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Abstract—Since the term first coined in 1999 by Kevin Ashton,
the Internet of Things (IoT) has gained significant momentum
as a technology to connect physical objects to the Internet
and to facilitate machine-to-human and machine-to-machine
communications. Over the past two decades, IoT has been an
active area of research and development endeavors by many
technical and commercial communities. Yet, IoT technology is
still not mature and many issues need to be addressed. In this
paper, we identify 10 key research topics and discuss the research
problems and opportunities within these topics.

Index Terms—Internet of Things, Energy Harvesting, Rec-
ommendation, Search, Summarization, Conversational IoT, IoT
Service Discovery

I. INTRODUCTION

The vision of a connected and smart world can be traced
back to 1920s, as explained by Nikola Tesla in 1926: “When
wireless is perfectly applied the whole earth will be converted
into a huge brain, which in fact it is, all things being particles
of a real and rhythmic whole. We shall be able to communicate
with one another instantly, irrespective of distance. . . . A man
will be able to carry one in his vest pocket” [1]. However,
the term “Internet of Things” (IoT) was only first coined in
1999 by MIT’s Kevin Ashton when he promoted the radio
frequency identification (RFID) technology. Since then, IoT
has received significant momentum as a promising technology
to turn each physical object (i.e., a thing) into a node on the
Internet and to facilitate machine-to-human and machine-to-
machine communication with the physical world [2]–[4]. By
connecting and integrating both digital and physical entities,
IoT enables a whole new class of exciting applications and
services such as smart cities, smart homes, Industry 4.0, and
Society 5.01.

Over the past two decades, particularly the last 10 years,
IoT has been a thriving area of research and development
efforts, with a quickly rising body of produced research
work. According to Microsoft Academic2, there were only 26
publications on IoT in 2000 and 160 publications in 2009.
The publication number, however, dramatically increased over
the past few years, e.g., 10,926 in 2016, 15,765 in 2017,
21,906 in 2018, and 26,885 in 2019. Despite of these exciting

1https://www8.cao.go.jp/cstp/english/society5 0/index.html
2https://academic.microsoft.com/topic/81860439.

Fig. 1. A generic architecture of IoT systems. The physical layer collects
data to be processed and modeled in the data layer, which then delivers the
data to the application layer.

activities, IoT techniques still remain immature and many
technical hurdles need to be overcome.

The aim of this paper is to identify several important IoT
research topics and areas, ranging from energy harvesting, data
analytics, search, recommendation, security, privacy and trust
in IoT, as well as the topics that arise in the adoption of
new computing paradigms such as social computing, service
computing, edge computing, and artificial intelligence (e.g.,
conversational AI and text/video summarization).

II. RESEARCH DIRECTIONS IN IOT

Over the last two decades, there are a broad spectrum of
activities around IoT research and development. In this paper,
we highlight 10 topic areas that span across the three main
layers of IoT architecture as illustrated in Figure 1. We believe
these topics represent the most important research efforts from
the community. It should be noted that this is not the complete
list of the important research topics. Many other topics such as
standard development and regulatory implications are outside
the scope of our discussions.

A. Energy Harvesting

The rapid evolution in the promising paradigm of IoT has
resulted in a massive distributed network of intelligent objects
possessing a highly varying compute, storage, and networking
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capabilities. These networked objects interact with one another
primarily in a bid to exchange a diverse range of information
having a direct influence for enhancing the quality of our daily
lives by ensuring seamless access to smart services anywhere
at anytime. However, a number of IoT sensors and embedded
IoT devices have a limited lifespan since they are powered
by batteries and, therefore, requires replacement periodically
(e.g., every few years) making this an inefficient, laborious,
and costly process. Smart energy management, especially,
energy harvesting (also referred to as energy scavenging), is
indispensable for ensuring energy efficiency in IoT objects [5].

Energy harvesting is a mechanism for transforming readily
available energy from natural or artificial resources into usable
electrical energy. It comprises four salient phases, i.e., selec-
tion of an optimum and abundantly available energy resource,
its transformation, storage, and consumption. Some of the
energy sources that could be harvested for IoT include, but
are not limited to, thermal energy, light energy, RF energy,
electromagnetic energy, chemical energy, and mechanical en-
ergy. For transformation purposes, corresponding harvesters or
transducers are employed to identify and transform energy. In
the case of storage, rechargeable batteries and super capacitors
are exploited to store the energy. Finally, the harvested energy
is consumed by appropriate IoT devices for their correspond-
ing applications [6].

