
This document is published in:

2014 IEEE Symposium on Computational Intelligence
in Big Data (CIBD): proceedings (2014). IEEE, 1-8.
DOI: http://dx.doi.org/10.1109/CIBD.2014.7011537

Ins t i tu t ional Repos i tory

© 2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

http://dx.doi.org/10.1109/CIBD.2014.7011537
http://e-archivo.uc3m.es/

A Scalable Machine Learning Online Service for
Big Data Real-Time Analysis

Alejandro Baldominos∗, Esperanza Albacete∗, Yago Saez∗ and Pedro Isasi∗
∗Computer Science Department

Universidad Carlos III de Madrid, Madrid, Spain
Email: {alejandro.baldominos, esperanza.albacete, yago.saez, pedro.isasi}@uc3m.es

Abstract—This work describes a proposal for developing
and testing a scalable machine learning architecture able to
provide real-time predictions or analytics as a service over
domain-independent big data, working on top of the Hadoop
ecosystem and providing real-time analytics as a service through
a RESTful API. Systems implementing this architecture could
provide companies with on-demand tools facilitating the tasks
of storing, analyzing, understanding and reacting to their data,
either in batch or stream fashion; and could turn into a valuable
asset for improving the business performance and be a key
market differentiator in this fast pace environment. In order to
validate the proposed architecture, two systems are developed,
each one providing classical machine-learning services in different
domains: the first one involves a recommender system for web
advertising, while the second consists in a prediction system which
learns from gamers’ behavior and tries to predict future events
such as purchases or churning. An evaluation is carried out
on these systems, and results show how both services are able
to provide fast responses even when a number of concurrent
requests are made, and in the particular case of the second system,
results clearly prove that computed predictions significantly
outperform those obtained if random guess was used.

I. INTRODUCTION

Each day, the amount of data and the number of changing
data sources continue to grow. As companies are collecting
vast amounts of data from the Internet, their own web sites,
social media channels, customer information, call center re-
ports or financial transactions; the need for analytical tools
able to leverage knowledge behind all these data is imperative.
Even more important than this is the fact that this growth
is going to increase exponentially in the future, as there
are other emerging areas which are about to come such as
Smart Cities and Internet of Things, where the number of
potential devices capable of generating high volumes of data
is going to be multiplied as a result of what is known as M2M
(machine-to-machine interaction). All these incoming changes
will require an adequate scaled infrastructure which allows
storing, processing and responding to an increasing number
of batch and stream requests.

This vast amount of information, if conveniently processed,
can reveal relevant insights about each business. For instance,
analysis of the former data may serve to predict the upcoming
friendships or interests of a social network user, suggest
related products in which a customer may be interested to
purchase or adapt the content and structure of an online
course to better fit the students’ needs. At this point it is
where machine learning techniques can help to analyze big
data sources and extract the important trends, links, rules...

or in other words: knowledge. This field has been studied
since the first appearance of the Knowledge Discovery in
Databases (KDD) concept, but depending on the data sources
and the domains, different approaches and techniques were
used, such as association, clustering, classification, prediction,
sequential patterns identification, decision trees or, what is
more usual, a hybrid approach resulting from a combination
of these approaches. However, when a big data framework
involves real-time analytics, a specific software architecture is
needed. Typically, a distinction is made when considering how
this data is analyzed with regard to time constraints:

• Batch processing, where a set (typically a very big
one) of data is processed to retrieve some statistics
of other information. This processing is not required
to happen in real-time, as the expected result is not
needed within a strong time constraint. This process-
ing is the most adequate for those machine learning
techniques or algorithms that require to run periodic
training and update processes.

• Stream processing, where new data must be pro-
cessed in real-time, in many times considering the
historical data as well, in order to generate a value.
Most often, it involves the use of previously trained
models, in order to avoid too much processing and
ultimately reduce response times.

Typical examples of batch processing would involve com-
puting trends or extracting patterns from customers activity
during a period, that can be categorized per product, web-
site, geographical distribution or user profiles in a social
network. For this type of operations, frameworks such as
the MapReduce [1] paradigm are suitable, as they enable
distributed processing of the data over a cluster of inexpensive
nodes. However, additional value can be obtained when stream
processing comes into play, as it unveals new possibilities
such as providing real-time recommendations to a customer.
For instance, these systems can dynamically interact with
customers offering specific products and empowering their
engagement by means of an accurate prediction of when they
are about to leave the site. This prediction enables generating
the appropriate events to modify the customer behaviour.

II. STATE OF THE ART

As stated in the previous section, this paper proposes an
architecture serving as the framework for developing systems
providing batch and stream data processing as a service.

1

Therefore, this work tackles the last two stages of the big data
value chain [2], i.e., storage and analytics of big data.

Starting with storage, a core decision to be taken for the
development of this architecture is the underlying filesystem.
To this respect, the fact that huge amounts of data are to
be stored by the systems suggests the use of a distributed
filesystem such as HDFS [3], built after the Google File
System [4] as an opensource implementation forming part
of Hadoop’s core. The advantage of this filesystem is its
ability to scale linearly as new nodes are added to the cluster
and to manage replication automatically, which significantly
simplifies the development tasks. Moreover, in the cases where
semi-structured data is to be stored, HBase, an opensource
implementation of Google Bigtable [5], turns to be a good
option that automatically stores records on top of HDFS.

