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Abstract—Global physical event detection has traditionally
relied on dense coverage of physical sensors around the world;
while this is an expensive undertaking, there have not been
alternatives until recently. The ubiquity of social networks and
human sensors in the field provides a tremendous amount of real-
time, live data about true physical events from around the world.
However, while such human sensor data have been exploited for
retrospective large-scale event detection, such as hurricanes or
earthquakes, they has been limited to no success in exploiting
this rich resource for general physical event detection.

Prior implementation approaches have suffered from the con-
cept drift phenomenon, where real-world data exhibits constant,
unknown, unbounded changes in its data distribution, making
static machine learning models ineffective in the long term. We
propose and implement an end-to-end collaborative drift adaptive
system that integrates corroborative and probabilistic sources to
deliver real-time predictions. Furthermore, out system is adaptive
to concept drift and performs automated continuous learning to
maintain high performance. We demonstrate our approach in a
real-time demo available online for landslide disaster detection,
with extensibility to other real-world physical events such as
flooding, wildfires, hurricanes, and earthquakes.

Index Terms—Concept drift, Change detection, NLP, Collab-
orative Data Models

I. INTRODUCTION

Physical event detection, such as extreme weather events
or traffic accidents have long been the domain of static event
processors operating on numeric sensor data or human actors
manually identifying event types. However, the emergence of
big data and associated data processing and analytics tools
and systems have led to several applications in large-scale
event and trend detection in the streaming domain [1]–[7].
However, it is important to note that many of these works
are a form of retrospective analysis, as opposed to true real-
time event detection, since they perform analyses on cleaned
and processed data within a short-time frame in the past, with
the assumption that their approaches are sustainable and will
continue to function over time.

This is an unrealistic assumption due to the concept
drift phenomenon, where real-world data exhibits continuous

changes in its distribution. The concept drift phenomenon has
been well documented [8]–[17]. In effect, changes in data
distribution render machine learning algorithms obsolete over
time and classification models require constant fine-tuning for
effective performance. As such, existing big data analytics
have focused on larger scale events or trend analysis where
learning models can be updated with human feedback.

As such, most applications for streaming data rely on non-
adversarial assumptions about their data content:
• the streaming data is of high quality, with little to no

noise; in this case, human labeling is easier and weak-
supervision [18] using trend analysis or statistical distri-
butions can be exploited to create new labeled data

• the concept drift direction, type, and scale are known; in
effect, some approaches presuppose knowledge of dataset
shift, which is not a realistic real-world assumption

• there is immediate and proportional feedback available to
perform model correction; the streaming domain’s data
volume is too large to enable for proportional feedback

• the streaming data exhibits strong-signal characteristics,
where the desired event’s signals (or features) are well
separated from irrelevant signals; in our case, we focus on
the weak-signal case where the relevant data is dwarfed
by irrelevant data and noise.

We present an system for adapting to real-world evolving
data that uses a combination of corroborative sources and
probabilistic supporting sources to perform real-time event
detection that avoids deterioration under noisy, drifting con-
ditions. We demonstrate our system in a case study with
disaster detection as the physical event of choice; our system
is able to detect events under a variety of categories, such
as landslides, floodings, wildfires, and earthquakes in real-
time. Additionally, our system LITMUS1, is drift adaptive and
continuously updates itself against adversarial drift without
human intervention. Specifically, we address the closed-dataset
assumptions described:

1A demo is available at: https://grait-dm.gatech.edu/demo-multi-source-
integration/
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• we rely on low quality streaming data from social
networks such as Twitter and Facebook, which consist
primarily of noisy short-text streams [19] [20] with large
amounts of misinformation and disinformation

• we do not pre-suppose drift; instead we assume unknown
and unbounded concept drift due in part to lexical diffu-
sion [21] and random shifts in user behavior

• we do not rely on human feedback for our system’s learn-
ing model updates due to its infeasibility in the streaming
domain; manually labeling of even 0.01% of streaming
web data from Twitter (>500M samples per day) will
require more than 20 workers to work continuously for
8 hours each day

