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Abstract—This study demonstrates how facial biometrics, ac-
quired using multi-spectral sensors, such as RGB, depth, and
infrared, assist the data accumulation in the process of autho-
rizing users of automated and semi-automated access systems.
This data serves the purposes of person authentication, as well
as facial temperature estimation. We utilize depth data taken
using an inexpensive RGB-D sensor to find the head pose of a
subject. This allows the selection of video frames containing a
frontal-view head pose for face recognition and face temperature
reading. Usage of the frontal-view frames improves the efficiency
of face recognition while the corresponding synchronized IR
video frames allow for more efficient temperature estimation for
facial regions of interest. In addition, this study reports emerging
applications of biometrics in biomedical and health care solutions.
Including surveys of recent pilot projects, involving new sensors
of biometric data and new applications of human physiological
and behavioral biometrics. It also shows the new and promising
horizons of using biometrics in natural and contactless control
interfaces for surgical control, rehabilitation and accessibility.

I. INTRODUCTION

New concepts, such as the Smart border [1], are being

developed that use the vast spectrum of sensors for constant

monitoring of travelers, their behavior indicators, and other

measurements such as temperature that are important for

the control of pandemics and epidemics at the borders. For

example, initial information can be provided by ID, on-line

biometrics and surveillance data, personal information from

various databases, and interview data [2].

Future generations of biometric-based access control sys-

tems may likely utilize multiple resources to perform monitor-

ing and authentication, not only for access granting decision-

making but also for situational awareness and risk manage-

ment. Among these resources, there are invariant representa-

tions of individuals using multi-spectral sensors. Recently, this

spectrum has been extended due to advances in technology. For

example, new devices such as RGB-Depth (RGB-D) sensors

(the Microsoft Kinect is an example) and time-of-flight sensors

are now available. The effect of using RGB-D sensors on

the performance of facial biometrics in e-border verification

procedures is studied in this paper.

II. PROTOTYPING THE BIOMETRIC-BASED SITUATIONAL

AWARENESS AND RISK MANAGEMENT

Various intelligent technologies for access control, such as

border control, are currently being developed, as reviewed in

[3]. They include decision-making and human-machine inter-

action, identity verification and biometrics, risk assessment of

behavioral biometrics, travel documents, document inspection

systems, fraud detection, and interview supported machines.

This support may be accomplished by effective utilization

of the automated access control topology, advanced biometric

technologies, and human-machine interaction techniques. The

latter makes use of the experience coming from well-known

dialogue systems design such as, in particular, SmartKom

[4] that possesses sensor specific input processing, modality-

specific analysis and fusion, and interaction management. In

particular, the interview-support system for border control

technologies was prototyped in the form of the AVATAR

kiosk [5]. Partial prototypes of facial biometric components

in biometric-based decision-making and interview-supporting

systems are reported in [6], [7], [8], [9].

A particular structure of a screening and interview support

system is shown in Fig. 1. The system consists of the cameras

in RGB-Depth (RGB-D) and infrared bands, the processors

of preliminary information and online data (such as watch-

lists), and decision-making support that include converting

the results into a semantic form such as a protocol made

available to the personnel. This allows for dialogue support

in order to assist personnel in conversation with a customer

on the topic of an authorization. This semantic data is based

on the preliminary information gathered from surveillance

of the screened person in the visible and infrared bands,

and information extracted from observation, conversation, and

additional sources. The process of generating questions is

initiated by information sensed by biometric devices. The

questionnaire strategy can alleviate some errors, as well as

unreliability of biometric data.

For example, the description from the authorized documents

may not match the appearance of the individual, and facial

recognition may provide the required support. The interview-

support system may prompt a dialog in order to clarify the

situation.

The other sensory data, such as infrared, may assist in fever

screening. In [10], infrared mass blind screening of potential

fever subjects such as SARS or bird flu patients was studied. A

handheld radiometric infrared ThermaCAM S60 FLIR system

was used. In experiments, the focal length from individual to

scanner was 2 meters with a duration of scanning of 3 seconds.

In an interview-supporting system, if high temperature in

an individual is detected and reported to the personnel, one of

the automatically generated questions suggested for the officer

to ask this individual might be as follows:
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Fig. 1. The access control system that uses facial biometrics across various ranges and supports the personnel in the authorization of individuals through
screening an interview.

Sample Protocol

POSSIBLE ACTION: Inquire: Have you been

experiencing a high fever?