However, several underlying challenges still hinder the real-
ization of an efficient IoT harvesting system. For instance, the
harvesting circuitry has a considerable impact on the hardware
of an IoT object since the conventional IoT objects’ designs are
unable to handle the heavy fluctuations in an object’s circuitry,
primarily owing to the fact that the harvested energy delivered
to an IoT object is predominantly reliant on the availability of
energy within the environment and which occasionally could
be either inferior or even superior to the power requirements
of an object’s circuitry. Similarly, intelligent software for IoT
harvesting systems should be designed by the software devel-
opers which are capable of handling the energy’s unavailability
for a shorter duration of time to allow any task to resume and
not restart from where it was left, thereby mitigating the data
loss. Finally, both rechargeable batteries and super capacitors
have some inherent limiting factors, and therefore, a highly
efficacious, economical, miniaturized, and long-lived battery
is still a challenge for the researchers.

B. Data-driven IoT

IoT offers the capability to connect and integrate both digital
and physical entities. A fundamental challenge centers around
managing IoT data especially when things are the majority of
data producers and consumers. Given the intrinsic features of
IoT data, topics such as storage, real-time data stream analytic,
and event processing are all critical. Before diving into these
four topics, we would first summarize these features.

Data generation in IoT has four main characteristics: i)
Velocity—things produce data in different speed levels and
some sensors can scan at a rate up to 1,000,000 sensing

elements per second3; ii) Scalability—IoT data are expected to
be at an extremely large scale due to the ability of IoT sensors
to continuously generate data together with the foreseeable
excessively large number of things; iii) Dynamics—mobility
is one characteristic of IoT things, leading to data generated
in different locations under different environments at different
times; and iv) Heterogeneity—many kinds of things have been
and could be connected to the Internet and the data generated
could be in different formats using different vocabularies.

The quality of the generated data usually faces some special
challenges. Data could cause uncertainty and inconsistency
as sensors and RFID tags would produce inaccurate readings
and redundant readings, or even miss readings. Moreover,
the data produced by assorted things can be interpreted in
different ways, bringing challenges for proper interpretation
of the produced data to different data consumers [7].

The nature of data produced by IoT calls for revisit of
data storage techniques. Traditional datababase management
systems (DBMSs) could be adopted for storing IoT data, but
need to address the high processing and querying frequency.
The development of large-scale, distributed storage systems is
also raised to meet the exceptional demands of data storage
in IoT and three factors need to be considered: consistency,
availability and partition tolerance [8]. The storage issue in
resource-constrained IoT scenarios also plays an important
role due to the mobility and scalability of IoT data. Antelope4

is the first DBMS for resource-constrained sensor devices,
which enables a class of sensor network systems where every
sensor holds a database.

Linked Data5 is a method for publishing structured data
and interlink such data to make it more useful. It builds upon
standard Web technologies such as HTTP, RDF and URIs and
extends these technologies to share information. Data from
different sources can be connected and queried in the form
of Linked Data. The concept of Linked Stream Data applies
the Linked Data principles to streaming data, so that data
streams can be published as part of the Web of Linked Data.
SPARQL is a query language to query RDF database and has
been extended to support streaming data querying [9]–[11].
Techniques in Linked Data perfectly fit the requirement of
processing and querying IoT data at Web scale.

In IoT, complex event processing techniques lay part of
the foundation of supporting computers to sense and react
to events in the physical world. The focus of the complex
event processing (CEP) model is on detecting occurrences of
particular patterns of low level events indicating some higher-
level events, which are better understood by computers and
humans. A semantic CEP system improves event processing
quality by using event metadata in combination with ontolo-
gies and rules (i.e., knowledge bases). A knowledge base can
be used to provide background knowledge about the events and
other non-event resources [12]. With huge amount of external

3https://www.tekscan.com/support/faqs/what-are-sensors-sampling-rates
4https://github.com/contiki-os/contiki/blob/master/apps/antelope
5http://linkeddata.org/



domain knowledge available, information completeness and
semantic matching are two research topics under semantic
CEP. The process of reducing information incompleteness is
called event enrichment which considers the challenges of
enrichment source determination, information retrieval from
the identified sources, and information fusion [13]. Semantic
matching includes semantic selection which is evaluating pat-
tern constraints based on the semantic equivalence of attribute
meanings captured by the event ontology, and inexact selection
which is selecting events while allowing a limited number of
mismatches to detect relevant patterns [14].