• we demonstrate efficacy with weak-signal events with
an abundance of irrelevant data and noise - our disaster
dataset is an ongoing collection of live social and news
feeds, and even with keyword search and filtering on
disaster type, almost 94% of data are drifting noise with
time-varying characteristics that must be eliminated with
fast-updating learning models

We make the distinction between weak-signal and strong-
signal events as follows: strong-signal events have signals (or
features) that are easily separable; for example, the earth-
quake detection approach in [4] relies on the fact that each
earthquake is followed by several hundreds or thousands of
tweets. Similarly, Google Flu Trends, another example of event
detection that deteriorated due to concept drift [15]–[17], [22],
focused on flu detection by matching search terms across the
entire United States. We focus on weak-signal events such as
landslides, floodings, and wildfires: these events have the same
real-world impact int terms of damages and costs; however
they are numerous and each instance of an event is lost in
streaming noise. We show in Figure 1 the relation between
our event detection to the number of tweets per event: most
events are associated with a single tweet or two tweets - a far
cry from the hundreds or millions of social sensors used by
[4] and [17]. We perform detection in these noisy and drifting
conditions, where our approach outperforms static models by
over 350% in event detection under drifting conditions.

We present the following contributions:

• We propose a system for end-to-end event detection using
a combination of corroborative sources and probabilistic
supporting sources

• We implement a collaborative teamed-classifier approach
for physical event detection that performs continuous
learning and adaptation without human intervention. Our
approach is able to detect concept drift and perform the
appropriate training data generation, labeling, and model
fine-tuning to prevent classifier deterioration without any
bottleneck from human labelers or fine-tuners

• We demonstrate the efficacy of our system on weak-signal
events with significant amounts of noise and concept drift.
A demo is available on LITMUS at

https://grait-dm.gatech.edu/demo-multi-source-integration/

II. RELATED WORK

A. Concept Drift

Recent approaches for drift adaptation usually use synthetic
data to validate procedures [8]–[11]. Synthetically generated
data is perturbed to include specific, known forms of drift, such
as gradual, cyclic, or sudden drift. Under these constraints,
there exist several mechanisms for concept drift adaptation
with physical sensors containing numeric data.

Windowing is a common technique for adaptation that
uses multiple sliding windows over time. This approach uses
several data memories, or windows of different lengths over an
incoming data stream; each window has its own classifier. The
SAM-KNN algorithm uses nearest neighbor approach to select
the window closest to a new data sample for classification [23].
Nested windows are used in [12] to obtain multiple training
sets over the same data that each exclude a region of the
data space. Adaptive Random Forests augment the traditional
random forest classifier with a built-in explicit drift detector
(requiring labels). Drift detection leads to forest pruning in
the ensemble to remove tress that have poor performance
on the drifted data. The pruned forest is subsequently up-
dated with new weak classifiers to complete the ensemble
[24]. The Knowledge Maximized Ensemble (KME) uses
both off-the-shelf and their own drift detectors to recognize
multiple forms of drift simultaneously. Models are updated
when enough training data is collected and removed if they
perform poorly on subsequent drifted data [25]. Most methods
approach concept drift with an eye towards detection and
subsequent normalization. Updating or rebuilding a machine
learning model facing drift involves two bottlenecks in the
classification pipeline: data labeling and model training; data
labeling is the greater challenge due to its oracle requirements.
Such wait-and-see models that perform corrections once errors
have been detected entail periodic performance degradation
before they are corrected with model updates; this may
be infeasible in mission-critical applications. Active learning
strategies counteract this bottleneck in part [8]; the trade-off
is between highly accurate models and clustered, knowledge-
agnostic representations that consider data on distance without
subject matter expertise.

