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Abstract—A modern vehicle fitted with sensors, actuators, and
Electronic Control Units (ECUs) can be divided into several op-
erational subsystems called Functional Working Groups (FWGs).
Examples of these FWGs include the engine system, transmission,
fuel system, brakes, etc. Each FWG has associated sensor-
channels that gauge vehicular operating conditions. This data
rich environment is conducive to the development of Predictive
Maintenance (PdM) technologies. Undercutting various PdM
technologies is the need for robust anomaly detection models that
can identify events or observations which deviate significantly
from the majority of the data and do not conform to a well defined
notion of normal vehicular operational behavior. In this paper, we
introduce the Vehicle Performance, Reliability, and Operations
(VePRO) dataset and use it to create a multi-phased approach
to anomaly detection. Utilizing Temporal Convolution Networks
(TCN), our anomaly detection system can achieve 96% detection
accuracy and accurately predicts 91% of true anomalies. The
performance of our anomaly detection system improves when
sensor channels from multiple FWGs are utilized.

I. INTRODUCTION

Vehicles can be considered a specialized form of Cyber
Physical Systems (CPS) equipped with a variety of sensors that
generate a volume of operational data. Recent advancements
in hardware has made available unprecedented computational
power via the use of modern processors and GPUs. Arti-
ficial Intelligence / Machine learning technologies running
on this hardware, can utilize these large vehicular datasets
to build intelligent systems. These systems can help detect
abnormal sensor behaviour and identify precursors of various
sensor channel faults, monitor and predict the progression of
faults, and provide decision-support to develop maintenance
schedules. One concept that has risen to prominence both in
academia and industry is Predictive Maintenance (PdM) [1]–
[4]. However, PdM is complex and expensive to implement
[1]. Undercutting the domain of PdM, is the need for robust
anomaly detection. AI based anomaly detection systems can
identify events or observations that deviate significantly from
the majority of the data and do not conform to a well defined
notion of normal behavior [5]–[8].

In vehicular systems, several factors are attributed to the
deterioration of vehicle components over time. For example,

* These two authors contributed equally.

engine and transmission wear is a direct result of massive
heat and vibration produced. This deterioration of components
or sub-components can result in abnormal sensor channel
behavior signaling impending failure. However, early detection
of abnormal patterns and timely scheduling of maintenance
events can reduce risk to the underlying processes while in-
creasing lifespan, reliability, and availability, thereby avoiding
unplanned downtime and minimizing repair costs [1].

When it comes to a modern vehicle, systems have shifted
from being purely mechanical to being comprised of Elec-
tronic Control Units (ECU), Sensor, and Actuators. These
components work together to ensure normal operation of a
vehicle. An ECU waits for a signal from the gas pedal sensor
to communicate with a fuel pump, instructing it to deliver
more fuel to the internal combustion engine. A modern vehicle
is an amalgamation of these individual pieces of machinery
working together to complete the desired functionality. We
can consider a vehicle to be comprised of various operational
subsystems called “Functional Working Groups” (FWGs) [9].
These include the engine system, transmission, fuel system,
brakes system, etc. Each FWG is comprised of multiple sensor
channels that allow a mechanic to infer the condition of an
individual mechanical part and recommend mitigating service.
We can say that a vehicle is operating under normal conditions
if all individual FWG sensor channel values are gauging
normally. Abnormal channel values may be indicative of a
future impending failure.

To combat this problem, we present in this paper a temporal
anomaly detection system that focuses on operational data of 4
vehicular FWGs and associated sensor channels. Our anomaly
detection system is a multi-phased approach utilizing Tempo-
ral Convolution Networks (TCN) that learns the underlying
relationships between FWG sensor channels. The intuition
behind using TCN as a predictor model is that it is suitable
for modeling sequential data and the use of flexible receptive
fields [10]. In addition, TCN based models are computationally
efficient as compared to Long short-term memory (LSTM)
methods and possess representational capability to achieve
robust and superior prediction performance [11]. We leverage
the Vehicle Performance, Reliability, and Operations (VePRO)
dataset created by the United States (U.S.) Army Corps of En-
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gineers and Mississippi State University (MSU). Our anomaly
detection model performs time series forecasting by taking
as an input, multi-sensor values for the current time window
and outputs a prediction for the subsequent observation. The
final decision about an anomaly is made by comparing the
prediction to the actual observation.

Major contributions of this paper include:
• We provide a comprehensive description of the Vehi-

cle Performance, Reliability, and Operations (VePRO)
dataset. The dataset includes the normal driving data for a
fleet of vehicles. We explain and utilize 4 vehicular Func-
tional Working Groups such as engine, transmission, fuel,
and brakes, along with the associated sensor channels.

• We develop a TCN model using a sequence-to-sequence
learning approach. The model performs time series fore-
casting by operating on a multi-channel sequence for the
current time window and outputs a prediction for the
subsequent observation.

• We identify anomalies in FWG sensor channels by com-
paring the prediction made by the TCN model with
the actual observation. We then check robustness of our
approach by creating three anomalous test scenarios to
investigate the behavior of different sensor channels that
affect FuelRate.

The rest of the paper is structured as follows: Section II,
discusses the model used in the study and provides a brief
overview of the current state-of-the-art. Dataset used in the
study has been described in Section III. Section IV, gives an
overview of our multi-phased architecture. In Section V, we
present the evaluation criteria and our results. Finally, Section
VI summarizes and concludes the paper.

