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Abstract

We strive to understand care coordination structures of multidisciplinary teams and to evaluate 

their effect on post-surgical length of stay (PSLOS) in the Neonatal Intensive Care Unit (NICU). 

Electronic health record (EHR) data were extracted for 18 neonates, who underwent gastrostomy 

tube placement surgery at the Vanderbilt University Medical Center NICU. Based on providers’ 

interactions with the EHR (e.g. viewing, documenting, ordering), provider-provider relations were 

learned and used to build patient-specific provider networks representing the care coordination 

structure. We quantified the networks using standard network analysis metrics (e.g., in-degree, 

out-degree, betweenness centrality, and closeness centrality). Coordination structure effectiveness 

was measured as the association between the network metrics and PSLOS, as modeled by a 

proportional-odds, logistical regression model. The 18 provider networks exhibited various team 

compositions and various levels of structural complexity. Providers, whose patients had lower 

PSLOS, tended to disperse patient-related information to more colleagues within their network 

than those, who treated higher PSLOS patients (P = 0.0294). In the NICU, improved dissemination 

of information may be linked to reduced PSLOS. EHR data provides an efficient, accessible, and 

resource-friendly way to study care coordination using network analysis tools. This novel 

methodology offers an objective way to identify key performance and safety indicators of care 

coordination and to study dissemination of patient-related information within care provider 

networks and its effect on care. Findings should guide improvements in the EHR system design to 

facilitate effective clinical communications among providers.
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I. Introduction

The Neonatal Intensive Care Unit (NICU) medical team treats the most vulnerable and 

critically ill newborns at great expense. Neonatal complications are ranked among the most 

expensive conditions treated in U.S. hospitals1. Average daily costs exceed $3,000 and for 

infants born at 23 weeks gestation treatment costs average approximately 

$895,000±101,7582–3. Treatment costs quickly accumulate with expenditures for clinical 

personnel, equipment, medications, and ancillary services like laboratory and radiology. 

Tools (e.g., algorithms) and processes to predict and expedite discharge have been developed 

by hospitals to reduce costs4–5.

Failure of care coordination is one of the major causes of waste ($25–50 billion annually) in 

the healthcare system keeping medical costs high in the United States6–7. Failure to 

coordinate care leads to medical errors and treatment redundancies8–9. Uncoordinated care 

lacks provider-to-provider coordination and thereby limits each provider’s understanding of 

the patient to condition in his/her designated practice, resulting in redundant diagnostic tests, 

inaccurate treatment plans, conflicting treatments, and overall, unnecessarily expensive care 

for the patient10–11.

A potential solution to uncoordinated care and unnecessary costs is care coordination, 

through which the work of all providers treating a patient is extensively coordinated to foster 

an efficient patient-centric approach that addresses patients’ conditions and needs 

holistically7,12–15. However, care coordination in the NICU can be especially challenging 

due to the multidisciplinary nature of care teams. As providers change shifts and round on 

patients at different times, they may not communicate critical patient information16. Without 

feedback from colleagues from the multidisciplinary team, care providers begin to focus 

more on their specialized role than on their patient’s overall needs17. Frequently in the 

NICU, patients are handed off between the neonatal team and the surgery team for 

operations with little communication occurring prior to or during the handoff18. 

Observations of insufficient communication during handoffs and their complications have 

led us to suspect that a relationship exists between provider coordination and patient 

outcome19–22. Our goal was to investigate and derive NICU care coordination structures 

using available electronic health record (EHR) audit and medical data and to measure their 

relationships with clinical patient outcomes. Audit logs document providers’ activities in 

EHRs of patients in real-time. The activities committed by providers in EHRs include 

viewing (e.g., chart review of clinical notes), editing (e.g., writing a progress note), ordering 

(e.g., ordering a test), and exporting (e.g., printing out documents) and are frequently 

leveraged to learn clinical workflows23, care teams24 and healthcare organization 

structures25. EHR medical data including patients’ admission, encounter, and discharge 
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information are widely used to train models predicting patient outcomes such as length of 

stay26–27.

Existing studies of care coordination leverage clinical observations, questionnaires, and 

workflow data to study coordination structure and measure its effectiveness. These studies 

uncover strong ties between provider network characteristics and various measures of 

successful care, such as post-operative well-being and family satisfaction of care28–29. While 

the findings helped to advance care coordination, there are some shortcomings. Many 

studies relied on questionnaires, which required substantial effort for creating, recruiting, 

administering, and coding the questionnaires. Additionally, some studies excluded core 

members of the multidisciplinary care team, such as neonatologists and pediatric surgeons29. 