Moving to analytics, and for the matter of batch processing,
the MapReduce framework invented by Google [1] and further
built as an opensource development for Hadoop turns out to be
a suitable approach, as it naturally handles data stored in HDFS
and is able to process them in a parallel manner. Additionally,
many programming tools have been developed which provide
an abstraction over MapReduce, such as Hive [6] or Pig
[7][8], thus simplifying the development. Finally, more recent
approaches have appeared which try to address some of the
issues of the original MapReduce, including reducing time
costs. Some of these new tools include MapReduce++ [9],
GraphLab [10] or Spark [11].

In the recent years, many works have been published which
tackled the problem of performing machine learning over big
datasets. Some of these works include performing analytics
over Twitter [12], computing k-means clustering over big
data in the cloud [13], providing recommendations [14][15],
studying the behavior of tourists [16], performing sentiment
analysis [17], minimizing product escapes in aerospace test en-
vironments [18], improving a predictive model in a healthcare
domain [19], detecting astrophysical objects [20], discovering
communities in social networks [21] and many more. Also,
recent works have provided detailed studies of technologies
for batch processing techniques over big data [22], as well
as current applications and systems for this purpose [23] and
proposed APIs for distributed machine learning [24].

Besides the technologies supporting batch-processing, this
work also deals with stream analytics. This kind of real-
time analytics require valuable responses of data in movement
typically measured in milliseconds. Complex Event Processing
(CEP) allows data analytics, such as detecting patterns while
the data is still in motion, i.e. while events and transactions
are still happening. In addition, in some environments a mil-
lisecond response-time advantage makes the difference. CEP
techniques are not new, however, the significant attention that
big data technologies are experiencing these days is going to
definitely push them up.

The history of Stream Processing Engines (SPEs) date back
to a decade ago. One of the earliest SPEs are Aurora [25] and
STREAM [26], which proposed database management systems
suitable to fit the requirements of monitoring applications
where continuous input is received from different sources. A
more recent generation of SPEs includes Borealis [27], an
evolution of Aurora incorporating distributed computing; SPC

[28], which is also distributed and supports non-relational op-
erators; and SPADE [29], which provides a distributed system
along with a language and a toolkit with predefined stream
operators. The state-of-the-art generation of SPEs includes S4
[30], Storm and MOA [31]. More recently, SAMOA [32],
which emerges as a combination of S4 and MOA, is a platform
maintained by Yahoo! for analyzing and performing machine
learning over big data streams.

Fig. 1. Machine learning taxonomy according to Yahoo!, where a classifica-
tion of big-data machine learning technologies is made depending on whether
they support batch or streaming processing, in a distributed or non-distributed
fashion (source [32])

An image of how the different approaches and technologies
mentioned in this section correlate among them can be seen
in the machine learning taxonomy shown in figure 1.

The interest of real-time analytics in the market is growing
[33], as it can be seen by looking at the acquisitions of Apama
and StreamBase, CEP techniques that were purchased by the
end of 2013 by Software AG and Tibco respectively. Software
AG, a global leader in business processes, integration and big
data, conducted a session at the IDC Big Data and Business
Analytics Conference held in November 2013, during which
they explored the value that organizations across industries
can benefit from by accessing, analyzing and responding to
business events at the right time, concluding that it will be a
key market differentiator in this fast pace environment.

Increasingly remarkable interest in the area of stream
processing can be seen by just staring at the key strategies
adopted by the big Internet players such as Google, Microsoft
or Amazon, who just released their commercial products on
recent years. For instance, Google released BigQuery1 [34],
a cloud-based tool for quickly analyzing very large datasets;
and has recently launched the Google Prediction API2, to
provide real-time predictions. According to Google, both these
services working together allow to upload 100,000 rows of
real-time data per second and analyze it in near real time,
being this high streaming capacity the main advantage with
most of their competitors. Another example of this emerging
area is Amazon’s product called Kinesis3, a service launched

1https://cloud.google.com/products/bigquery/
2https://cloud.google.com/products/prediction-api/
3http://aws.amazon.com/kinesis/

2

in 2013 that scales elastically for real time processing of big
data streaming, such as analyzing website clickstream usability
engagement, which works over other Amazon Cloud products
such as Redshift and Elastic MapReduce. Finally, at the time
of writing this paper (July, 2014), Microsoft is announcing its
Machine Learning services working over Microsoft Azure4.

Besides the options provided by these big competitors,
there are other commercial options such as IBM InfoSphere
Streams5 along with their propietary language SPL [35];
Adello6 (formerly known as HStreaming), a platform for
mobile advertising; SQLstream7 or Splunk8 to mention a few.
Also, there are a significant number of alternative open-source
projects, such as those provided by Twitter, like Storm9, a
stream-processing software for Hadoop, and Summingbird10,
a streaming MapReduce library working over Storm; or H2O
from 0xdata11. Other products involve Apache Spark Stream-
ing12 [36] and Kafka13. To give a rough idea about the
importance and newness of this field, most of the projects
described previously are not even in their first release (e.g.
Storm current release is v0.9.02, Spark 1.0.0 was released this
May 30th, 2014 and Kafka current last release is 0.8.1.1).