Another focus of interest in such a system includes artificial

materials (fake moustache, makeup, wig, etc.) and surgical

alterations (plastic surgery technology). The infrared spectrum

data provides useful information for detection of disguised

features [11].

Unreliable data on artificial accessories in an infrared facial

image are transferred into a semantic form of the protocol as

follows:

Interaction Protocol

WARNING: Possible intention to change appearance;

features of artificial moustache are detected.

The personnel can, in addition to the automatic aid, analyze

the acquired raw images in the visible and infrared spectra. The

individual’s facial (RGB) data are verified against the data in

eID (such as e-passport) and also compared against global

databases (such as watchlists). Note that data on an individual

may not always be available in the database - this is the worst

case scenario, and intelligent support is vital in this case.

III. FACIAL BIOMETRICS IN ACCESS CONTROL: CASE

STUDY

Facial biometrics used in border control now, as well as ones

planned for use in the next decade, are primarily based on 2D

face recognition technologies as per the recommendations of

the ICAO [12]. This is because the face templates, such as the

ones used in e-passports, are based on 2D photos. Australia,

New Zealand and most European countries are now using face-

biometric enabled gates (e-Gates) for border control, which

includes the e-passport/e-ID reader and the RGB camera.

e-Gates verify the passengers biometric data (facial image)

against the travel document, such as an e-passport, e-ID, or a

pre-existing database containing biometric data [13].

The disadvantages of today’s 2D facial recognition tech-

niques are well known. The best results of the 2D facial

recognition algorithms tested on the 2010 benchmark data

set are reported in [14] as follows: a FNMR of 0.3% at a

FMR of 0.1%. However, these results do not conform with

the worldwide border control statistics since the actual envi-

ronment has other factors, such as airport logistics and human

factors (untrained users), that cause significant performance

degradation. The table below shows the results of the operation

of the EasyPASS system (Germany) as reported in [15], [16].

TABLE I
SAMPLE OF STATISTICAL DATA FROM THE BORDER CONTROL SYSTEM

EASYPASS BASED ON FACIAL RECOGNITION (OCT.2009 - SEPT.2010)
[15], [16]

Statistical parameter Estimated value

Total number of users 50.000

Success rate 86%∗

Rejection rate 14%

Rejection due to face verification
failure

5.5% at 0.1% FAR

Period to pass the e-gate∗∗ 18 seconds

Recognition performance 5% FRR at 0.1% FAR

Based on these statistics, the number of people who were

directed to the manual inspection lane at EasyPASS can be

estimated as 50, 000 − 43, 000 = 7, 000. This means that

every 7th traveler (50, 000/7, 000 ≈ 7) was directed to the

manual inspection lane. Statistics provided in [17] for 2013,

show that the best facial FRR has been achieved by the border

control systems located in Portugal airports (FRR=1.36%),

and the worst result (FRR=18.18%) was demonstrated by



the systems in Denmark. In total, 1 out of 10 travelers was

directed to manual control because of facial verification failure

(FRR=9.30%, given 18,884 travelers who used the system).

Meanwhile, the advances in 3D face recognition provide an

improved robustness while processing variations in poses and

problematic lighting conditions. However, this technology re-

lied on expensive 3D scanners until recently. Inexpensive near-

infrared range sensors such as one developed by PrimeSense

and the now familiar Microsoft Kinect sensor, have become

available since 2010. Safran SA has developed a Morpho 3D

Face Reader that uses a similar principle.

In this paper, we argue that advances in range and sensory

technology must be utilized to support the existing multi-

spectral facial biometric data accumulation to support the

authentication process. In particular, we consider how depth

data acquired by the range sensors, such as the Kinect, can

facilitate facial recognition and facial temperature reading,

thus assisting the decision-making in authentication and risk

management (such as fever screening).

IV. RGB AND DEPTH FACIAL BIOMETRICS

Below we evaluate the possible inexpensive enhancement

of face verification using RGB-D sensors (RGB and Depth

data) instead of traditional RGB (regular) video cameras. This

approach does not require storing 3D templates (as in the case

of purely 3D face recognition), neither does it require usage

of time-consuming 3D data processing, or time-consuming

geometrical transformation when using a multi-camera (stereo-

camera) setup.

We propose to use a fast head pose estimation algorithm that

performs real time image processing using a RGB-D camera.