B. Physical Event Detection

Earthquake detection using social sensors was initially
proposed in [4]. There have also been attempts to develop
physical event detectors for other types of disasters, includ-
ing flooding [7], flu [15]–[17], infectious diseases [1], and
landslides [26]. In most cases, the works focus on large-scale
disasters or health crises, such as earthquakes, hurricanes [27],
and influenza that can be easily verified and have abundant
reputable data.. Our application is general purpose, as it can
handle small-scale disaster such as landslides and large-scale
disasters. The existing approaches also assume data without
concept drift. However such assumptions, made in Google Flu
Trends (GFT) [15]–[17] degrade in the long term. GFT was
originally created to complement the CDCs flu tracking efforts



Fig. 1. Most events have 1 post associated with them. More than 95% of event are detected with less than 10 posts per event. Event detection confidence is
built over time as more posts are discovered.

by identifying seasonal trends in the flu season [17]. Failure
to account for seasonal changes in event characteristics led to
increasing errors over the years, and by 2013, GFT missed the
trends by 140%. This error has been attributed to exclusion
of new data from CDC, changes in the underlying search data
distribution itself, and cyclical data artifacts [15]–[17].

III. DATA

Our system uses a combination of corroborative sources and
probabilistic supporting sources. We first make the distinction
between the two before describing our data collection process.

a) Corroborative source: We define a corroborative
sources as a dedicated physical or web sensors that provides
annotated physical event information that can be crawled
or scraped. Such physical sensor data is often structured,
e.g. government agency reports about disasters. Web-based
corroborative sources include news articles which are often
tagged with keywords and due to their fact-based nature,
inherently included misinformation checking. However, cor-
roborative source latency in information availability makes
them unsuited for real-time physical event detection; since cor-
roborative sources provide event conformation after their own
corroboration, there are delays in information dissemination.
Such sources also do not have global or dense coverage due
to funding limits.

b) Probabilistic supporting source: We consider any
source without corroboration a probabilistic supporting source
due to the inherent uncertainty. These correspond to classifier
predictions in a traditional ML environment. In our approach,
we use an array of probabilistic supporting sources to more
confidently predict events in the absence of corroborative
sources. Additionally, our systems monitors these probabilistic
supporting sources continuously for performance deterioration
due to drift, and performs classifier updates and fine-tuning
using data from corroborative sources. As such, we call this

combination of two types of sources the teamed-classifier
approach.

A. Corroborative Sources

In our case study of disaster detection, our corroborative
sources are extensible based on the domain. We use a combina-
tion of physical and web sensors as our corroborative sources.

As an example of corroborative source latency and limited
coverage, the LITMUS system previously relied primarily on
USGS landslide reports [26]. Since USGS no longer provides
any landslide reports for such disasters, thee LITMUS system
must compensate with other corroborative sources such as
rainfall and earthquake data from USGS. We also use NOAA
landslide predictions that are provided in high rainfall regions.
Since these physical sensors do not have dense, global cover-
age, we also use web-based corroborative sources such as news
articles crawled from aggregators (Google News and Bing
News APIs). We adapt the news streaming and processing
approach from [22] for data collection.

B. Probabilistic Supporting Sources

Our probabilistic supporting sources are a group of tempo-
rally evolving machine learning classifiers trained to classify
events from short-text streams from Twitter, Facebook, and
other social networks. In contrast to an ensemble approach,
we only use the classifiers that are most effective on a data
item; due to concept drift, we keep a history of classifiers at
different points of training over time as well as each classifier’s
performance to better identify high quality classifiers at any
time. The raw social sensor data is streamed from Twitter
and Facebook, with web crawlers leveraged for the latter
to improve retrieval efficiency. LITMUS performs metadata
processing using the streaming and extraction approach in
[22]. We note that even with keyword filtering (e.g. landslide,
mudslide, rockslide for landslides, and flood and rain for
flooding), over 90% of the streamed data are not relevant to



our desired disaster events. In each case, there is linguistic
noise that hides the true events:
• Landslide refers to both the disaster event and election

events. Additionally, there is a song with the same name
by the Fleetwood Mac band.