Although we see prompt development of IoT techniques,
many challenges and issues are worth to further explore from
both academia and industry. Data quality and uncertainty re-
mains a challenging problem due to the increasing data volume
and heterogeneity. As in an IoT environment, the physical
space and the virtual (data) space co-exist and interact. Data
transferring, synchronizing and processing in the co-space
demand novel techniques. Given various formats of external
knowledge, semantic enrichment will not only deal with
structured data, but also unstructured data at the same time.
How to enrich semantic in IoT via hybrid formatted external
information is also an interesting topic to explore. In contrast
to utilizing external knowledge, discovering knowledge from
the IoT data could contribute to the understanding of the IoT
applications. Data mining techniques could be exploited for
this purpose but in a distributed manner.

C. IoT Search

Searching and finding relevant objects from billions of
things is one of the major challenges in the IoT era because the
supporting technologies for searching things in IoT are very
different from those used in searching Web documents due
to tightly bounded contextual information (e.g., location) and
no easily indexable properties of IoT objects. In addition, the
state information of things is dynamic and rapidly changing.

By reusing techniques of the World Wide Web, the infor-
mation and services of IoT objects can be provided on the
Web [15]. This triggers the research of Web of Things (WoT)
search engines (WoTSE), which is applying Web technologies
to the Internet of Things to access information and services
of physical objects. In WoT, each physical object possesses
a digital counterpart that is commonly referred to as “Digital
Twin”. These digital twins are built according to Representa-
tional State Transfer (REST) architecture and accessed with
HTTP protocol via RestFul API.

Research related to WoTSE begins from early 2000s and
enjoys steady expansion ever since. It branches into different
directions including object search, sensor search and function-
ality search [16]. In early projects, WoTSE are commonly
used to locate physical objects, which are tagged with passive
RFID tags or sensor nodes. Dyser [17] is one of the works
that search physical entities based on their real-time states
derived from their sensor readings. The work of CASSARAM
[18] demonstrates the research effort on sensor search. It uses
WoTSE for retrieving sensors based on their static meta-data

Fig. 2. Modular Architecture for Web of Things Search Engines [16].

and contexts, such as cost and reliability. Each form of WoTSE
has its own characteristics, but all could follow the unified
search architecture provided by our work in [16].

The modules in our architecture are organized into layers
as illustrated in Figure 2. Two lower layers handle discovery
activities while the two upper layers handle search activities.
Storage modules for resource collections and indexes link two
set of layers. The whole system is protected by security, pri-
vacy, and trust assessment measures, which are grouped into a
vertical layer. To be more specific, the Discovery Layer serves
as interfaces to the Web resources including sensor streams,
representations, functionalities, websites and Web services.
The Index Layer stores and indexes resources with its Collec-
tion Manager and Indexer modules. This layer also ranks the
resources. The Search Layer carries out the query resolution
process. The Query Processor module transforms raw user
queries into the form processable by the system. The Query
Dependent (Q.D) Ranker scores discovered query resources
with respect to the user query and utilizes the recorded links
between resources to find their corresponding result resources.
The Ranking Aggregator module is responsible for combining
different Q.D and Q.I ranking results into a final score for each
resource. Finally, the Result Processor extracts and aggregates
the information from matching resources and produces search
results. The User Interface (UI) layer interfaces WoTSE with
users. It provides Query Interface and Result Interface to
receive queries and return search results, respectively.

The modular architecture provides a reference framework
assessing the diverse implementation of the existing WoTSEs.



It assesses the support that each module receives from the
existing works and how it is commonly implemented. The
goal of WoTSE is building a search engine that could find
anything available on the Web of Things. To achieve this goal,
several challenges demand effective and efficient solutions.
Crawling and indexing wide scale IoT data for the purpose
of search are intrinsically problematic due to the dynamic and
heterogeneous nature of IoT data. How to identify useful Web
resources that are related to the things is also challenging as
they could be in various format with different interpretation
vocabularies as we discussed in the last section.

D. Security, Privacy, and Trust in IoT

The risk on data security and privacy exponentially in-
creases with an unprecedented growth in the deployment
of the smart IoT objects. One of the distinct challenges in
the IoT infrastructures is the limited computation power and
minimal resources of most of the IoT devices [19]. These
limited resources preclude the state-of-the-art cryptographic
techniques that are indispensable for securing IoT devices,
thereby making them vulnerable to a diverse range of security
attacks [20], such as the denial of service attacks and privacy
attacks such as data exfiltration or leakage attacks.