Very few studies explored the relationship between coordination structure and clinical 

outcomes30–31.

Our study leverages EHR data mining and network analysis to describe care coordination 

and identify behaviors associated with improved patient outcomes, as measured by post-

surgical length-of-stay– a metric with direct cost implications. We learned care coordination 

structures using the provider-provider interactions that occurred virtually through the EHR - 

a tool essential to the work, decision making, and documentation for all healthcare 

providers. The continuous data collection of the EHR provides robust, readily available data. 

Since provider activity is documented in the EHR in real-time, it is free from recall bias and 

variation introduced when providers are retrospectively surveyed to measure the team 

dynamics.

In this pilot study, we focused on neonates, who underwent gastrostomy tube placement 

surgery and received pre- and post-operative care from NICU providers. Usually, 

gastrostomies are scheduled for patients who not able to feed by mouth but are otherwise 

ready for discharge. These patients required high resource allocation and complex clinical 

care, which made them an excellent cohort for studying care coordination.

II. Methods and materials

A. Dataset/Patient Population

For 18 NICU gastrostomy patients, who received surgery at the Vanderbilt University 

Medical Center between December 2016 and February 2018, we extracted EHR data from 

the day prior to the patient’s surgery day until postoperative day 30. We also acquired 

general patient demographic data, such as age and weight at the time of surgery, gestational 

age, date of discharge, and date of surgery.

Understanding Provider Actions in the HER—Each time a provider interacted with 

EHR systems by viewing a patient’s EHR or entering information into the EHR including 

ordering laboratory tests, and medications, signing a note, reviewing laboratory test results, 

medications, and clinical notes, communicating with other providers, and conducting other 

documentation activities, we defined each viewing or data entry task as an action and all 

actions affiliated with the patient constituted a sequence of information flow.
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B. Identifying Hidden Interactions Among Providers

First, we provide a simple scenario to understand hidden interactions: The night respiratory 

therapist documents an increased need for oxygen in a patient. The daytime nurse 

documents the patient’s vital signs and notes that the patient has tachypnea. On rounds, the 

nurse practitioner and attending review the recorded vital signs focusing on the need for 

more oxygen and elevated respiratory rate and the physician prescribes a diuretic.

In this example, the nurse practitioner and attending’s comprehension of the patient’s 

condition grew with each reviewed update to the EHR. Providers depend on their colleagues 

to provide information for clinical updates as they are essential to providers’ decision-

making.

We call this virtual provider-provider interaction a hidden interaction. In contrast to a face-

to-face interaction, a hidden interaction implies an exchange of information via the EHR that 

potentially and hopefully leads to both providers arriving at conclusions, which in this 

scenario was to prescribe medication for pulmonary edema.

We take advantage of these hidden interactions to build directed patient-level provider 

networks.

C. Constructing Patient-Level Provider EHR Networks

We built networks that represent the hidden interactions facilitating the dispersion of patient-

related information. We call them patient-level provider networks, because they are 

composed of all providers that treated a single common patient.

To start, we created a simplified sequence dataset by condensing consecutive actions by the 

same provider into a single action. This is because we focused on the learning of 

coordination at the level of providers: with whom they interact to care for a patient. For 

example, if Provider A made three EHR actions at the same time, we condensed them into 

one action. The simplified sequence can be interpreted as a workflow (who interacted with 

whom) in EHR. Based on the sequences, we identified relationships between providers 

whenever their actions occurred consecutively (Provider B used the patient’s EHR after 

Provider A). We characterized each hidden interaction with the frequency by which they 

occurred.

Fig. 1 shows an example of how we build a provider network from a patient’s sequence. As 

shown in Fig 1, Provider A interacted with the EHR before Provider B, so the arrowhead on 

the right points to Provider B. The edge weight is the number of times the hidden interaction 

occurred. Note an edge exists if an interaction occurred at least once. While an observed 

interaction was not guaranteed to be an exchange of information, it did have the potential to 

be one.