• Mudslide refers to both the disaster event and an alcoholic
cream drink

• Flood is used to describe flooding events in conjunction
with the more idiomatic usage

• Rain similarly is used for heavy rain events, light rain
events, and idiomatic usage, the latter of which is more
common (e.g. raining on their parade)

We show some examples of correctly detected events from
streaming web data in Figure 2 and 3. We also show
examples of false positives due to linguistic noise in Figure 4.
Additionally, as we showed in Figure 1, most events have
only one or two tweets or Facebook posts associated with
them, requiring stronger detection capabilities for real-time
event detection than retrospective trend-detection approaches
in [4].

Fig. 2. Flooding events detected by LITMUS

IV. SYSTEM ARCHITECTURE

We first describe our general system overview. We will then
cover technical details about the integration of corroborative
and probabilistic sources, as well as the unsupervised drift
detection and adaptation algorithms we use. Finally, we’ll
cover our system implementation.

A. System Overview

We show a general system overview in Figure 5. The
teamed classifier is dynamically constructed weighted en-
semble of classifiers that are most relevant for a given data
point. Classifiers consist of machine learning models trained
on subsets of streaming data collected since system inception,
as well as spatio-temporal filters based on corroborative events.
The latter uses the following intuition: if an event is detected
from corroborative sources, then any streaming data point

Fig. 3. Landslide events detected by LITMUS

Fig. 4. False positive event detection due to linguistic noise. Over time,
LITMUS learns to adapt to such noise.

that exists in the same spacio-temporal coordinates as the
corroborative event can be automatically labeled as a relevant,
or conversely, an irrelevant data point (see Figure 6).

1) Corroborative Classification: We perform corrobora-
tive classification using annotations provided by corroborative
sources themselves. As an example, NOAA provides landslide
predictions in high rainfall regions. We take high probability
predictions as ground truth for landslide events in the future,
since NOAA predictions are high confidence sources (as de-
fined in [22]) and can corroborate events detected in streaming
data. Similarly, NOAA rainfall data covers flooding during
extreme climate events. We use these annotations as ground
truth corroborative events.

2) Streaming Data Classification: We use an array of
machine learning models for streaming data classification.
Given a short-text stream from the raw stream, we select
the top k most relevant classifiers from set of all classifiers
stored in LITMUS; we empirically set k = 5. Each classifier
is weighted based on its relevancy to the data point (we



Fig. 5. General system overview for corroborative and probabilistic source
integration. We perform classification on corroborative sources using their own
annotations and store them in a Corroborative Events database. Streaming Data
is classified into relevant and irrelevant classes using teamed classifiers that
combine corroborative events and probabilistic supporting sources operating
on the streaming data. The detected events are stored in the Integrated
Knowledgebase.

Fig. 6. We can automatically label some of the streaming data points using
corroborative events: streaeming data points (small circles) in the same spatio-
temporal coordinates as a corroborative event (green zones) get the same label
as the corroborative event. For example, if we get corroboration of a landslide
event in Austin, Texas, then any tweet or Facebook post during the same time
and location mentioning landslides is more likely about the disaster event as
opposed to election landslides or the song Landslide.

cover this weighting scheme in the next section) and the
dynamically created ensemble is used for the streaming data
point classification.

B. Teamed Classifier Selection

We determine relevancy of a classifier to a data point using
its performance on similar data points. This requires two steps:
(i) drift detection to identify changes in the data distribution,
and therefore, distance between data points, and (ii) classifier
generation and selection in case of drift detection. In the
second step, we perform classifier generation if the drift has
not been seen, e.g. gradual or flash drift as described in [13].
We perform classifier selection if the drift has been seen
before, as in the case of cyclic or periodic drift [13].