Recently, there are numerous research proposals in the
literature delineating on IoT security and privacy services
such as [21]–[24]. Nevertheless, there are still open security
gaps that require appropriate controls to mitigate them. The
challenge is that the currently proposed systems do not provide
a complete security solution that tackles all IoT security
and privacy requirements. For instance, most of the proposed
methodologies target one or two security requirements, e.g.,
confidentiality and authentication [25]. An efficient and reli-
able IoT data sharing requires an all-inclusive security solution
for securing the data while limiting the interference that
might occur if integrating several independent techniques to
provide the required services. To the best of our knowledge,
none of the proposed research methodologies or industry
systems contribute a security attack free solution that provides
conditional anonymous authentication and fine-grained access
control techniques to be used by the resource-constrained IoT
devices and infrastructures.

There are a number of challenges confronting the security
of IoT infrastructure, including but not limited to, scalable
security, denial of use of service or upload of data, and inter-
operability. Scalability is one of the indispensable requirement
in the IoT infrastructures. Such a requirement can be met
by delegating the expensive cryptographic computations in
a secured manner to a cloudlet, edge, or cloud [26], [27].
There is thus a dire need for investigating intelligent ways
to use edge computing with IoT and the cloud to address
the current security challenges of IoT systems. Moreover, IoT
security research studies should consider using cryptographic
methodologies with limited communication overhead, such as
constant size Attribute Base Encryption techniques [28], [29].

Non-repudiation is another essential requirement for IoT
infrastructure, specifically for systems that include users’

interaction. Non-repudiation should be imposed to prevent
users from denying either the use of the service or previous
data upload. Unfortunately, non-repudiation is generally not
considered in most of the current implementations owing to
privacy concerns [30]. Several methodologies can maintain
both users’ and devices’ privacy while implementing non-
repudiations such as conditional anonymity. Group signature
[31], [32] is one of the techniques that can provide condi-
tional anonymity. However, such techniques require extensive
research to concur with the limited resources challenge within
IoT infrastructures. Besides, interoperability is a vital IoT
infrastructure requirement due to the heterogeneous nature
of IoT devices. Considerable efforts and collaborations from
governmental and non-governmental entities are required to
create IoT interoperability standards and backward compati-
bility. These standards should also be integrated with privacy
controls to guarantee the preservation of users’ privacy.

Trust is also an indispensable issue in the IoT environment
since the majority of the existing security mechanisms do
not cater for the subjective belief among the heterogeneous
IoT objects especially in the presence of internal malicious
adversaries that intent to disrupt the reliability of a network
[33]. Chaker et al. [34] delineates on trust as the degree
of a subjective belief of an entity (trustor) over the other
(trustee) in a specified context. IoT interplays between the
paradigms of security and trust, i.e., if we regard security
mechanisms in terms of barriers, locks, and accesses, then
trust is a worry of when, where, and why to put these
barriers, locks, and accesses in an IoT ecosystem to deal
with the degree of collaboration and integration between the
IoT objects [35]. Over the past decade, trust-based security
mechanisms have emerged for enhancing the overall security
of IoT, wherein trust and reputation models have been utilized
to improve the collaboration and for selecting the trustworthy
service provider based on quality-of-service (QoS), especially
in service oriented architecture-based IoT [36], [37].

The importance of trust management has been recently
investigated across numerous sort of networks, i.e., mobile ad
hoc networks [38], peer-to-peer networks [39], social networks
[40], and as-of-late for vehicular ad hoc networks within the
context of the promising paradigm of Internet-of-Vehicles [41].
Evaluating trust becomes indispensable in the case of a highly
dynamic and distributed network since pervasive infrastructure
cannot be guaranteed at all the times in such scenarios which
is imperative for public-key based cryptographic techniques.
Nevertheless, computing trust has its own inherent challenges,
i.e., selection of dynamic trust attributes in accordance with
a given application’s context, assigning of optimal weights to
such attributes for trust aggregation purposes, opting between
the event-driven, time-driven, or hybrid approaches for trust
updates, and selecting an appropriate trustworthiness threshold
for segregating between malicious and non-malicious nodes.

In essence, security, privacy, and trust go hand-in-hand for
designing a resilient IoT network that could meet the stringent
application requirements in realizing the formulation of highly
secured digitized societies.



E. Service Computing and IoT

Initiated around the similar time as the Internet of Things,
service computing (or service-oriented computing) has been
established as an important paradigm to change the way
of design, delivery, and consumption of software applica-
tions [42], [43]. Service computing relies on service-oriented
architecture (SOA) and aims to organize software applications
and infrastructures into a set of interacting services, which are
then used as fundamental elements to support low-cost and
efficient development of distributed applications.