Moreover, a significant number applications performing
real-time analytics over big data have been published over
the last couple of years. To mention a few of them, there are
works aimed at learning classifier chains for data mining [37],
improving routing and navigation services [38], recommending
musical preferences [39], detecting trends on Twitter and
Bitly [40], filtering spam [41], processing image and video
streams [42], analyzing streams of aviation data [43], moni-
toring underwater acoustics [44], discovering communities in
Twitter during natural disasters [45], detecting issues in electric
power systems [46], searching in logs [47] or summarizing
microblogging data [48], among others. The latter four of the
forementioned works use HBase and Hadoop, proving it to be
a convenient storage system for performing streaming analysis;
and some of the previous works also provide their products as
a service, so that the real time analytics system can be accessed
through a REST API.

Many other recently published works propose their own
systems and architectures to provide real-time analytics over
big data, either based on Storm [49], HBase [50] or specifically
aimed at unstructured data [51]. Finally, other less specific
works focus on reviewing the state-of-the-art of real-time
platforms for distributed analytics [52] and looking at other
research challenges and issues to develop a platform for
analyzing big data on real time [53].

III. OUR PROPOSAL

As stated before, this work proposes the design of an
architecture for developing machine learning tools which are

4http://azure.microsoft.com/en-us/campaigns/machine-learning/
5www.ibm.com/software/products/infosphere-streams
6https://www.adello.com/
7http://www.sqlstream.com/
8http://www.splunk.com/
9https://storm.incubator.apache.org/
10https://github.com/twitter/summingbird
11http://0xdata.com/h2o-2/
12https://spark.apache.org/streaming/
13http://kafka.apache.org/

bundled as a service, thus enabling cheap on-demand batch
and stream analysis of big data. The architecture of this
system is shown in figure 2. The exploitation of the system
should be easy, however, as an added-value service, a team
of data scientists and consultants would offer to analyze each
customer’s case in order to allow obtaining the most value
from the data and to properly customize the system.

As it is shown in the figure, the architecture is composed of
two major modules: the batch machine learning module and
the stream machine learning module, which are themselves
responsible for carrying out all the data processing tasks. In
addition to these, the architecture provides a storage module,
a dashboard, and a RESTful API. All these components are
described in this section.

A. Batch Machine Learning Module

The batch machine learning module is suitable for those
tasks which are not time-critical. When dealing with big data,
some tasks can be expected to take seconds or even minutes to
complete. In particular, three processing tasks are well suited
to this module:

• Performing query analytics, where some information
is extracted from the raw data. These analytics include,
but are not limited to computing data distributions,
operating over subsets of the data, mapping data to a
different domain and generating data summaries to be
passed to the dashboard for its visualization.

• Performing data clustering, i.e., in the case where the
data involves several records and a distance function
among them can be defined, these records can be
grouped in several clusters, so that all records within a
cluster are closer among them than with other records
in an external cluster.

• Building machine learning models, in order to enable
fast processing later by the stream machine learning
module. Again, some examples of these models could
be nave Bayes classifiers, bayesian networks, neural
networks, decision trees, markov models, etc.

While this statement does not always hold, it could be
said that in most cases, batch processing tasks will be im-
plemented by means of MapReduce routines, which enable
parallel processing of big data over a cluster of inexpensive
nodes. However, progressive evolution to Spark is being done,
as it outperforms Hadoop in many different cases [11].

B. Stream Processing Module

The stream processing module is designed to attend the
requirements of time-critical applications, so that it can execute
certain tasks and provide a result within few milliseconds.
In most cases, this module will take advantage of machine
learning models previously built by the batch processor, thus
applying a variety of state-of-the-art machine learning tech-
niques along with the real-time stream of incoming data to
generate an output in real time. In particular, this module
adapts well to three tasks which require very fast responses:

• Carrying out prediction, i.e., making an assumption
over a future event based on a set of historical events.

3

Fig. 2. Architecture supporting machine learning over big data, including a storage module built over a distributed filesystem, batch- and stream-processing
modules, a dashboard for displaying results and visualizations and a REST API to bundle the systems supported by this architecture as a service

batch machine learning
module

M
ah

ou
t

R

Model
Building

Clustering

Processing

W
ek

a

info data

logs

historical data

HDFS

HBase
storage

consulting

customer

Analysis

Summarization

Visualization

dashboard

stream
machine learning

module

Prediction

Segmentation

Recommendation

Neural Nets.

Markov Chains

R
an

d
om

Fo
re

st
s

D
ec

is
io

n
Tr

ee
s

C
ol

la
b

.
Fi

lte
rin

g

RESTful API

ata
d

N
O

SJ re
q

ue
st

+
re

al
-t

im
e

st
re

am

• Performing classification or segmentation, so that
given an instance of a certain user or record of any
type and a set of classes or types, the system can
assign that instance to one or more of those.

• Providing recommendations, such as suggesting a
product to a user assuming that the user will be
potentially interested in that product.

C. Storage Module

The Hadoop Distributed File System (HDFS) settles the
basis for this module. HDFS itself is suitable for storing raw
data (such as logs, historical data, text files or any other
kind of unstructured data such as documents or pictures),
as it provides reliable distributed storage over a cluster of
inexpensive computers, relieving developers from having to
manage data distribuion and replication among each node.

However, when structured or semi-structured information is
to be stored, Apache HBase provides a convenient abstraction
as it is a non-relational database built on top of HDFS. Also,
the fact that it indexes row keys enables running faster queries
on it, while HDFS itself is better suited to performing reads
over entire big files. Without loss of generality, it could be
said that raw data will mostly be used for batch processing,
and also for retrieving semi-structured information or building
models which will be stored in HBase, a process for which
the batch machine learning module is responsible.