For our analysis, we excluded a pharmacist from all of the networks because 1) she was, as 

part of her dispensing duties, involved with the EHR significantly more than other providers 

and heavily skewed our network-level measurements and 2) she was not part of the core 

NICU team.
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We followed this process for each patient’s EHR and finished with 18 learned patient-level 

provider networks. We visualized networks with the Python package NetworkX32. Nodes 

represent unique providers and edges represent the direction of information flow.

D. Network Metrics

We measured the extent to which providers receive, send, and relay patient-related 

information to their colleagues (even though there is no guarantee that the information was 

received) with the following network analysis metrics: in-degree, out-degree, betweenness 

centrality, and closeness centrality.

• In-degree counts the number of neighboring nodes that the node-of-focus 

potentially receives information from. In the clinical environment, this represents 

the number of clinicians who interacted with the EHR before the provider-of-

focus did and may have deposited information that the provider-of-focus could 

have seen.

• Out-degree counts the number of neighboring nodes that the node-of-focus 

potentially sends information to. In the clinical environment, this reflects the 

number of clinicians who interact with the EHR after a provider-of-focus did and 

may have the opportunity to see information deposited by the provider-of-focus.

• Betweenness centrality measures the proportion of shortest paths that the node-

of-focus lies on. One can interpret a node with high betweenness centrality as 

someone with the power to facilitate the most efficient information exchange 

between neighbors. In the clinical environment, this reflects the number of the 

shortest connections between any two providers, where the provider-of-focus lies 

on the connection between the two providers with the EHR.

• Closeness centrality measures the inverse of the sum of shortest distances 

(inverse of edge weight) from the node-of-focus to other nodes in the network. 

One can interpret high closeness centrality as having the potential to introduce 

and quickly spread information around the network. In the clinical environment, 

this is the sum of the frequency of providers interacting with the EHR between 

the provider-of-focus and any other provider.

It is important to realize that there were multiple levels of data in the network metrics. (1) 

Each node across all networks saw each of the aforementioned network metrics, and (2) 

each patient-level provider network witnessed a distribution of these network metrics. We 

used aggregate statistics (average, median, interquartile range (IQR)) of network metrics 

within each patient-level provider network to conduct our analysis. All network metrics were 

measured using NetworkX. We normalized each network metric in order to compare 

networks of different sizes (i.e. different number of nodes). We used minimum-maximum 

normalization on in-degree and out-degree measures to allow for simple comparisons on a 0-

to-1 scale. The built-in NetworkX functions for betweenness centrality and closeness 

centrality normalized by default.
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E. Statistical Analysis

Most network metrics’ distributions and the length-of-stay distribution did not follow 

standard distributions (see figure 2), so we appeal to rank-based measures of association. We 

calculated the Spearman rank correlation between patient PSLOS and each network metric. 

We further modeled patient PSLOS with each network metric controlling for patient age and 

weight on the surgery day using a proportional-odds logistic regression model.

The proportional-odds model can be thought of as a set of logistic regression models, where 

each model describes the log-odds of PSLOS being higher than some threshold j (rather than 

lower than or equal to), and where j=1, 2, …, J represents all possible thresholds by which 

PSLOS can be dichotomized and J is equal to the number of unique outcome values minus 

one. The set of models is collapsed into a single model, via the proportional odds 

assumption that coefficients for predictor variables are the same across the threshold values. 

Even when this assumption is not met, a coefficient from the proportional odds model can be 

thought of as a weighted average of coefficients across all of the threshold-specific logistic 

regression models. Equation 1 shows the proportional odds models used in the present 

analyses. To interpret the regression coefficients, if βMetric = −1, then the odds that PSLOS is 

higher than any threshold decreases by 63.2% (100*(1 - exp(βMetric))) per unit increase in 

XMetric while holding XWeight and XAge fixed. In simpler term, PSLOS is inversely related to 

the network metric.

Lj = αj + βMetricXMetric + βWeightXWeight + βAgeXAge,
where Lj = logP (PSLOS ≥ j)

P (PSLOS < j)
(1)

The R programming language and specifically the RMS package were used for all statistical 

analyses33–34.

III. Results

A. Summary Statistics of Patient Population and EHR Data

1) Patient Demographics—Table 1 shows the summary statistics for patients’ age and 

weight at the time of surgery. The mean and IQR ages of neonates were 75 and 106 days 

respectively. The median and IQR weights were 3.17 and 1.66 kilograms respectively.