Technologies on service computing (e.g., RESTful services
and service composition methods) can help address several
fundamental challenges presented by IoT including commu-
nication and management of IoT objects. However, marrying
service computing and IoT presents challenges due to their
technical constraints and unique characteristics [43]. On the
one hand, IoT objects may be resource-constrained and the
traditional service computing standards and techniques (e.g.,
SOAP, WSDL, BPEL) might be too heavy to be applicable in
IoT. On the other hand, existing service composition models
cannot be directly used for IoT interoperation, due to their
architectural differences. More specifically, traditional ser-
vice composition models are mostly single-typed and single-
layered (i.e., services), while IoT components are heteroge-
neous, multi-layered that include not only services, but also
IoT devices and other components.

One important research direction centers on IoT services
discovery, aiming to be able to find the right IoT services at
the right time and the right location. There are two possible
techniques. The first technique is semantic annotation for IoT
service descriptions and their associated sensory data. Some
typical efforts in this direction include the OpenIoT project6,
which exploits a semantic sensor network (SSN) ontology
from W3C, and the Hydra project7, which adopts OWL
(an ontology for Semantic Web) and SAWSDL (a semantic
annotation of WSDL). However, it is challenging to reach
an agreement on a single ontological standard for describing
IoT services, given the diversity and rapid IoT technological
advances. The second technical direction is to use the textual
descriptions associated with IoT devices to locate IoT services.
Some typical efforts in this direction include MAX [44] and
Microsearch [45]. One research challenge in this direction
is the natural order ranking of IoT contents. Natural order
ranking sorts contents by their intrinsic characteristics, rather
than their relevance to a given query, thereby being able to
deliver the most relevant results. One well-known example of
natural order ranking is PageRank [46], which orders Web
pages based on their importance via link analysis. Given the
size of IoT (50 to 100 times bigger than the current Internet),
one promising direction is to develop a new natural order
ranking mechanism for the IoT contents in order to provide
an effective and efficient IoT service discovery [2].

6www.openiot.eu
7www.hydramiddleware.eu

F. Social IoT

Recently, there have been quite a number of independent
research activities to bring the next evolutionary step of the
IoT paradigm by moving from smart objects to socially aware
objects. This refers to creating a new generation of IoT objects
that manifests themselves and have the capability to socialize
with the surrounding peers mimicking human beings for the
sake of, but not limited to, discovering new services, exchang-
ing experience, and benefiting from each other capabilities.
This new paradigm is referred to as the Social Internet of
Things (SIoT), which is a new perspective that allows objects
to establish their own social networks and navigate through
the social network structure of the friend objects, allowing
discovering other objects and their services.

Unlike the current process in IoT where search engines
are employed to find services in a centralized way, SIoT can
foster resource availability and make services discovery more
easily in a distributed manner [47]–[49]. This paradigm also
aims to provide reliable and trustworthy networking solutions
by utilizing the social network structure. Based on the social
structure established among IoT objects, objects can inquire
local neighbourhood for other objects to assess the reputation
of these objects and establish a level of trustworthiness.
Additionally, SIoT enables objects to start new acquaintance
where they can exchange information and experience.

SIoT is not a spur of the moment. There were earlier
attempts to involve devices in the social loop. Back to 2001,
Holmquist et al. [50] established temporary relationships be-
tween wireless sensors. In the work of [51], the authors
discussed the idea of how objects can blog. Moreover, kranz
et al. [52] enabled objects to share content using a social
network framework Twitter. Guinard et al. [53] utilized the
human social network as a framework for owners to share the
services of these devices with their friends.

Previous attempts differ from the intended perspective of the
current vision of SIoT. The current perspective refers to a new
generation of IoT objects that have capability to form their own
social network of friends without relying on the online human
social networks. Several research activities have been con-
ducted to realize this paradigm. In [47], Atzori et al. introduced
this new paradigm and discussed the idea of integrating social
networks concepts into the Internet of Things (IoT) for the
purpose of addressing the related issues of service discovery
and composition. They proposed a conceptual platform on how
to enable IoT objects to create relationships among each other.
They also identified policies of how to establish relationships
between objects and how to manage these relations. Girau et
al. [54] implemented an experimental SIoT platform. They
evaluated the current implementations of IoT platforms and
pointed out the major characteristics that can be reused in this
experimental SIoT platform. It includes several functionalities
that can enable the smart objects to register into the platform
as a first step. Then, the system manages the creation of the
new relationships. Using this system, smart objects are capable
to create groups of members with similar characteristics.



That leads to form a social network among each other by
establishing social relationships autonomously with respect to
the rules set by the owners. On the same research line, several
studies have focused on proposing architectures [49], [55].