D. Dashboard

The dashboard is a module which provides an intuitive
and graphical way to visualize some analytics performed over
the data by the batch processing module, and can also provide

interesting results which can be summarized or displayed to the
customer, thus revealing potentially relevant insights about the
data. Moreover, this visualization will also provide feedback to
the user, who could decide whether the input data is appropiate,
and take corrective measures if required.

E. RESTful API

The RESTful API allows offering real-time analysis tools
as a service, so that specific analytics could be performed on
demand. Moreover, the customer could establish a pipe so that
all the data generated is automatically streamed to the API,
taking the most advantage from the real-time features.

IV. USE CASES

A prototype system based on the proposed architecture has
been already built, in order to be used as a proof of concept
of these emerging technologies. This system has been used
to successfully attend two different use cases based on real
customer scenarios, serving respectively to the purposes of
displaying ads in a website and predicting users’ behavior in a
social ecosystem. In this section, these use cases are described,
providing some hints on how the proposed architecture can
support a system to unleash value from raw data and eventually
increase the conversion rate in different domains.

A. Web Recommender System

The first use case involves the development of a system
to display real-time advertisements to web visitors, so that
these ads are potentially interesting to users. The customer
can choose whether the system will provide recommendations
using content-based filtering or collaborative filtering. The

4

Fig. 3. Architecture of the web recommender system. Raw logs are stored
in HDFS and a clustering batch process extracts categories of both webs and
users in a non-time-critical fashion. Then, the stream processor is able to
provide recommendations in real-time as they are requestedy q

HDFS HBaseda
ta

Clustering
(Batch)lo

gi
c

RESTful APIap
i

Web Logs URLs & Users

Recommender
(Stream)

architecture for the web recommender system is shown in
figure 3. It is worth noting that new HTTP requests come with
a very high frequency, and ads should be displayed as soon as
the page is loading, so real-time turns out to be an important
requirement for this system.

The raw logs, recorded from historical HTTP requests are
stored as-they-are in HDFS, along with some metadata of the
visited webpage, such as keywords or the description. A batch
process, which is not time-critical, is executed periodically in
order to extract web categories and user categories from these,
i.e., to group webpages which tends to be topic-related and to
group users visiting similar websites. This task is performed
by the batch machine learning module, and in particular, a k-
means implementation included in Mahout was in charge of
computing both these web and users categories.

A real-time processor was developed within the stream
machine learning module, in order to take advantage of the
result of the clustering so that, when a new HTTP request is
received, both the website and the user can be rapidly catego-
rized (if they were not before) and a useful recommendation
can be provided. The recommendation would consist of one
or more URLs in which the user may be interested, so that an
advertisement can be displayed in the website.

The API for this service allows to log new HTTP requests,
which results in updating the web and users categories. Also,
it provides recommendations using collaborative or content-
based filtering from a set of specified websites.

B. User Behavior Prediction System

The second use case is based on a social game which was
interested in predicting the future behavior of his users given
a historical of past events. To do so, a variable-order Markov
model [54] is learnt, as it is able to capture how a variable
number of past events are able to influence future events from
a probabilistic approach, and it has been successfully applied
before to other domains such as predicting drivers’ behavior
[55] or filtering spam [56]. The architecture for this system is
shown in figure 4. Again, this application requires from real-
time processing of data, as gamers may perform several events
per second, and thus a fast response is critical.

For this use case, historical records containing the events
carried out by each user was provided, which would first be

Fig. 4. Architecture of the user behavior prediction system. Event logs are
stored in HDFS and a job periodically processes them in order to update a
probabilistic model stored in HBase. Then, the stream processor is able to use
the model to predict the future behavior of users given their current behaviorg

HDFS HBaseda
ta

Model Builder
(Batch)lo

gi
c

RESTful APIap
i

Logs Markov Model

Predictor
(Stream)

stored in HDFS. These logs are periodically processed by
a batch process, which converts the event logs into event
sequences, and uses these for training (or updating) a prob-
abilistic model based on variable-order Markov and storing it
in HBase.

As the user executes new events, the service is called and
the stream machine learning module is in charge to predict how
the user will behave in the future, so that the site owner can
take specific actions in order to condition the user behavior.
For instance, if the user is supposed to be leaving the site (i.e.,
to turn into a churner) in the short future, an special offer could
be suggested in order to try to retain the user. In order to try to
infer the shortcoming behavior of a user, the stream processor
will use the previously computed Markov model along with
the last events he or she performed.

The API for this service allows to record new events
sequences which update the Markov probability matrix used
for predicting the gamer behaviors (either by providing the
next most likely event or all possible next events along with
their probability to occur). In addition, it allows to recommend
an action than influences user behavior to a specified one.

Similar works can be found in the literature which proposes
systems to learn behavioral models for videogames [57] and
predicting churn [58], while these are not really focused on
the big amounts of recorded data.

V. EVALUATION

After the machine learning architecture was applied for the
development of the use cases described in the previous section,
an evaluation was designed in order to validate it. Successful
results would be attained if the web service provided real-time
responses whenever it is required and, in the case of prediction,
results were accurate (in the case of recommendation, this
accuracy has not been tested so far). The purpose of this evalu-
ation is to provide a hint of how the architecture performs when
attending real-time requests. Still, a more robust evaluation is
planned using benchmarks when available, and examining how
performance evolves when the system is scaled horizontally
(i.e., new nodes are attached to it).

