector with random weights taken

from a Normal distribution (peaked at 0), normalized such that ∥w(i)
in ∥2 = 1,

which can also be expressed as:

WT
inWin = INch

(7)

where WT
in is the transposed input matrix and INch

is the unit matrix of order
Nch.
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3.3 Reservoir Layer

The reservoir layer contains Nch independent micro-circuits with m nodes each
(total Nres nodes). Each such circuit models the neuronal circuit around each
electrode. This layer has two main functionalities: 1. nonlinear time-operator.
2. Reservoir state integrator. In particular we consider the following dynamics
for the reservoir network:

x[n] = fNL

(
Ŝ · (xin[n] + αWresx[n− 1])

)
(8)

where x[n] is the reservoir state obtained at time step n, from the combination of
the input state xin[n] (given by (5)) and an inner transformation of the reservoir
state at time step n− 1, x[n− 1]. This discrete differential relation provides cu-
mulative data at each time step and carries the temporal memory on the activity
of the network. Ŝ is a diagonal matrix containing normally-distributed synaptic
strengths on its diagonal, expressing the variance of the synaptic nonlinear re-
sponse of the micro-reservoirs. fNL is the nonlinear function. Typical functions
that are used in this approach are tanh or sigmoid, which have the saturation
property and prevent the reservoir from exploding. In this work we tested a
few nonlinear functions similar to the mentioned above. Wres ∈ RNres×Nres is
a matrix, which performs an inner map (i.e. from and back to the reservoir
domain) of the reservoir state in previous step to a new state; and it represents
the inner connections within each of micro-reservoirs. We assume that Wres is
a norm-preserving linear map, i.e. conserving the energy of the state. There-
fore, we represent this transformation by an orthogonal matrix with normally
distributed random weights, with zero mean. In addition, we do not allow the
coupling between the different micro-reservoirs at this point, hence we represent
this matrix in the following block-diagonal form:

Wres =



(
W

(1)
res

)
0 · · · 0

0
(
W

(2)
res

)
· · · 0

...
...

. . .

0 0
(
W

(Nch)
res

)

 (9)

where each W
(i)
res ∈ Rm×m, i = 1, 2...Nch is a random-orthogonal matrix. Note

that each block acts on its corresponding micro-reservoir state. Next we define
0 < α < 1 which is the memory parameter. It expresses the temporal memory
strength, i.e. for how long the current state has an effect on the next steps.
Since Wres is an orthogonal matrix, then α will express the energy decay rate of
the state. α = 0 indicates that the system is memoryless and the current state
at time step n depends only on the input.

3.4 Output Layer

The output layer transforms the reservoir state back to the macroscopic domain.
Here we assume a fully connected layer, such that all theNres reservoir nodes are
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weighted and connected to Nch nodes of the macroscopic network. This layer
practically expresses the synaptic connectivity between the different nodes of
the network. It is assumed that this transformation is purely linear, taking in
consideration that the overall nonlinearity of the model is dominated by the
reservoir layer. The relation of the output layer is given by:

y[n+ 1] = Woutx[n] + b (10)

where Wout ∈ RNch×Nres is the output weight matrix, b ∈ RNch×1 is a vector
of biases.

Unlike Win, Wres and Ŝ, which are matrices with random and constrained
weights, Wout has no constraints on the values of its weights, rather it is the
layer which is trained with linear regression, as common in RCN approach, to
obtain the desired output.

3.5 Data Structure

The model is, in effect, founded on a rate-coded spiking neural network. Hence
the electrophysiological data required for this approach should result from mul-
tidimensional sequences of spikes. In regard to this work, electrophysiological
signals were recorded by a 60 channel MEA as voltage time traces (measured
around each of the electrodes). This data was preprocessed with spike and burst
detection algorithms [14] and exported as time traces, containing instantaneous
data of spike activity counted in specific time bins. The value of the time bins
is derived from the characteristic inter-burst interval (IBI) which is found in
the raw data (typical value is around 4− 5ms). In fact, this characteristic IBI
value describes the typical signal propagation time between two neuronal pop-
ulations. The resulting time traces are short time events (102 − 103ms) and are
taken from temporal network occurrences (such as network bursts or a time-
windowed network response to stimulus), where activity of numerous channels
is found within a specific time window. Practically, the data in this process
undergoes a significant dimensionality reduction and hence no massive datasets
are needed for training.

4 Training

As in most Machine- or Deep-learning based models, the training is performed
by finding the minimum value of an objective (or loss) function, while optimizing
the weights between the different layers of the ANN. In particular, as was also
mentioned above, the training of RCN-based models is performed only on the
linear output layer, which makes the procedure computationally lighter. In
fact, in the model discussed in this paper, the task is to optimize output layer’s
matrix Wout and biases b, for each input-output pair (y[n],y[n + 1]) from the
training data, according to (5)-(10). To achieve the optimization we use the
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lasso regression method [15], where we find the optimal (Wout,b), such that:

min
w,b

(
∥y(w)− ỹ∥2 + λ

∑
i

|wi|

)
(11)

where ỹ is the experimental observation time-trace, y is the model computed
time trace ((5) - (10)); w is the output matrix Wout weights; and λ is the lasso
regression parameter [15].