Relationships exist among smart objects. Objects can start
establishing these relationships for several reasons such as
when these objects come close to each other and satisfy
relationships’ rules specified by their owners [47]. Atzori et
al. [47] proposed five types of relationships. Some of these
relationships are dynamic and they are established when smart
objects come in contact at the same place and the same time
periodically for cooperation to achieve a common goal. Other
relationships are static and they are created once objects join
the network. In addition, Roopa et al. [56] suggested extra
relationships that can be established among objects.

Along with the previous research aspects, SIoT paradigm
has gone through intensive research. Several SIoT areas such
as service discovery [57]–[60], network navigability [61]–[63],
and trustworthiness management [64]–[67] have been studied
in the literature. Furthermore, a recent work has considered
how the SIoT resulted network would evolve since the SIoT
network is dynamic where it can grow and change quickly
over time where objects (nodes) and their relationships (links)
appear or disappear [68]. However, the SIoT paradigm is still
in an early stage, and there are many aspects that need to
be investigated. Most importantly, the perspective of the SIoT
paradigm needs to be thoroughly unified. In the future, IoT
will be integrated more into daily life things and will have an
interesting role to make decisions for humans. The couch in
the living room could be able to sense the body temperature
of the owner and based on this the room temperature gets
adjusted accordingly. In another scenario, a smart medicine
cabinet could monitor the consumption level of medicine and
whenever the amount becomes low, this cabinet could ask the
smart toilet to perform chemical analysis and report to the
smart home in order to arrange a doctor visit or a refill from
the pharmacy [69].

G. IoT Recommendation

With the exponential growth of data in the IoT environment,
searching, accessing and connecting IoT devices are more
difficult than ever. Therefore, a more desirable paradigm
is proactively discovering suitable IoT devices rather than
searching for one. In this new paradigm, instead of letting
the user painstakingly searching for desirable devices to meet
their needs, the automatic IoT system can suggest and deliver
relevant resources to the user, matching with her history pref-
erences. This IoT recommendation approach is an important
research topic for the future applications of IoT, and we refer
to it as the thing-of-interest (TOI) recommendation [70]. Due
to the characteristics of the IoT environment, TOI has its own
unique challenges and here we discuss three main challenges
that TOI approaches have to overcome.

First, unlike common Internet resources such as document
and images, IoT resources are inherently unreliable, ad-hoc,
and not in uniform format [71]. We need reliable, trustworthy

methods to be able to use these ephemeral and unorganized
data. Hence, it is critical to understand the underlying rela-
tionships between IoT devices, to identify and group them
together, and to aggregate data and reduce the unreliable nature
of their data. Therefore, TOI services have to be dynamic
and contextual-aware of their environment to keep track and
quantify their IoT devices data sources. Second, as sensors
from IoT devices collect signal from surrounded environments,
including personal human activities, privacy and security are of
great concern when designing a TOI recommendation model.
This challenge requires us to have new architectures and
evaluation measurements regarding the performance of a TOI
recommendation system, where the focuses are not only on
the accuracy, but also the safety, security, and privacy of the
involved entities. Third, the IoT environment is a distributed
environment, while most of the recommendation approaches
are run on a centralized server. This centralization nature
does not fit well with TOI approaches, due to high demand
traffic and aggregated data from cluster of IoT devices. This
challenge requires new solution for TOI recommendation, and
the recent trend is to deploy recommendation models on edge-
devices such as mobile or portable IoT devices [72].

Given these challenges, TOI recommendation systems have
a significant deviation from the normal recommendation ap-
proaches, and we must carefully address them. Furthermore,
we envision new promising directions for future research
in this area. Firstly, applying deep learning techniques to
build TOI models are increasingly necessary. Deep learning
methods can draw out complex patterns and behaviors of IoT
device’s signals, thus are very helpful for context-aware TOI
recommendation systems. The second promising direction is
the interpretability of TOI recommendation [73]. By achieving
explainable reasons for the recommendation, the IoT system
can convince its users for better adaptability, and help the
users learn more insights from the decision rationale behind
the recommendation. Another promising future direction is
combining with IoT searching to have a more powerful recom-
mendation system. By having both proactive and post-active
approaches in a recommendation system, users can have better
experience when looking for TOI. This combining approach
is also an effective method to overcome the cold-start issue
that has to be faced by the most recommendation systems.