5

TABLE I. AVERAGE AND MEDIAN TIMES (IN MS.) AS WELL AS THE
STANDARD DEVIATION FOR THE RECOMMENDER SERVICE, BOTH WITH

SEQUENTIAL AND WITH CONCURRENT (10 AND 30) REQUESTS

Average Median Std. Dev.
Sequential 447.77 435 47.84

Concurrent (10) 538.80 540 40.76

Concurrent (30) 802.93 792 89.58

A. Web Recommender System

A preliminary evaluation of the web recommender system
has been performed using a dataset with 200,000 URLs
(clustered in 100 different categories), 10,000 users (clustered
in 20 different profiles) and 2,000 ad campaigns, each of them
having at least one but potentially several different ads. The
running environment involves a single-node cluster with 8
processing cores and 16GB of RAM virtualized over VMware
ESXi 5.0. Hortonworks HDP 2.1 was chosen as the preferred
distribution, which provides Hadoop 2.4 and HBase 0.98, while
the web service was deployed over JBoss AS 7.

Table I shows the average and median times measured
in milliseconds, as well as the standard deviation when the
recommender service is called 5,000 times with different input
parameters. Additionally, the times for each call are recorded
also when several requests are performed concurrently in
batches of 10 and 30 calls respectively. As it can be seen,
average times are always under 1 second even in those cases
where 30 concurrent requests are happening, thus providing
acceptable real-time responses. Also, there are no significant
differences in the execution time between different calls, as it
is shown by the small standard deviation and the proximity
between the median and the average.

B. User Behavior Prediction System

A preliminary evaluation of the prediction system has been
carried out in order to check whether it successes when trying
to predict user behavior in the domain of online social games,
and also whether the prediction service is able to scale to attend
multiple concurrent requests.

In order to validate the prediction system, data obtained
from a social online game has been used to train and test the
prediction model. The whole dataset was divided in a training
set and a test set of 70%-30% of the total size respectively.

In particular, the dataset used recorded events performed by
gamers, which can be modeled as a sequence. For this reason a
variable-order Markov model was used as it is suitable to learn
from a sequence of events of different lengths. For this dataset,
the behavior of 10,000 users were recorded during 20 days.
This time, running environment involves a 4-nodes cluster with
8 processing cores and 16GB of RAM each virtualized over
VMware ESXi 5.0. As in the previous use case, the installed
distribution was Hortonworks HDP 2.1 and the web service
was deployed over JBoss AS7.

Table II shows the results in terms of precision and recall of
the different events (names are hidden and a numeric identifier
is shown instead), as well as the relative frequency of each of
these events in the dataset. Moreover, figure 5 plots the recall
of each event versus its relative frequency. As it can be seen,
there is a significant advantage over simple “random guess”,

TABLE II. PRECISION AND RECALL FOR EACH EVENT IN THE ONLINE
SOCIAL GAME TEST DATASET, ALONG WITH THEIR RELATIVE FREQUENCY

OF APPEARANCE

Frequency Precision Recall
#1 2.89% 25.45% 8.19%

#2 1.25% 66.08% 33.98%

#3 38.87% 82.09% 83.20%

#4 7.52% 6.84% 26.08%

#5 0.5% 96.37% 93.95%

#6 0.05% 100% 2.86%

#7 7.16% 88.11% 81.19%

#8 0.82% 61.86% 18.58%

#9 1.82% 71.27% 77.78%

#10 33.66% 47.03% 67.92%

#11 3.12% 87.42% 49.07%

#12 0.34% 98.93% 99.78%

#13 1.98% 55.95% 48.62%

Fig. 5. Recall vs. relative frequency for each event of the online social game
domain. Results show that the prediction system is able to learn from past
events to predict behavior, as in most cases there is a significant improvement
over the accuracy provided if random guess was used.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #12 #13 #14

RecallFrequency

which translates into the fact that the probabilistic model is
able to successfully learn behavioral patterns performed by
the users from the events sequences themselves.

Table III shows the average and median times measured
in milliseconds, as well as the standard deviation when the
prediction service is called 3,000 times, each one requesting
a behavior prediction for a different user. Again, the times for
each call are recorded also when several requests are performed
concurrently in batches of 10 and 30 calls. As it can be seen,
average times are always far under 500 milliseconds even when
many requests are executed in parallel, which turns out to be
a very fast response.

6

TABLE III. AVERAGE AND MEDIAN TIMES (IN MS.) AS WELL AS THE
STANDARD DEVIATION FOR THE PREDICTION SERVICE, BOTH WITH

SEQUENTIAL AND WITH CONCURRENT (10 AND 30) REQUESTS

Average Median Std. Dev.
Sequential 20.29 18 10.55

Concurrent (10) 98.43 79 283.21

Concurrent (30) 235.04 228 77.98

VI. CONCLUSIONS

This work has introduced and described a novel architec-
ture for performing machine learning over big data streams.
The architecture provides reliable persistent storage of data
over the Hadoop Distributed File System and HBase, which
provides technical feasibility to scale the system in an easy
manner in case it is required. The core of the architecture
is comprised of the batch- and stream-processing modules,
which provide machine learning tools and algorithms, so that
developers can easily take advantage of them to carry out tasks
such as prediction, clustering, recommendation, classification,
etc. A dashboard will be responsible for summarizing the
results of the batch analysis and displaying it to the user.
Finally, the architecture provides a RESTful API which al-
lows to bundle machine learning systems supported by this
architecture as a service, so that the user can perform requests
while stream big data is flowing. This paper does not propose
new machine learning tools or algorithms, although this could
be an interesting future research line. However, it provides an
architecture that facilitates the task of analyzing and extracting
value from big data to customers by means of a service that
abstracts most of the complexities underlying Hadoop-based
tools for machine learning.