In particular, any of the current Kinect, Carmine or Asus

sensors supply both depth data and RGB videos, providing

a resolution of 640 × 480. Instead of using Depth data for

retrieval of 3D data, it can be used to perform pre-processing

and detection. After that, a 2D recognition can proceed.

Note that, in addition, the Depth sensor can be instrumental

in verifying the liveness of the object in order to prevent

tampering by presenting the sensor with a photo or a smart

phone image of a person.

A. Head Pose Estimation

The head pose estimation algorithm is based on the work

of Fanelli et. al [18] where depth data is acquired in order

to estimate the head orientation using a random regression

forest implementation. This approach is applied to find the

most optimal position of one’s face.

Figure 2 displays the 3D model of a human subject using the

depth information from the Kinect camera. The green cylinder

represents the orientation vector of the person and is drawn by

connecting the center of the head to the nose. Both the center

of the head and nose are calculated by the fitting of a 3D mask

to the depth model; the mask is created based on the random

regression forest algorithm [18]. After computing the head-

pose vector, the latter is compared with the z-axis using the

dot product. This comparison yields the offset angle between

the vectors. Using the offset angle, it is possible to filter frontal

view images within a video. Obtaining the frontal view images

is crucial for the facial recognition algorithm accuracy. Also,

by selecting the first occurring frontal view from video, it is

possible to perform faster facial recognition compared with

methods that run recognition continuously throughout a video

sequence to ensure good recognition rates.

Fig. 2. Head-Pose Orientation Vector

B. Face Detection via Pose Estimation

The most popular approach to detection of the face in

an image is the Haar-like feature detection, implemented in

OpenCV [19]. It involves finding a region of interest (ROI),

and then the use of a sliding window algorithm that slowly

grows in size up to a specified threshold. For each ROI, the

feature detection is run through a cascaded classifier.

Another form of face detection is to use the head-pose

estimation algorithm. The pose estimation algorithm detects

the head orientation vector, as well as the location of the

head. Based on this data, the face can be cropped and used

for facial recognition. It also assists the task of infrared image

processing of the face for the purpose of region-of-interest

detection and further facial temperature estimation. In our

recognition system we replace the detection algorithm with

head-pose estimation. Figure 3 illustrates the entire algorithm.

C. Face Recognition and Verification

In this paper, the facial recognition is implemented using the

FaceRecognizer class in OpenCV [19]. Three main recognition

algorithms have been evaluated:

• EigenFace

• FisherFace

• Local Binary Patterns Histograms (LBPH)

V. INFRARED FACIAL BIOMETRICS

Biometric technology, that uses infrared thermography, de-

scends from medical applications, namely, diagnostic methods

that provide information about normal and abnormal function-

ing of the sensory and sympathetic nervous system, vascular

dysfunction, myofascial trauma, and local inflammatory pro-

cesses.

The infrared image analysis includes recording an infrared

video image, infrared image processing, and evaluation; in

particular, of temperature and blood flow rate. The fluctuation

of temperature in various facial regions is primarily due to

changing blood flow rate. In [20], heat-conduction formulas at

the skin’s surface are introduced. The thermodynamic relation



Fig. 3. Mutli-spectral analysis of face biometrics.

between the blood flow rate VS at the skin level, blood

temperature at the body core Tblood, and skin temperature

Tskin are used to convert infrared intensity to temperature

dVs/dt = f(Tblood, Tskin). By solving this for every point

in the image, raw thermal data is transformed into blood flow

rate data.

In medical applications, infrared-based diagnostic systems

provide an accurate quantitative analysis of temperature distri-

bution on a target surface: absolute and mean temperature of

any region; in particular, of the face, and differences between

the right and the left sides of the face.

A breath-monitoring function has been well studied in

polygraph usage [21]. The distance infrared breathing measure

function is based on the fact that exhaled air has a higher tem-

perature than the typical background of indoor environments

[22].

In the context of access control systems that perform multi-

spectral analysis of human biometrics, temperature is an

important source of information. For example, the systems

with situational awareness and monitoring of travelers in

border control shall have non-invasive remote temperature

measurement using IR cameras for fever detection.

In our research, head detection and head pose estimation

based on RGB-D data, specifically the frontal view detection,

assists another task, - estimation of facial temperature based on

the infrared (IR) images as depicted in Figure 3. Using an IR

image of a frontal-view face, fever and/or high temperature can

be detected and the system shall alert the personnel on such

findings. The RGB-D image processing is used to detect not

only the RGB images of the frontal view but also to extract

the synchronized frames from IR video. Next, the regions-

of-interest are detected, and the IR image intensity is further

processed to be converted to temperature measurements. In

addition, blood flow rate can be estimated when the skin/body

temperature is calculated from the sequence of IR frames [20].