2) Post-Surgical Length-of-Stay (PSLOS)—PSLOS is measured as the number of 

days from the surgery date until the discharge date. Since most patients (15 out of 18) were 

discharged home within 30 days after surgery, we truncated all PSLOS values at 30 days; 

PSLOS values greater than 30 days were set to 30 days. Looking beyond 30 days would 

have introduced too much variation, so this truncation allowed for a better comparative 

analysis between provider networks.

We considered this potential limitation during statistical analysis. With the 30-day cutoff, the 

median PSLOS was 27 days with the lowest PSLOS being 12 days. The distribution of 

PLOS is depicted in Fig 2. From the figure, it can be seen that the distribution of PLOS does 

not follow a normal distribution.
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3) Provider Actions on EHR—The length of provider action sequences ranged from 70 

provider actions to 2,576 provider actions per patient, with a mean of 676 provider actions 

per patient. Each provider treated an average of 1.7 patients. The following provider roles 

were represented: Anesthesiologist, Fellow, Licensed Nurse, Medical Assistant, Nurse 

Anesthetist, Nurse Practitioner, Occupational Therapist, Pathologist, Pharmacist, Pharmacy 

Technician, Physical Therapist, (Attending) Physician, Physician Assistant, Registered 

Nurse, Resident Physician, Imaging Service Technician, Respiratory Therapist, Social 

Worker, Speech and Language Pathologist, Student Nurse Anesthetist, Technician, and 

Technologist. Provider, role, and action summaries are listed in Table 1.

B. Provider Interaction Networks

We learned 18 provider interaction networks. Among the networks, the top 6 most 

represented provider roles were as follows: Registered Nurse, (Attending) Physician, Nurse 
Practitioner, Respiratory Therapist, Pharmacist, and Resident Physician.

While some networks involved a variety of provider types, individual providers, and hidden 

interactions, other networks were less multidisciplinary and involved fewer unique hidden 

interactions (Fig. 3). Table 2 documents the number of nodes and edges and edge weight 

components of each patient-level provider network. Recall that nodes represent a unique 

provider; edges represent hidden interactions considering the direction of information flow; 

and edge weights represent the frequency of the hidden interactions. Fig. 4 depicts the 

distributions of network metrics including in and out degrees, betweenness centrality and 

closeness centrality across all patient-level provider networks. As shown in the graphs, the 

distributions of the network metrics do not follow a normal distribution.

C. Test results of relations between PSLOS and Network Metrics

When controlling for patient age and weight, the out-degree average was the only network 

metric significantly associated with PSLOS at the 0.05 significance level. To better interpret 

the results, we scaled the out-degree averages by the interquartile range. With each IQR unit 

increase of out-degree average, the odds of a longer PSLOS decreased by approximately 

88% (95% confidence interval: [18.97%, 98.17%]). In simpler terms, higher out-degree 

average was associated with shorter PSLOS within our patient samples.

To understand the relationship between out-degree and PSLOS from another perspective, we 

dichotomized our patient sample by the approximate scaled out-degree average, at a median 

value 1.7. For the “smaller” out-degree average group, the average PSLOS was 25.89 days, 

whereas for the “larger” out-degree average group, the average PSLOS was 20.67 days. The 

Wilcoxon rank-sum test of the two groups’ PSLOS found that the “smaller” out-degree 

average group is more likely to have larger PSLOS than the “larger” out-degree average 

group (P = 0.03). See Fig. 5 for the PSLOS distributions of these two groups. This 

demonstrates the inverse relationship between the out-degree average and PSLOS.

The providers with the highest out-degrees tended to be (Attending) Physicians, Registered 

Nurses, and Nurse Practitioners and many high out-degree providers had hidden interactions 

with other top out-degree providers. For example, following a basic metabolic panel (testing 
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for blood calcium levels among other laboratory tests) by a top out-degree Neonatal 

Physician, a top out-degree Nurse Practitioner ordered a potassium chloride oral solution for 

the patient. The commonality of this type of interaction suggests the existence of core teams.

We looked further into the distribution shape of out-degrees per network, as out-degree 

average is merely a generalization of the overall network behavior. The out-degree 

distributions of all networks were skewed right, meaning there were fewer providers with 

high out-degree than low out-degree (Fig. 6). In other words, a few providers carried high 

responsibility of dispersing information.