1) Drift detection: We considered recent works on novelty
detection or out-of-distribution detection [28]–[31]. In our
weak-signal focus, such approaches are not suitable where
most of the samples are noise. We also need to address
virtual concept drift, where the distribution of both relevant
and irrelevant points changes without changing the decision
boundary itself. Under virtual drift, it is sufficient to fine
tune a classifier instead of rebuilding it, which is a more
expensive step. Since concept drift affects the underlying data
distribution, our drift detection approach uses the Kullback-
Leibler divergence test on two distribution windows - the
set of data points a classifier is trained on and the current
streaming window of incoming data points. Comparison of
the two distributions yields the distribution divergence metric,
which we use as distance between a data point and a classifier.
We perform the comparison on a high-density band of points
for each window, with the band defined as follows: let D′

be the points x1, x2, ..., xi in window w′, with a mean (or
centroid) D̄′ = N−1

∑
N xi

Then, let fD(x) be the continuous density function of any
D, where we estimate it on the distribution of distances of any
point in D from its centroid D̄ normalized to [0, 1]. Then, the
∆-density band of D, with ∆ ∈ [0, 1], is a band around the
centroid that contains ∆ probability mass of the data window;
e.g. if ∆ = 0.6, the the ∆-band contains 60% of the points
in D. We consider this as a banded region [δl, δh], where 0 ≤
δl < δh ≤ 1, and calculate the region bounds as:∫ δh

δl

fD(x)dx = ∆ (1)

The intuition for using bands, as opposed to a spherical
region is related to the curse of dimensionality in high di-
mensional data. Note that for some set of points in high-
dimensional space, the volume of the unit hypersphere tends
to zero2. So the majority of these points occur near the corners
of the hypersphere. The ∆-band then becomes a region around
the centroid, where the hyperspherical region of radius δl
(lower bound of ∆) around the centroid is mostly empty. We
approximate the ∆-band of our data using N (µ, σ2), where
µ, σ can be estimated based on the empirical observations in
Figure 7.

Then, with the ∆-bands of two windows (current streaming
window and classifier window), we can measure the relevancy
of a classifier with the Kullback-Leibler (KL) divergence as
follows. The standard KL metric is shown in Eq 2, where the
prior PA and posterior PB each model the data point xi. The
classifier window wC is the prior, and the current streaming
window wS is the posterior.

DKL(PA||PB) = −
∑
xi∈X

PA(xi) log(PB(xi)/PA(xi)) (2)

Then, let x′A = d(xi, CA), where d is a distance metric and
CA is the centroid of A. We obtain x′A and x′B from the prior

2V (d) = 0.5dπ0.5d/Γ(0.5d+ 1)



Fig. 7. We show the difference in distance distribution ltiple windows. Each
window is a set of 3000 data points that are relevant to disasters. The dark
blue bars represent the window under consideration, while the pink bars are
the prior window. In each case, there is enough divergence between points to
constitute concept drift. Additionally, the distribution itself can be estimated
using N (µ, σ2)

and live distributions of wM and wS , respectively, where each
x′ is the distance of the data point from the centroids. We
make the approximation PA(x′) = min(P (x′)) if PA(x′) = 0
to avoid KL discontinuity when PA(x′) = 0.

Each data point is a short-text string. We use word2vec
to encode the string to <300, and use Cosine Similarity as
our distance metric since it is a more effective metric for
word2vec. We can then use the divergence as a drift detector
and classifier evaluator. We allow a smoothing period between
windows to incorporate the new stream after drift detection.
For each data point, we add it to the current window and up-
date the window’s ∆-band. We then compare it to the window
during the smoothing period to measure the divergence, where
significant divergence indicates drift is occurring.

In the case of drift, we create a new window and generate
and update classifiers. In the absence of drift, we measure
the distance between the data point and the centroids of all
classifiers to obtain the top k classifiers for dynamic ensemble
creation.

2) Classifier Generation and Update: If drift is detected,
we require changes to the classifiers that model the drifting
data. We also generate new classifiers for the drifted data to
avoid relying only on old classifiers that include drifted and
old knowledge in their parameters.