5 Linearized Model and Functional Connectiv-
ity Analysis

Let us observe the dynamics of the model. If the initial state of the reservoir is
x[0] = 0 (unexcited state), we note that, without any input y, the time sequence
of the reservoir state, x[n], (8), will not change its state and as a consequence,
according to (5), (8) and (10), no dynamics in the network nodes y[n] will
be observed. Let us assume (without the loss of generality) that at a certain
time-step n = 1 we have a small perturbation, y[1], such that the following
holds:

Ŝi,i
∑
j

Wij
iny

j [1] = δi (12)

where i = 1, 2, 3 . . . Nres and j = 1, 2, 3 . . . Nch indicate indices of each of the
arrays (matrix or vector), and δ ≪ 1 is an arbitrary small value. In such case,
for nonlinear functions that satisfy f(ξ) ≈ ξ for ξ ≪ 1, we get the linear regime
of (8). If such regime is maintained in the following k − 1 steps, from (5),(8)
and (10) it yields that the network output at time step k+1 is:

y[k + 1] ≈
k∑

n=1

αn−1 {Tn−1}y[k − n+ 1] (13)

where,
Tp = WoutŜ[WresŜ]pWin (14)

is a Nch × Nch transfer matrix of order p (note that we omitted the constant
bias vector b from (10), since it describes a constant DC offset, and as known
a posteriori, its value is small).

Assuming that the regression described in Section 4 (Eqn. (11)) as part of
the model training has achieved low training and validation error score, means
that a feasible parametrization for the equations of the nonlinear model ((5)
- (10)) has been found. It follows that the transfer matrices (14) contain the
connectivity weights between the nodes in the linear regime, for different orders
of interaction.

Note that by eliminating the reservoir operation, i.e., canceling the memory
of previous steps, that is, taking α → 0 in (13), will lead to the following
equation:

y[k + 1] = T0y[k] (15)
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We hence define:
T0 = WoutŜWin (16)

as the intrinsic connectivity matrix, since it describes directly the weights be-
tween the network nodes for two consecutive states, regardless of the memory
stored in the reservoir. Note that each component T i,j

0 shows the directed
connection j → i, i.e., from node j at time n to node i at time n + 1. The
higher order Tp (p = 1, 2, . . . k) matrices contain the corrections (still in the lin-
ear regime) to the connection weights following the reservoir activation. These
transfer matrices express both excitatory connections (positive values) and in-
hibitory connections (negative values).

6 Conclusion

In this paper we briefly described a computational model which decodes spatio-
temporal electrophysiological data and obtains a network graph on a macro-
scopic scale, depicting relationships between neuronal populations. We tested
this model on microelectrode array (MEA) measurements of neuronal cultures
of mice cortical cells [16], where the data served as the training and validation
of the model.

6.1 Retrieval of Connectivity Map

As shown in Section 5, the primary connections of the network, which do not
depend on any inputs (i.e., static connections) are given by the Intrinsic con-
nectivity matrix, T0 (16). We hence can represent these connections by a graph,
where each node corresponds to a MEA electrode in the measurement. Fig. 3
shows the network graph obtained by the discussed model, trained on data pro-
duced by a specific neuronal culture. This graph shows the network weighted
connectivity between neuronal populations sampled by the array of electrodes.

6.2 Test and Simulation

Given a trained model we possess the time propagation operator (3) (given by
(5)-(10)), such that by giving an initial network state y[1] we could reproduce
(or predict) the state of the network at the following time steps y[2],y[3] . . .y[k],
by propagating y[1] in time.

Assuming that by training, the model has acquired the functional and struc-
tural properties of the neuronal network up to some degree of validity, it is then
possible to test the response of the network to a specific input, which the model
possibly has not been trained on. In such way we could simulate the response
of the network, for example, to a local stimulus. In Fig. 4 we show an example
of testing a response of the model to a local stimulus given at a specific node of
the network. In this case, we trained the model on a basal spontaneous activity
of 10 minutes, assuming that the functionality of the network has been learned.
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Figure 3: An example of a connectivity map (or a graph) obtained by the ANN
model discussed in this paper. The map corresponds to 60 electrode MEA layout
(of 8× 8 matrix), where each node represents an electrode in the measurement.
Each electrode samples signals from a population of neurons. The connections
presented in the figure are taken from the intrinsic connectivity matrix T0 (16),
associated with the linearized model (Section 5). The model has been trained on
data from microelectrode array (MEA) measurements [16]. Note that positive
weights assigned to excitatory connections and negative to inhibitory. Threshold
of |T0| > 0.05 was applied for visualization.

Figure 4: Simulation of network response to a local stimulus. The model has
been trained on basal spontaneous activity of the culture and was tested on
a response to a stimulus at electrode (node) 45 (lightning symbol on the left
figure). Left: Map corresponding to 8 × 8 MEA. Each pixel represents an
electrode, the colorscale indicates the time-integrated response to the stimulus.
Right: instantaneous spike rate (ISR) as a function of time (time-bin = 5ms) of
the four most responsive electrode in the network. The figures describe the time
evolution of the network (response) following an initial state y[1] (stimulus).
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Currently the model is being benchmarked with synthetic data using NEST
simulator [17], where we test the capacity of the model to predict the functional
connectivity and the temporal response of the network. The response predic-
tion is also being tested on experimental data of MEA recordings. A detailed
description on this part of the work will be reported in a follow-up publication.
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