VI. EXPERIMENTAL RESULTS

The experiments are conducted on an Intel R© CoreTM i7

Q740 (1.73GHz) computer with 8GB of RAM. We collected

a Local database containing RGB and depth videos with 17

different individuals as well as a synchronized IR video of the

same subjects.

For the pose estimation and face recognition experiments,

we used ORL [23], ICT-3D HeadPose [18], and Biwi Kinect

Head Pose databases [24].

The Biwi Kinect Head Pose Database has a total of 20

subjects and approximately 500 RGB images at a resolution

of 640x480 pixels with depth information for each subject.

Each subject’s pose range varies about ±75◦ yaw and ±60◦

pitch. For each image a text file providing the ground truth

head rotation and location was given for comparison.

The ICT-3D HeadPose Database (ICT-3DHP) includes

datasets of video that include both RGB and Depth collected

using Microsoft Kinect [25]. The database contains 10 RGB

videos with subjects rotating their heads at varying yaw, pitch,

and roll angles. For every RGB frame in the video, there is a

depth image. In addition, each dataset is labeled with ground

truth head poses obtained by using the Polhemus FASTRACK

flock-of-birds tracker.

The ORL Database of Faces contains RGB images of

different subjects taken at different time intervals by [23].

There are a total of 40 subjects with 10 256 gray level 92x112

pixel images for each.

The local lab database contains multiple videos obtained

using a Kinect R© sensor on 17 different subjects. For the first

16 subjects, they are tasked with 2 different roles: rotating

head from left to right twice, and change facial expression

(neutral, anger, sad, happy, surprise, disgust and fear). The last

subject (17th) performs one extended head rotation consisting

of left to right, clockwise, counter-clockwise, and up to down.

Each task is divided into 3 sets of video: 16 rotation videos

(VS1), 16 facial expression videos (VS2), and one extended



head rotation (VS3). Each frame (both depth and RGB) is

640x480 pixel resolution; every 15th frame is used instead

of every frame to provide a compromise between the overall

consistent video flow and distinctive sequential frame variance.

The purpose of the first experiment was to evaluate the

accuracy of the orientation of the head using the extended

head rotation video. Each frame that is determined to have an

optimal pose is saved. The extended rotation video in the local

database (VS3) was used for this experiment. Also, the Biwi

database was examined to demonstrate the accuracy between

the ground truth and experimental frontal selection.
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Fig. 4. Varying Theta Threshold on Biwi Database.

Figure 4 displays the curve representing the number of

frames extracted based on varying the angular (Theta) thresh-

old. The selected point on the experimental curve shows 1929

extracted faces at 15◦ threshold.

This estimation algorithm was trained using the Biwi

database [18] and the angular threshold of 15◦ was adopted

for the extended video (VS3) experiment which is displayed

in Figure 5 for frames accepted within the threshold .

 

Fig. 5. 7 accepted frames from video using head estimation algorithm with
15

◦ threshold.

The second experiment was to investigate face detection; it

was performed using 16 local videos (VS1) and the following

face detection approaches:

• Haar-like (Viola-Jones algorithm) implemented in

OpenCV [19];

• Haar-like depth head pose (HL*DHP) developed in this

study.

Table II shows the face detection rates on a set of 16 videos

(VS1). The face detection rate is measured as a ratio between

the number of detected faces and the number of frames (total

or optimal, which represents the number of frontal views). As

TABLE II
FACE DETECTION ON DIFFERENT DATABASES

Rate Face Optimal Total

Detected Frames Frames

Local

Haar-Like 48.20% 191 - 429
HL*DHP 83.33% 65 89 330

Biwi

Haar-Like 46.73% 7326 - 15677
HL*DHP 97.17% 1889 1944 15677

ICT3DHP

Haar-Like 58.77% 8352 - 14212
HL*DHP 80.20% 5325 6640 14212

there is no negative inputs (every frame contains a face), false

positive rate is not considered. The Haar-like method runs a

face detection program without any depth assistance, thus no

optimal frames are extracted. HL*DHP method incorporates

both the HL and DHP method; the DHP assists the HL method

in selecting the optimal frames before applying face detection.