We can model any learning model or classifier M as a
mapping fM : M → Y from the training and testing data
(M) to their respective class labels Y . Here eachM specifies
a region in the data space. The traditional learning methods
have characterizedM as representative of the universe of data
points (see Related Work section). This assumption is not
suitable for the streaming data with noise and drift, where
the training data distribution in one window may be different
from the distribution in another window (see Figure 7). S any
window contains only a subset of the data.

We address this assumption without detection and gener-
ation approach, where we build a continuously evolving set
of mappins, or classifiers, from the data space to labels. With
drift detection, whenever the distribution of a region in the data
space changes, we change the classifier associated with it. If a
new distribution is discovered (i.e. new points do not belong
in any ∆-band in the mappings database), then we generate a

new mapping for that region. We use the following algorithm
for classifier generation and update.

Algorithm 1 Updating existing classifiers and generating new
classifiers

1: Parameters: d (the distance metric, e.g.
CosineSimilarity); k-model selection policy Sk;
λ

2: Inputs: N Current models {M}N , new data point xi
3: {M}k = Sk(xi)
4: mem xi = False

5: for Mj ∈ {M}m do
6: {DMj

is the training data of model Mj , with ∆-band
[δjl , δ

j
h]}

7: d′xi
= d(xi, D

j
C) {Distance to centroid}

8: {Check if inside ∆-band}
9: if δjl < d′xi

< δjh then
10: DMj

= DMj
∪ xi {Add point to model’s data}

11: Update(Mj) {Update classifier if xi is labeled by
corroborative sources}

12: mem xi = True {Flag to indicate data point has an
associated region}

13: end if
14: if δjh ≥ d′xi

< λ then
15: DMj = DMj ∪ xi
16: end if
17: end for
18: if not mem xi then
19: DG = DG ∪ xi
20: end if

Algorithm 1 covers model updates. The parameters are
the distance metric d, a model selection policy Sk, and
a generalization parameter λ. The model selection policy
Sk : xi → {M}k selects the k-best models to classify xi.
Some examples of an ensemble selection policy include: set
of all recent models (where recent indicates models created in
the prior drift detection update step); high performing models
over the entire set of models; high performing recent models;
k-nearest models based on distance between data point and
centroids of the model’s data window; or nearest ∆-band
models where only models whose ∆-band contains xi are
considered.

For each point, we identify the ∆-band the point belongs to
(Lines 7-9). If an xi does not belong to a ∆-band, we check
if it belongs in a generalization band around the ∆-band in
Line 14, where we consider the region [δjh, λ] just outside the
∆-band. If an xi does not belong in any ∆-band, we add it
to the general memory DG in Line 19, which we use to train
new classifiers. The general memory are regions of the data
space not yet seen in any existing model’s data; it is used to
create new classifiers when drift is detected using Eq 2. When
drift is detected, we address it for each model by using the
data in its respective data (updated in Lines 10 and 15).



C. Implementation

We now describe the implementation of the teamed-
classifier drift adaptive system, as described in Figure 8. The
drift adaptive system accepts two input streams - the real-
time data stream (streaming data in Figure 5) and the delayed
feedback labeled stream (corroborative events in Figure 5).

Fig. 8. The drift adaptive system takes streaming data and labeled data,
the latter being corroborative events obtained from corroborative sources. We
use the corroborative events to evaluate existing classifier and fine-tune them
continuously. The streaming data is used for real-time dense global prediction.

a) Real-time stream: We use the classifier selection and
drift detection approach described in the previous approach
for the real-time stream to deliver predictions:
• Model selection: We examine several model selection

policies and use the k-nearest approach to select the
models whose centroids are closest to a given data point.

• Ensemble creation: The k-models selected in the prior
step are weighted on their performance ω on their
datasets, multiplied by the distance: wk = ω ·d(xi, DMk

).
The weights are normalized using the softmax function.

• Prediction: The dynamically generated ensemble’s pre-
dictions are sent to the Integrated Knowledgebase in
Figure 5.