H. Edge Computing and IoT

Over the past decade, an unprecedented increase in the
deployment of IoT devices coupled with the demanding of
real-time computing power and low-latency requested by the
state-of-the art applications continues to drive the case for
edge-computing systems. Such applications include, but are
not limited to, smart cities (with autonomous driving being its
integral constituent), healthcare, augmented reality, robotics,
and artificial intelligence.

Edge computing is primarily a part of the distributed com-
puting topology which has an intent to bring both computation
and storage near to the devices. This is quite beneficial
for applications requiring stringent latency requirements. For



instance, in case of safety-critical vehicular applications, i.e.,
forward collision warnings, lane changing assistance, emer-
gency vehicular assistance, and blind intersection warnings, a
maximum tolerable threshold of 3-10 milliseconds is indis-
pensable for mitigating performance-related issues [74], [75].
This is also economical and resource efficient considering the
fact that most of the data is processed itself at the edge and
only a handful of data is sent back to the centralized cloud,
thereby reducing bandwidth requirements.

Nevertheless, a number of edge-based IoT applications are a
source of momentous amount of data, e.g., as per an estimate
of Automotive Edge Computing Consortium [76], connected
vehicles are anticipated to generate an approximately 5 TB of
data for every hour of their driving with a large chunk of the
same transpiring from the video cameras primarily employed
for computer vision purposes in order to facilitate vehicles to
gain a perception of the world around them. With the advent of
5G and beyond 5G wireless communication technologies, data
volumes continue to grow since more and more sophisticated
edge-based IoT devices are being seamlessly integrated in the
network. In addition to connected vehicles, numerous sensors
and roadside infrastructure within the context of the paradigm
of smart cities, handheld devices (cellular and other computing
devices), home automation devices installed in smart homes,
and intelligent bots operating on the factory floor all constitute
edge-based IoT devices. In order to intelligently manage such
big data, developing an edge-centric data management strategy
with highly specialized analytics capabilities is hence of the
essence in order to glean insights in real-time with fairly
limited computing power. By effective decentralized decision
making, edge analytics is capable of identifying a cause well
before its respective effect has actually materialized.

This unprecedented growth in the number of edge-based
IoT end points also results in an increase in the attack surface,
i.e., an aggregate of a system’s end points which an attacker
could leverage for his malicious gains. Therefore, security
is of the most pressing concerns for the edge since IoT
devices which connect to the public Internet largely results
in compromising the security protocols. This all boils down
to the current state of the edge computing since full stack
solutions encompassing sensors, software, and secure elements
are almost non-existent. IoT networks at the edge further
rely on the low-power wide-area network (LPWAN) protocols
which themselves employ simple cryptographic techniques and
are prone to attacks especially in case the encryption keys
have been compromised. Moreover, VPNs are also subject
to man-in-the-middle attacks. Nevertheless, implementing an
end-to-end encryption and creating mechanisms for securing
edge-based IoT devices via embedding security features within
them (and in the edge data centers) would facilitate a resilient
expansive network.

I. Conversational IoT

The most natural way for human beings to interact is
through words. Advanced technology combined with extensive
research over the past few years has made it possible for

the humans to communicate with the machines using natural
language, thus giving rise to the field of Conversational AI. It
refers to the use of either text-based or voice-based applica-
tions that enable machines to stimulate human conversations
and create a personalized experience for the users. These
conversational agents can be envisaged as a natural interface
for the IoT devices as it hides all the complex applications,
services and hardware such as sensors and actuators, present-
ing a daunting challenge of gaining technical knowledge to
interact with the various components.

The convergence of IoT and Conversational AI is regarded
as successful as we have seen many applications already
making their way to people’s customized smart spaces such as
smart offices, smart homes, and smart vehicles. The first in the
line of transformation of a regular home into a smart IoT home
is ‘Google Home’, which is flexible to work with and provides
a centralized solution to control compatible smart home de-
vices. Another state-of-the-art device is Amazon’s Echo which
provides more improved features than Google Home. Echo can
guard a home in owner’s absence by listening to surroundings
for unusual noises or alarms. A ‘Home and Away’ feature can
be set up to trigger specific actions. It helps shop from Amazon
and notifies the owner when the parcel arrives. In a multi-user
environment, each user can register their account using voice
activation. Though these devices and alike (Alibaba Group’s
Tmall Genie etc.) overcome interoperability issues to make
the life an effortless, seamless experience, they suffer from a
number of limitations due to which a huge performance gap
is easily observable on managing the smart spaces as a whole.