The optimal frames are selected based on the angular threshold

for extracting the best frontal views. As follows from Table

II, applying the DHP greatly increases the face detection rates

since the head estimation algorithm can detect the frontal

views of a head. The overall 14% difference between local

HL*DHP and Biwi HL*DHP is in favor of the latter due to

the much more robust selection of parameters and background-

subtracted dataset in the Biwi database. The face detection rate

of 58.77% for ICT-3DHP shows that this database’s video

sequences are composed of more frontal views as opposed

to Biwi sequences, showing the detection rate of 46.73%.

The gain from 58.77% to 80.20% for ICT-3DHP due to

incorporation of head pose estimation is lower than for the

other databases, which can be explained by the fact that the

ICT-3DHP contains a larger proportion of frontal views.

The third experiment investigated face matching in order to

evaluate the efficiency of the proposed approach. For the ORL

database, 5 images from each of 40 subjects were used to train

the algorithm and 5 images per subject were used to test it. For

the local database, local expression videos (VS2) were used

for the training set while local rotation videos (VS1) were

used for testing. For the Biwi database, 1 image per subject

was extracted for training and the remaining images were used

for testing. For the ICT-3DHP database, 1 image per subject

was used for training and the remaining images were used for

testing.

The comparison process involves face recognition and ver-

ification. Table III shows the results of the three recognition

methods implemented in OpenCV using ORL, Local, Biwi,

and ICT-3DHP databases.

Table III shows the results of comparison of the traditional

approach to face recognition and detection for the RGB

videos with no head-pose/depth assistance, and the proposed

approach that uses head-pose/depth assistance prior to de-

tection/recognition on the RGB videos. For the traditional

approach, the accuracy of the recognition methods are mea-



TABLE III
RECOGNITION ACCURACY WITH VARYING OPENCV METHODS AND

DATABASES

Methods

EigenFace FisherFace LBPH

ORL

Traditional 92.0% 91.5% 88.5%
Proposed - - -

Local

Traditional 76.14% 78.48% 84.56%
Proposed 85.33% 85.52% 91.52%

Biwi

Traditional 63.77% 63.77% 63.72%
Proposed 88.30% 88.30% 88.25%

ICT-3DHP

Traditional 60.48% 60.48% 60.44%
Proposed 70.14% 70.14% 68.96%

sured as a ratio between the number of correct recognitions

and the total number of detected faces. For the proposed

approach, accuracy is measured as a ratio between the number

of correct recognitions and the total number of faces detected

after selecting the best frontal view with a 15◦ threshold. Since

there is only one output per image, the accuracy measurement

accounts for false positives (the face of person A is recognized

as the face of person B).

It follows from Table III that the recognition rate increases

about 6-9% for the local database by just incorporating a

head pose estimation algorithm to find the best frontal view

before applying face detection and recognition. For the ICT-

3DHP database, the recognition accuracy is about 10-15%

lower than for the other databases; however, the overall gain

in performance by incorporating head pose estimation is 10%.

In addition, the recognition rates show about 25% gain for the

Biwi database. For the Biwi and ICT-3DHP database, the same

approach demonstrates similar accuracy for different recogni-

tion methods because only one image was used for training.

Increasing the number of images to train each recognition

method will increase the accuracy for both traditional and

the proposed approach while creating more disparity between

each recognition method. However, only one image, the frontal

view, was specifically chosen for training to demonstrate the

effectiveness of both head-pose estimation and frontal view

recognition.

In the case of Biwi, the traditional approach extracts faces,

both frontal and rotated ones, which are then used for facial

recognition. The recognition accuracy in this approach is

63.7% because the rotated views are not used for training. On

the contrary, the proposed approach demonstrates reasonable

accuracy, 88.3%, as this approach extracts near-frontal views

which contain enough similarity to the trained image to be

correctly recognized.

In the case of ICT-3DHP, the experimental data shows an

overall lower recognition accuracy than for a similar approach

reported in Biwi experiment. The drop in accuracy is likely

due the slight difference in the quality of the recorded video

sequences; the parameters such as lighting and distance from

camera are different.

Face verification either assumes that the enrolled images are

the e-passport photo or an image in the existing database. By

comparing the enrolled database with live images a verification

is performed to determine the validity. For this experiment,

the first three frontal view images per subject are used as

enrollment, or training set, and the other images are used as

test.