Simultaneously, we perform continuously perform classifier
maintenance using delayed feedback from corroborative events
(we call this delayed feedback since corroborative events are
far slower than the real-time stream).
• Evaluate: We can retroactively assign labels to real-

time data points using corroborative events with the
spatio-temporal assigmnent approach from Figure 6. We
then use this label assignment to evaluate classifiers on
performance.

• Drift Detection: Performance degradation entails explicit
concept drift detection [13]. In conjunction with the
unsupervised drift detection with the KL metric in Eq 2,
we identify drift windows to generate new data memories
(see Algorithm 1)

• Learning/Updates: Drift in existing data memories en-
tails model update and new model generation on the cor-
roboratively labeled data. New data regions (the general

memory DG) discovered in the previous window are used
exclusively for new mode creation, since they have no
existing models to update.

V. EVALUATION

We will first describe some drift charateristics of our data.
Then we will cover further system implementation and neural
network classifier details. We will briefly cover accuracy
results on individual windows. Finally we will describe our
end-to-end system, with a demo available at https://grait-
dm.gatech.edu/demo-multi-source-integration/.

A. Drift Characteristics

Since our physical event detection data is a raw real-time
stream from social sensor sites, we face significant noise and
drift in our data. If we rely on authoritative corroboration for
the streaming data, we lose valuable time in event detection;
as such, our system must be capable of adapting to such noise
and drift continuously without human intervention. We have
covered the approach in the prior section.

We show the almost continuous drift for our data in
Figure 9. Each window is 3000 data points, and we show
only a subset of windows. The red points are from the prior
window, and the blue points are from the current window. For
each window, we use t-SNE to embed both previous window
and current window to 2D, and display them on the same
plot. Some windows (Window 8, Window 9) do not show
significant drift, with current window data occupying mostly
the same space as previous window. However, other windows
(Window 1, 4, 5, 6, 7) show more significant drift. Each point
is a word2vec embedding of the associated string from social
sensor. In each window image, blue points are positive samples
in the current window, red points are negative samples in
the current window, green points are positive samples in the
previous window, and yellow points are negative samples in
the previous window. We have noted in our paper the difficulty
in automatically labeling negative samples, due to coverage
considerations. As such, there is lower density of negative
samples throughout compared to positive samples, creating a
class imbalanced problem that adds to the existing drift and
noise challenges.

We also evaluate performance of a non-drift adaptive system
on the drifting data, shown in Figure 10. We use a variety of
linear classifiers such a SGD, Random Forest, Logistic Re-
gression, Naive Bayes, and Decition Trees, along with neural
networks. For linear classifiers, we perform grid search to
obtain the best hyperparameters. We use an ensemble of text-
classification networks [32]–[34] for the neural network (using
TensorFlow). As we note, each classifier suffers significant
performance drops.

We find this performance drop is due to a few factors:
• The social sensor data is noisy and has low context,

yielding poor initial performance. As such, classifiers fail
to generalize due to the variability in text streams from
different regions or demographic groups (this diffusion is
covered in part in [21]).



Fig. 9. Drift across multiple windows shown with t-SNE embedding. The axes represent raw componnt t-SNE scores and do not have semantic meaning
other than distance between features.

• Heuristic or simple filtering rules are lacking; it is dif-
ficult to adapt heuristics to memetic changes (e.g. the
word flood and death can be a good heuristic for the
disaster event; however more recently, they have been
used in conjunction with controversial political language,
skewing the social sensor data)

• The raw stream data covers millions of true physical
events, where our desired class (disaster, specifically
individual disasters such as flooding, landslides, wildfires)
consists of a fraction of samples. Further, it is difficult to
use trend analysis tools to perform detection since each
instance of an event is a weak-signal event, with only 1-2
posts associated with it.

B. Performance

We implement the end-to-end drift adaptive system de-
scribed in Figure 8 and evaluate its performance across
windows. The system as described integrates two streams:
corroborative sources (i.e. news articles) and probabilistic
supporting sources (i.e. predictions from ML classifiers) to

deliver real-time predictions. Our system is not a retrospective
trend analysis system such as the earthquake detector in [4];
rather, it is a continuously evolving, real-time system.