Two use cases have been proposed and two systems have
been developed to attend these use cases. The first of them
involves a recommender system for web advertising, which
must provide real-time recommendations of ads to be displayed
to users as soon as the website loads. The second use case
describes a scenario where the behavior of social gamers
is studied, in order to learn from their history of events to
eventully provide predictions of their future behavior, infor-
mation which could later be used to condition users’ actions
to increase income or avoid churning.

Once both systems were developed, a preliminary evalua-
tion was designed with the purpose of validating whether re-
sponse times were convenient for real-time requests and, in the
case of prediction, whether the model was able to accurately
predict future events over a test set. Results are encouraging,
as response times are always under one second even when
up to 30 concurrent requests take place, and the accuracy
of the behavior prediction system clearly shows its ability to
learn from historical data. Still, studying the performance of
the recommender system with real users and comparing how
the system is able to scale out horizontally is left as future
work resulting in the design and execution of a more complete
evaluation, as well as a side-by-side comparison of the game
prediction system using public datasets.

Finally, additional work involves re-implementing batch
machine learning algorithms over Spark, as it has shown to
outperform MapReduce in many cases. This migration is par-
tially solved as Mahout announced that versions starting from

1.0 will reject new MapReduce algorithm implementations,
which in turn will run over Apache Spark. Also, it is planned
to study how deploying a Storm topology contributes to the
performance of the stream-processing module.

ACKNOWLEDGMENT

This research work is part of Memento Data Analysis
project, co-funded by the Spanish Ministry of Industry, Energy
and Tourism with identifier TSI-020601-2012-99.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proc. 6th Symp. Operating Syst. Des. and Impl.
(OSDI’04), 2004, pp. 137–150.

[2] H. Hu, Y. Wen, T. Chua, and X. Li, “Toward Scalable Systems for
Big Data Analytics: a Technology Tutorial,” IEEE Access, vol. 2, pp.
652–687, 2014.

[3] K. Shvachko, “The Hadoop Distributed File System,” in Proc. 2010
IEEE 26th Symp. Mass Storage Syst. and Technol. (MSST’10), 2010,
pp. 1–10.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proc. 19th ACM Symp. Operating Syst. Principles (SOSP’03), 2003,
pp. 29–43.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” in Proc. 7ty Symp.
Operating Syst. Des. and Impl. (OSDI’06), 2006, pp. 205–218.

[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Lui,
P. Wyckoff, and R. Murthy, “Hive - A Warehousing Solution Over a
Map-Reduce Framework,” Proc. VLDB Endowment, vol. 2, no. 2, pp.
1626–1629, 2009.

[7] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Building
a High-Level Dataflow System on Top of Map-Reduce: the Pig Expe-
rience,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1414–1425, 2009.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: a Not-so-Foreign Language for Data Processing,” in Proc. 2008
ACM SIGMOD Int. Conf. Manag. of Data (SIGMOD’08), 2008, pp.
1099–1110.

[9] G. Zhang, C. Li, Y. Zhang, C. Xing, and J. Yang, “MapReduce++:
Efficient Processing of MapReduce Jobs in the Cloud,” J. of Comput.
Inf. Syst., vol. 8, no. 14, pp. 5757–5764, 2012.

[10] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: a Framework for Machine Learning
and Data Mining in the Cloud,” Proc. VLDB Endowment, vol. 5, no. 8,
pp. 716–727, 2012.

[11] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proc. 2nd USENIX
Conf. Hot Topics in Cloud Comput. (HotCloud’10), 2010.

[12] J. Lin and A. Kolcz, “Large-Scale Machine Learning at Twitter,” in
Proc. 2012 ACM SIGMOD Int. Conf. Manag. of Data (SIGMOD’12),
2012, pp. 793–804.

[13] R. Steves, “K-means Clustering in the Cloud – A Mahout Test,” in
Proc. 2011 IEEE Workshops of Int. Conf. Advanced Inf. Netw and Appl.
(WAINA’11), 2012, pp. 514–519.

[14] L. Ma, E. Haihong, and K. Xu, “The Design and Implementation of
Distributed Mobile Points of Interest (POI) based on Mahout,” in Proc.
6th Int. Conf. Perv. Comp. and Apps. (ICPCA’11), 2011, pp. 99–104.

[15] C.-R. Lee, T. Hua, and Y.-F. Chang, “Enhancing Accuracy and Per-
formance of Collaborative Filtering Algorithm by Stochastic SVD
and its MapReduce Implementation,” in Proc. 2013 IEEE 27th Int.
Conf. Parallel and Distrib. Process. Symp. Workshops & PhD Forum
(IPDPSW’13), 2013, pp. 1869–1878.

[16] R. Irudeen and S. Samaraweera, “Big Data Solutions for Sri Lankan
Development: A Case Study from Travel and Tourism,” in Proc. 2013
Int. Conf. Advances in ICT for Emerging Regions (ICTer’13), 2013, pp.
207–216.