Table IV and Figure 6 show the results of the face verifica-

tion using the proposed method on the Biwi and ICT-3DHP

databases. The proposed approach uses the DHP to filter out

the non-frontal view images. Results in Table IV are relatively

similar to those with the E-pass gate performance statistics.

Therefore, RGB-D cameras may be a replacement to standard

e-Gate cameras with the benefit of faster processing.

TABLE IV
FACE VERIFICATION USING VERILOOK SDK [26] ON DIFFERENT

DATABASES

EER FRR @0.1% FAR

Biwi 6.5% 10.1%
ICT-3DHP 14.2% 30.2%
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Fig. 6. FRR vs FAR using Verilook [26].

Table V compares the time required to perform recognition,

DHP, detection, and processing for both approaches using the

local rotation video (VS1). For all 16 videos, every procedure

is timed then averaged based on the number of frames per

video. For each procedure, the following timings are measured

on a per-frame basis:

• Recognition: Time spent on predicting target;

• DHP: Time spent on calculating head-pose vector;

• Detection: Time spent on detecting face;

• Processing: Total Time spent.

Table V shows the operation per-frame time based on both

the traditional and optimized approach. The processing per-

frame time is about 134 ms faster for the optimized approached



TABLE V
OPERATION TIME ON TRADITIONAL VS. PROPOSED METHOD

Method Recognition DHP Detection Processing

Per Frame (ms) (ms) (ms) (ms)

Traditional 37.09 - 226.52 414.72
Proposed 32.84 113.58 203.89 280.30

Per Video (s) (s) (s) (s)

Traditional 0.59 - 3.62 6.64
Proposed 0.38 1.32 2.40 3.28

Total (s) (s) (s) (s)

Traditional 6.6 - 92.05 168.08
Proposed 2.30 34.19 16.88 88.64

when compared to the traditional approach. This gain is

explained by incorporating the DHP algorithm which reduces

the amount of time the face detection algorithm needs to be

run. Since the DHP is a faster algorithm, compared to face

detection, it can be used as a filter in order to reduce the total

number of times the face detection algorithm is required for an

entire video by only using the frontal view frames. Based on

Table V, there is a 32.44% gain in speed. However, in order

to enable the DHP algorithm, 1.13 seconds are required for

loading and training.

In addition, we conducted experiments on temperature read-

ing from the frames of the IR video, that were synchronized

with the RGB frames extracted using the depth-based head

position estimation described above. We used the infrared

camera Miricle 307k from Thermoteknix. Camera calibration

was performed using a thermometer and defining the pixel

intensity and the corresponding temperature.

In order to select a region of interest within an IR image

either manual or automatic selection can be used. For auto-

matic selection, a face detection algorithm is applied on the

RGB frames; next, a corresponding IR frame is also selected.

Superimposing both frames enables detecting the head on

the IR image and, using the head proportions, selecting the

regions-of-interest such as the forehead.
The approximation is performed by measuring different

temperatures at different pixel intensities. Using the vectors

of temperature with respect to intensity, a graph representing

the relationship is drawn (Figure 7) where the linear expression

is used to estimate temperature shown below:

y = 0.2087x+ 22.28 (1)

where y is the estimated temperature, x is the averaged gray

level intensity of bounding box, 0.2087 is the slope found in

the graph, and 22.28 is the y-intercept and also the calculated

room temperature. More advanced and accurate approaches

such as [27] can be used. Following [20], the temperature can

be used to calculate the blood flow rate.

Figure 8 displays a set of 3 IR and RGB images where pose

estimation is used to exclude rotated face (left, middle, right).

Since figure 8 (b) is a frontal view, additional information

is extracted such as temperature and blood flow rate. In

addition, a rectangular region-of-interest is selected manually

for further calculations showing a temperature of 33.727◦C

and blood flowrate of 39.6536 ml/100gtissue ·min. Figure

9 is an expanded view of a frontal frame where automatic

face detection is applied and a color-map is applied to the IR

image. The measured room temperature is 21.8◦C.
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Fig. 7. Temperature measured in Celsius degrees for equation estimation.

(a) (b) (c)

Fig. 8. RGB and Gray-scale IR image: (a) Left Rotated Face that failed pose
estimation; (b) Frontal Face that passed pose estimation and thus returned
with temperature information: forehead temperature of 33.727◦C with a
estimated blood flow rate of 39.6536 ml/100gtissue · min and an overall
head temperature of 31.5156◦C with a estimated blood flow rate of 19.2156
ml/100gtissue ·min; (c) Right Rotated Face that failed pose estimation.