We have noted that corroborative events can be used to
automatically label social sensor posts. We find that while this
is true, they account for only a fraction of all social posts; their
delay and lack of dense, global coverage prevents their use as a
reliable oracle for labels. We show the difference between the
raw stream and oracle-labeled points in Figure 11, where often,
less than 1% of points could be so labeled. The remaining need
to be processed with the drift adaptive system.

We show performance evaluation in Table 1, where it is clear
our drift adaptive system exceeds the static performance.

C. End-to-end system

We show in Figure 12 a screenshot of our end-to-end
system available at https://grait-dm.gatech.edu/demo-multi-
source-integration/. Our system is resilient to drift, as we
showed in Table V-A, and continues to function at high



TABLE I
WE SHOW PERFORMANCE ACROSS MULTIPLE WINDOWS, AND COMPARE THE BASELINE PERFORMANCE AGAINST OUR ADAPTIVE SYSTEM. WE FIND

THAT IN EACH WINDOW, OUR ADAPTIVE SYSTEM EXCELS AGAINST THE BASELINE. WE USE THE CORROBORATIVE EVENTS TO RETROACTIVELY LABEL
POINTS WHEV AVAILABLE, AND USE THSE TO PERFORM CLASSIFIER FINE-TUNING AND UPDATES AS DESCRIBED IN THE PRIOR SECTION. WE SHOW THAT

EVEN WITH <5% OF LABELED POINTS, E ARE ABLE TO CONTINUOUSLY IMPROVE PERFORMANCE FROM THE STATIC TO THE ADAPTIVE METHOD.

Window Performance Statistics Improvement
Static Adaptive Unlabeled Corroborative % Labeled Improvement

Baseline 0.91 0.97 NA NA NA NA
1 Mo 0.70 0.88 7205 189 2.62% 125.5%
2 Mo 0.57 0.90 14245 106 0.74% 159.2%
3 Mo 0.58 0.90 4867 193 3.97% 156.7%
4 Mo 0.70 0.88 15847 249 1.57% 126.1%
5 Mo 0.38 0.86 7084 885 12.49% 225.7%
6 Mo 0.75 0.99 4873 223 4.58% 132.0%

Fig. 10. We test several classifiers outside our drift adaptive system. In
each case, performance drops across a few months compared to the baseline
accuracy. The Decision Tree, which relies on boundary conditions around
features, suffers the most due to changes in feature distribution.

Fig. 11. Only a fraction of points can be labeled with corroborative events
(log-scaled y-axis).

accuracy over six years after inception without any human
intervention.

We also show an example of a detected flooding event
in Figure 13, where the drift adaptive system has identified
several flooding events in the UK. We also show below the
map the collection of social posts that contributed to the event
detection.

VI. CONCLUSIONS

We have described an end-to-end drift-adaptive system for
true physical event detection. Our approach integrates corrob-

Fig. 12. A screenshot of the LITMUS landslide detection system demo
incorporating our drift adaptive system.

orative sources and probabilistic supporting sources to perform
real-time physical event detection. Furthermore, our approach
is able to adapt to the concept drift phenomena without sac-
rificing performance and without human labeling bottleneck
as required in traditional drift adaptation techniques. We have
implemented our system as a disaster detection application,
with an online demo. Our approach does not make any
limiting assumptions about its data, and performs detection in
adversarial conditions where: (i) the data is noisy and drifting,
(ii) the drift type is unknown and unbounded, (iii) feedback is
limited and may not be available in most cases, and (iv) the
events exhibit weak-signal characteristics. Our system is able
to main high accuracy (∼90% f-score) across multiple time
windows without human intervention to perform fine-tuning
or updates.

Our next steps include developing a management inter-
face for our drift adaptive system to better examine system
components and perform log analytics to improve real-time
performance and scalable prediction delivery.
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