7

[17] B. Liu, E. Blasch, Y. Chen, D. Shen, and G. Chen, “Scalable Sentiment
Classification for Big Data Analysis using Naı̈ve Bayes Classifier,” in
Proc. 2013 IEEE Int. Conf. Big Data, 2013, pp. 99–104.

[18] T. Armes and M. Refern, “Using Big Data and Predictive Machine
Learning in Aerospace Test Environments,” in Proc. 2013 IEEE AU-
TOTESTCON, 2013, pp. 301–305.

[19] L. Li, S. Bagheri, H. Goot, A. Hasan, and G. Hazard, “Risk Adjustment
of Patient Expenditures: A Big Data Analytics Approach,” in Proc. 2013
IEEE Int. Conf. Big Data, 2013, pp. 12–14.

[20] P. Huijse, P. Estevez, P. Protopapas, J. Principe, and P. Zegers, “Compu-
tational Intelligence Challenges and Appl. on Large-Scale Astronomical
Time Series Databases,” IEEE Comput. Intell. Magazine, vol. 9, no. 3,
pp. 27–39, 2014.

[21] J. Shi, W. Xue, W. Wang, and Y. Zhang, “Scalable Community
Detection in Massive Social Networks using MapReduce,” IBM J. of
Research and Develop., vol. 57, no. 3, 2013.

[22] K. Hammond and A. Varde, “Cloud Based Predictive Analytics: Text
Classification, Recommender Systems and Decision Support,” in Proc.
2013 IEEE 13th Int. Conf. Data Mining Workshops (ICDMW’13), 2013,
pp. 607–612.

[23] T. Condie, P. Mineiro, N. Polyzotis, and M. Weimer, “Machine Learning
on Big Data,” in Proc. 2013 IEEE 29th Int. Conf. Data Eng. (ICDE’13),
2013, pp. 1242–1244.

[24] E. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez,
M. Franklin, M. Jordan, and T. Kraska, “MLI: An API for Distributed
Machine Learning,” in Proc. 2013 IEEE 13th Int. Conf. Data Mining
(ICDM’13), 2013, pp. 1187–1192.

[25] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A New Model and
Architecture for Data Stream Management,” The Int. J. on Very Large
Data Bases, vol. 12, no. 2, pp. 120–139, 2003.

[26] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R. Motwani,
U. Srivastava, and J. Widom, “STREAM: The Stanford Data Stream
Management System,” Stanford InfoLab, Tech. Rep., 2004.

[27] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik, “The Design of the Borealis Stream Processing Engine,”
in Proc. 2nd Biennial Conf. Innovative Data Syst. Research (CIDR’05),
2005, pp. 277–289.

[28] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, Y. Park,
and C. Venkatramani, “SPC: A Distributed, Scalable Platform for Data
Mining,” in Proc. 4th Int. Workshop on Data Mining Standards, Services
and Platforms (DMSSP’06), 2006, pp. 27–37.

[29] B. Gedik, P. S. Yu, H. Andrade, M. Doo, and K. lung Wu, “SPADE:
The System S Declarative Stream Processing Engine,” in Proc. 2008
ACM SIGMOD Int. Conf. Manag. of Data (SIGMOD’08), 2008, pp.
1123–1134.

[30] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
Stream Computing Platform,” in Proc. 2010 IEEE 10th Int. Conf. Data
Mining Workshops (ICDMW’10), 2010, pp. 170–177.

[31] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
Online Analysis,” J. of Mach. Learn., vol. 11, pp. 1601–1604, 2010.

[32] G. D. F. Morales, “SAMOA: A Platform for Mining Big Data Streams,”
in Proc. 22nd Int. Conf. World Wide Web Companion (WWW’13), 2013,
pp. 777–778.

[33] G. Rao, “Big Data and Real Time Analytics,” in Proc. 2011 Int. Conf.
Recent Trends in Inf. Technol. (ICRTIT’11), 2011, p. 2.

[34] K. Sato, “An Inside Look at Google BigQuery,” Google, Inc., Tech.
Rep., 2012.

[35] M. Hirzel, H. Andrade, B. Gedik, G. Jaques-Silva, R. Khandekar,
V. Kumar, M. Mendell, H. Nasgaard, S. Schenider, and R. S. and.
K.L. Wu, “IBM Streams Processing Language: Analyzing Big Data
in Motion,” IBM J. of Research and Develop., vol. 57, no. 3, 2013.

[36] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
Streams: an Efficient and Fault-Tolerant Model for Stream Processing
on Large Clusters,” in Proc. 4th USENIX Conf. Hot Topics in Cloud
Comput. (HotCloud’12), 2012.

[37] J. Xu, C. Tekin, and M. van der Schaar, “Learning Optimal Classifier
Chains for Real-Time Big Data Mining,” in Proc. 51st Annu. Allerton
Conf. Comm., Control and Comput. (Allerton’13), 2013, pp. 512–519.

[38] M. Bakillah, A. Mobasheri, S. Liang, and A. Zipf, “Towards an Efficient
Routing Web Processing Service through Capturing Real-Time Road
Conditions from Big Data,” in Proc. 5th Comp. Sci. and Electron. Eng.
Conf. (CEEC’13), 2013, pp. 152–155.