Fig. 9. Automatic face detection within an RGB image, and location of
region-of-interest superimposed on the IR image (JET colormap).



VII. CONCLUSIONS

This work contributes towards development of a new gen-

eration of access control systems that utilize biometrics for

both authentication and situational awareness. In such systems,

biometrics such as RGB-D, as well as Infrared facial images

are used to support the decision-making process. This support

is facilitated by transferring the data from biometric-sensing

devices into an acceptable semantic form that supports an

access control personnel in dialogue with a customer.

In our approach, the head pose estimation algorithm filters

out the unwanted head positions, and only performs facial

recognition on the frontal view images. Instead of creating

a system such as 3D modeling that accounts for rotation of

the head, the approach proposed in this paper utilizes only

frontal facial images. The latter are extracted from the video

captured while a traveler is in the process of using the kiosk

that reads the e-passport rather than forcing the traveler to a

special photoshoot location. For that purpose, we developed a

face recognizer that combines the convenience of on-line video

capturing and the seamless frontal facial view detection.

The presented experiments show that using depth data for

the frontal view selection leads to a 35% increase in face

detection rate, as well as up to a 9% increase in face recog-

nition accuracy. In addition, the frontal view selection also

reduces the total processing time for the entire face recognition

procedure by lowering the amount of frames required to run

the face detection and recognition algorithms. The overall

reduction in processing time is approximately 32%. The frontal

view selection pre-processing based on depth data leads to

a reduction in time complexity and an improvement in face

detection and recognition rates.

In the context of access control systems, remote temperature

estimation based on the IR facial images is aimed at assisting

the personnel of the automated access control systems in their

task of monitoring customers, in particular, in determining

possible fever in the subjects. Fusion of IR data with other

facial biometrics is a source of data for complex intelligent

access control systems, providing situational awareness and

risk management.

The other future direction is to utilize depth information

in order to create a 3D model using both 2D and depth

information to enhance face recognition, or to perform fusion

of such data at certain levels of recognition process.

ACKNOWLEDGMENT

This project was implemented in the Biometrics Technol-

ogy Laboratory at the University of Calgary, and partially

supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC). K. Lai and S. Samoil acknowl-

edge the Queen Elizabeth (II) Scholarship.

REFERENCES

[1] D. Bigo, S. Carrera, B. Hayes, N. Hernanz, and J. Jeandesboz, “Justice
and Home Affairs Databases and a Smart Borders System at EU Ex-
ternal Borders - An Evaluation of Current and Forthcoming Proposals,”
http://www.ceps.eu/ceps/dld/7560/pdf , December 2012, no. 52, [Online].

[2] “IATA: Checkpoint of the Future. Executive Summary. 4th Proof,”
http://www.iata.org/whatwedo/security/Documents/cof-executive-summary.pdf,
2014, [Online].

[3] “Frontex: Research on countering identity and document fraud and
improving tactical/operational risk assessment in the first line of border
control (IDCHECK),” http://btn.frontex.europa.eu/idcheck.

[4] G. Herzog and N. Reithiger, The SmartKom: Foundations of multimodal

dialogue systems. Springer, 2006.
[5] J. F. Nunamaker, D. C. Derrick, A. C. Elkins, J. K. Burgoon, and M. W.

Patton, “Embodied conversational agent-based kiosk for automated
interviewing,” J. Management Information Systems, pp. 17–48, 2011.

[6] S. Yanushkevich, A. Stoica, and V. Shmerko, “Experience of Design
and Prototyping of a Multi-Biometric Early Warning Physical Access
Control Security System (PASS) and a Training System,” Proceeding

32nd Annual IEEE Industrial Electronics Society Conference, pp. 2347–
2352, 2006.

[7] S. N. Yanushkevich, O. Boulanov, A. Stoica, and V. P. Shmerko,
“Support of interviewing techniques in physical access control system,”
in Computation Forensics, S. Srihari and K. Franke, Eds. Springer,
2008, pp. 147–158.

[8] S. N.Yanushkevich, V. P. Shmerko, O. Boulanov, and A. Stoica,
“Biometrics: Theory, Methods, and Applications,” in Decision-making

support in biometric-based physical access control systems: Design

concept, architecture, and applications, N. V. Boulgouris, K. Plataniotis,
and E. Micheli-Tzanakou, Eds. Wiley, 2010, pp. 599–631.
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