These limitations can be considered as potential research
challenges which include, but are not limited to: i) Self-
Disclosure in a Multi-User Environment: the increase in the
number of interactions between the system and end-users
would result in increased disclosure about user’s activities and
personal information. This disclosure of information helps the
system in understanding the user and thus aids in providing
a more personalized experience. However, in multi-user sce-
nario this disclosure of personal information may poses high
risks pertaining to one’s privacy and thus, requires a model
where multiple users can co-exist without having to worry
about security or data breach; ii) Lack of Complexity and
Completeness: the available IoT conversational agents work
on simple commands like “turn on the TV” or “what is the
temperature of the room?”. However, these systems struggle
with rules or complex sentences such as “turn off the heater
when the room is warm” or “turn on the TV when Prison
Break is on”, unless the user decomposes them into separate
simple sentences [77]. Thus, extensive research is required
to make the systems tackle incomplete or complex sentences
without having to decompose them to keep the conversation
natural; iii) Inability to Reason: Commonsense reasoning is
considered as a key factor to the success of many natural
language processing tasks specifically in question answering
and conversation dialog [78], [79]. The machine should be
able to provide rationale answers to questions like “Why is
it so cold today?” in order to establish effective interactions.



Unfortunately, current technologies are still far from realizing
this capability and more research efforts are needed. iv) Lack of
Conversational Context: the more natural and interactive way
of having a conversation is by incorporating historical context
into the conversation. Consider an example {User: Who is
the most dialed number in my call record?, Agent: Emma
Collins, User: Could you please set her as my emergency
contact?}. The agent needs to maintain the record of turn 1
in order to decipher ‘her’ in Question 2. Most of the IoT
conversational agents are single-turn agents where they do
not keep track of the previous conversation, and thus provide
inaccurate answers [80], [81]. Thus, designing agents that keep
track of the previous turns is an important research direction.

J. Summarization in IoT

With advances in the Internet of Things, the proliferation of
data generated from sensors and the growth of Internet users
have created a pressing need for compressing the data over
the Internet. Textual data is one of such data. From natural
language data processing perspective, summarization is an
effective technique for data aggregation that can generate a
short and concise summary from one or one set of texts. In
the IoT era, documents are located in a distributed way, raising
the research of multi-document summarization [82].

Towards this end, combining IoT and summarization tech-
nology is worthy to be explored. More specifically, data
collected from IoT networks are processed by summariza-
tion techniques. Eventually, condensed semantical features are
formed, with which the downstream tasks will be facilitated
dramatically. By doing so, it can help the IoT users save
huge amount of time, since the users are able to quickly
acquire target information they need without reading tedious
documents [83]. Moreover, data summarization is capable of
reducing the energy consumption in various IoT environments
[84] and decrease the requirements of the application servers
in storage, transmission and processing.

The combination of IoT and the summarization technology
could have a wide range of applications. For instance, a request
to some intelligent devices, such as Google Home, is given
by IoT users to fetch highly condensed information. The
devices would search around the Internet to gather the most
relevant documents; later on, text summarization techniques
will be performed to pick the key points out of tons of
information to form the final concise answers. Not only text
summarization techniques can be applied to many scenarios,
video summarization techniques can also be combined with
IoT in the seek of fast and efficient information processing
[85]. For example, in intelligent security areas, the surveillance
videos can be summarized by video summarization algorithms
to extract the most informative and important features. These
techniques are able to be applied in smart cities as well, where
traffic videos could be obtained and video summarization
algorithms could play an important role.

Besides text and video data processing, in recent years, with
the tremendous successes gained by data-driven approaches,
multi-modal data processing attracts increasing attentions.

These data come from texts, audios and videos, which provide
a more comprehensive view. Multi-modal data processing
enables models to fuse data from different sensors and sources,
but it will inevitably incur exponentially increasing data to be
processed. Under this circumstance, summarization algorithms
to process multi-modal data can be adopted to fuse information
semantically. Despite the advantages of the combination of
summarization techniques and IoT, it is still a new area,
with very few existing works. Deep neural networks with
conventional text and video processing techniques can be
investigated, since deep neural models have strong non-linear
mapping abilities and traditional approaches contains many
prior knowledge, which would facilitate the model optimiza-
tion process. We foresee that summarization on IoT will be
one of the next intensely researched topics.

III. CONCLUSION

The Internet of Things (IoT) has been an extremely ac-
tive area of research and development for more than two
decades. Although a wealth of exciting activities including
standardization, commercial developments and research have
been conducted, many challenges still remain open due to the
large scale and diversity of IoT devices, the openness of the
IoT environment, and the security and privacy concerns. In this
paper, we identify 10 key research topics on IoT and hope to
stimulate further research in this vibrant area.
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