[39] E. Olmezogullari, I. Ari, O. Celebi, and S. Ergut, “Data Stream Mining
to Address Big Data Problems,” in Proc. 21st Signal Process. and
Commun. Appl. Conf. (SIU’13), 2013.

[40] T. Chardonnens, P. Cudre-Mauroux, M. Grund, and B. Perroud, “Big
Data Analytics on High Velocity Streams: a Case Study,” in Proc. 2013
IEEE Int. Conf. on Big Data, 2013, pp. 784–787.

[41] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and
Evaluation of a Real-Time URL Spam Filtering Service,” in Proc. 2011
IEEE Symp. Security and Privacy (SP’11), 2011, pp. 447–462.

[42] S. Najmabadi, M. K. an Z. Wang, Y. Baroud, and S. Simon, “Stream
Processing of Scientific Big Data on Heterogeneous Platforms – Image
Analytics on Big Data in Motion,” in Proc. 2013 IEEE 16th Int. Conf.
Comput. Sci. and Eng. (CSE’13), 2013, pp. 965–970.

[43] S. Ayhan, J. Pesce, P. Comitz, D. Sweet, S. Bliesner, and G. Gerberick,
“Predictive Analytics with Aviation Big Data,” in Proc. 2013 Integrated
Commun., Navigation and Surveillance Conf. (ICNS’13), 2013.

[44] J. Hayes, H. Kolar, A. Akhriev, M. Barry, M. Purcell, and E. McKeown,
“Real-Time Analysis and Management of Big Time-Series Data,” IBM
J. of Research and Develop., vol. 57, no. 3, 2013.

[45] Y. Huand, H. Dong, Y. Yesha, and S. Zhou, “A Scalable System for
Community Discovery in Twitter During Hurricane Sandy,” in Proc.
2014 IEEE/ACM 14th Int. Symp. Cluster, Cloud and Grid Comput.
(CCGrid’14), 2014, pp. 893–899.

[46] F. Zhao, G. Wang, C. Deng, and Y. Zhao, “A Real-Time Intelligent
Abnormity Diagnosis Platform in Electric Power System,” in Proc. 16th
Int. Conf. on Advanced Commun. Tech. (ICACT’14), 2014, pp. 83–87.

[47] B. Jun, “Feasibility Analysis of Big Log Data Real Time Search based
on HBase and ElasticSearch,” in Proc. 9th Int. Conf. Natural Comput.
(ICNC’13), 2013, pp. 1166–1170.

[48] S. Lee, S. Shakya, R. Sunderraman, and S. Belkasim, “Real Time
Micro-Blog Summarization based on Hadoop/HBase,” in Proc. 2013
IEEE/WIC/ACM Int. Joint Conf. Web Intell. (WI’13) and Intell. Agent
Technol. (IAT’13), 2013, pp. 46–49.

[49] W. Yang, X. Liu, L. Zhang, and L. Yang, “Big Data Real-Time
Processing based on Storm,” in Proc. 2013 IEEE 12th Int. Conf. Trust,
Security and Privacy in Comp. and Comm. (TrustCom’13), 2013, pp.
1784–1787.

[50] F. Li, M. Ozsu, G. Cheng, and B. C. Ooi, “R-Store: a Scalable
Distributed System for Supporting Real-Time Analytics,” in Proc. 2014
IEEE 30th Int. Conf. Data Eng. (ICDE’14), 2014, pp. 40–51.

[51] J. Kim, N. Kim, B. Lee, J. Park, K. Seo, and H. Park, “RUBA: Real-
Time Unstructured Big Data Analysis Framework,” in Proc. 2013 Int.
Conf. ICT Convergence (ICTC’13), 2013, pp. 518–522.

[52] A. Osman, M. El-Refaey, and A. Elnaggar, “Towards Real-Time An-
alytics in the Cloud,” in Proc. 2013 IEEE 9th World Congr. Services
(SERVICES’13), 2013.

[53] R. Ranjan, “Streaming Big Data Processing in Datacenter Clouds,”
IEEE Cloud Comput., vol. 1, no. 1, pp. 78–83, 2014.

[54] R. Begleiter, R. El-Yaniv, and G. Yona, “On Prediction using Variable
Order Markov Models,” J. of Artificial Intell. Research, vol. 22, no. 1,
pp. 385–421, 2004.

[55] X. Guangtao, L. Zhongwei, Z. Hongzi, and L. Yunhuai, “Traffic-Known
Urban Vehicular Route Prediction based on Partial Mobility Patterns,”
in Proc. 2009 15th Int. Conf. Parallel and Distrib. Syst. (ICPADS’09),
2009.

[56] A. Bratko, G. V. Cormack, B. Filipič, T. R. Lynam, and B. Zupan,
“Spam Filtering using Statistical Data Compression Models,” J. of
Mach. Learn. Research, vol. 7, pp. 2673–2698, 2006.

[57] J.-L. Hsieh and C. T. Sun, “Building a Player Strategy Model by
Analyzing Replays of Real-Time Strategy Games,” in Proc. 2008 Int.
Joint Conf. Neural Netw. (IJCNN’08), 2008, pp. 3106–3111.

[58] C. Bauckhage, K. Kersting, R. Sifa, C. Thurau, A. Drachen, and
A. Canossa, “How Players Lose Interest in Playing a Game: An
Empirical Study Based on Distributions of Total Playing Times,” in
Proc. 2012 Int. Conf. Comput. Intell. and Games (CIG’12), 2012, pp.
139–146.

8