IV. Discussion

While the EHR was developed to manage, communicate, document, store, and review 

patient data for the benefit of patient care, we leveraged it to discover potential hidden 

provider interactions and the sequence of the resulting information flow. We built patient-

level provider networks from hidden interactions and were able to explore the relationships 

between their topological features and patient length-of-stay.

We found a significant association between post-surgical length-of-stay and the out-degrees 

of provider networks, specifically, the out-degree average and out-degree skewness. (We are 

using “low” and “high” as a general gauge of values within our sample’s ranges.) Providers 

treating low PSLOS patients dispersed patient-related information to more colleagues than 

providers treating high PSLOS patients. The providers of patients with low PSLOS shared a 

more equal responsibility of information dispersion (corresponding to less positive out-

degree skewness i.e. less right-skewed), whereas the high PSLOS networks had a few 

providers carrying the bulk of responsibility.

Before the interpretation of this finding, it is important to remember that the communication 

that we captured through the EHR is only a fraction of actual communication that occurs, 

such as face-to-face conversations, emails, pager messages, group meetings, etc.

We should also remember that virtual interactions through EHR are asynchronous and not 

guaranteed: A note added by an EHR provider is not necessarily read by the following 

provider. For instance, provider A wrote new content in a progress note of a patient’s EHRs, 

and the following provider B opened the EHRs of the patient; however, the following 

provider B may not view the content provider A just added. Thus, a significant limitation of 

our study is that we assumed EHR activities of a previous provider (e.g., provider A in the 

example) relate the EHR activities of the next provider (e.g., provider B in the example). We 

acknowledge that we only used a small number of samples (18 neonates) in our analysis, 

which is another limitation of the study.

Further investigation into the system-user relationship between the EHR and care providers 

is warranted before we can consider interventions via the EHR to improve care coordination. 

Given our significant results involving out-degree, we may consider a notification system 

that alerts care providers to their colleagues’ notes, increasing the colleague’s out-degree. 

Another area of investigation could be the temporal aspect of EHR actions and how network 

structure varies day-by-day or before and after surgery. This may indicate critical points in 

Kim et al. Page 8

IEEE Conf Collab Internet Comput. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



care when provider network characteristics can impact patient outcomes. In addition, it may 

be insightful to study the types of EHR notes that are uploaded during these critical time 

points. To reiterate, EHR communication is only a fraction of actual communication that 

occurs, so these EHR improvements should be coupled with direct provider communication 

to best improve care coordination. The rising complexity of EHR technology may better 

simulate direct collaboration between providers, but EHR data may fall short, and it is 

important to study intervention methods integrating asynchronous EHR communication and 

synchronous direct communication35. A study at the Brenner Children’s Hospital 

implemented weekly meetings in the NICU involving all multidisciplinary providers to 

discuss long-term care plans for patients and successfully reduced LOS by 6.5 days one year 

into the study36. This could be a model for future intervention-based studies after accounting 

for supplemental network analyses.

V. Conclusion

Our study proposes a cost-efficient and insightful approach to quantifying care coordination 

and measuring its effectiveness. In the NICU, increased dissemination of information 

through the EHR may be associated with reduced PSLOS. Our data-driven algorithm for 

automatically learning patient-centered coordination structures leverages the EHR medical 

and audit data, rich and robust data sources. We emphasize that the ubiquity and 

accessibility of the EHR across hospital organizations should encourage further studies on 

care coordination and care structures to emulate our network-analysis-based methodology 

and uncover insight into the improvement of our current care framework.
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Fig. 1. 
An example to learn a provider network from a patient’s EHR sequence
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Fig 2. 
Distribution of PLOS
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Fig. 3. 
(Left) Provider network of a patient with PSLOS = 28 days and network role breakdown. 

(Right) Provider network of a patient with PSLOS = 30 days and network role breakdown. 

Colors distinguish the top 6 represented providers across all networks. All others are gray.
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Fig. 4. 
Distributions of in-degree, out-degree, betweenness centrality and closeness centrality across 

all patient-level provider networks
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Fig. 5. 
Distributions of PSLOS for two groups of networks: (Left) All networks whose out-degree 

average is greater than 1.7; (Right) All networks whose out-degree average is less than 1.7.
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Fig. 6. 
(Top) out-degree distribution of nodes in “Large” scaled out-degree average networks (>1.7); 

(Bottom) out-degree distribution of nodes in “Small” scaled out-degree average networks 

(<1.7)
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