II. BACKGROUND & RELATED WORK

In this section, we present some background information
and some related works on Temporal Convolution Network
and Anomaly Detection.

A. Temporal Convolution Network
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Fig. 1: A causal dilated network with dilated factors d = 1,2,
4 and a kernel size of 3. The first hidden layer has a dilation
factor of 2, and the second hidden layer has a dilation factor
of 4. The receptive field can accommodate all input sequence
values [11].
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Fig. 2: The figure on the left shows a TCN residual block with
a dilation factor of d and a filter of k. When the dimensions
of the residual input and output differ, a 1 × 1 convolution
is added. The figure on the right is an example of residual
connections in a TCN with d = 1 and k = 3. In this figure,
the green lines show identity mappings, while the blue lines
show filters in the residual function [11].

TCN [12], is a time series architecture that utilizes one-
dimensional convolutional layers. It is trained to forecast the
next sequence of time series input. Consider a scenario in
which we are given a set of time series inputs for a window
size t, i.e. x0, x1, x2,..., xt and we wish to predict some
corresponding output yt+1, yt+2, yt+3,..., yt+t for the next
time window of size t. The key limitation is that when
predicting the outputs y values for the next window size t,
it can only use the previously observed inputs: x0, x1, x2,...,
xt. TCNs adhere to the following two fundamental principles
[11]:

1) The architecture employs a 1D fully connected convolu-
tional network and transforms any dimensional length of
input sequence into a sequence with the same dimensional
length [13].

2) The convolutions are causal, which means that there is
no information leakage from the future to the past [14].

To allow for a long effective history size and a deep
network, two important concepts are introduced as part of
the TCN architectural elements, which we describe in the
following sub sections.

1) Dilated Convolution: When working with time series
data, it is often assumed that the model network can memorize
long-term information. A simple causal convolution can only
examine a history with a size proportional to the network’s
depth. This makes it difficult to apply causal convolution to
sequence tasks, particularly those requiring a longer historical
context. To address this issue, dilated convolution, originally
proposed by Oored et al. [15] that enables exponentially large
receptive fields is employed [16].

For a sequence of input x0, x1, x2,..., xt, and k-sized
convolution kernel f , the dilated operation F in element s



of the sequence is defined as

F (s) = (x ∗d f) (s) =

k−1∑
i=0

f(i) · xs−d·i (1)

Where d is dilation factor, k is filter size, and s−d ·i accounts
for the direction of the past. Figure 1 illustrates the dilated-
causal convolutions with dilation factors d = 1, 2, and 4.

2) Residual Connections: Figure 1, shows how increas-
ing network depth or extending network width can increase
network performance. However, as network depth increases,
it becomes more difficult to train the network, and network
performance rapidly degrades. To address this issue, resid-
ual connections are applied to TCN [17]. This utilizes skip
connections throughout the network to accelerate the training
process and prevent the vanishing gradient problem. A residual
block for baseline TCN is depicted in Figure 2.

B. Anomaly Detection

Liu et al. [19] propose a TCN-Gaussian mixture model
(GMM) model for an online anomaly detection time series
dataset. First, the time series features are extracted by a dilated
TCN. Then their distribution is estimated using a GMM. TCN-
GMM measures the similarity between features and clusters
using the Mahalanobis distance. The threshold T is compared
to the model’s measure of similarity to see if the current state
is abnormal.

On the other hand, the authors of [10] use a multi-stage
TCN (to improve performance) and a multivariate Gaussian
distribution to estimate the distribution of prediction errors
rather than the features of training data. The anomaly score is
then calculated by computing the Mahalanobis distance (MD)
between the current prediction error and the pre-estimated
error distribution. Three real-world datasets, like electrocar-
diograms, a dataset of 2-D gestures, and a dataset from the
space shuttle, are used to validate the approach.

In another work, using Temporal Convolutional Neural
Attention (TCNA) networks, the authors of [20] present a
novel anomaly detection framework called TENET for au-
tomotive cyber-physical systems. The research introduces a
metric called the “divergence score” that evaluates the discrep-
ancy between the expected signal value and the actual signal
value. Their method employs a robust quantitative metric and
classifier, as well as learned relationships, to detect abnormal
patterns.

A comparison of the effectiveness of TCN and LSTM
methods in detecting anomalies in time series data has been
proposed [21]. Experimental results demonstrated that the
TCN method outperformed its LSTM equivalent in terms of
recall and F1 score. In addition, it is noted that the TCN
model required fewer training iterations. A similar work that
evaluates the performance of the TCN approach by comparing
its results with the LSTM approach in detecting anomalies of
spacecraft telemetry time series data transmitted from the on-
orbit satellite is proposed in [22].

Mo et al. [23] present a TCN-based unsupervised anomaly
identification approach for time series data that includes sea-
sonality and trend. In contrast to the typical method of setting a
global threshold for anomaly detection, the authors developed
a novel approach capable of detecting seasonal and trend-
driven local anomalies.

To build an anomaly detection system for vehicles, Alizadeh
et al. [24] created a hybrid AutoRegressive Integrated Moving
Average-Wavelet Neural Networks (ARIMA-WNN) model for
predicting the behavior of the operating vehicle and detecting
anomalous states based on multiple channel time series data.

In our past work, we have published a Hidden Markov
Model (HMM) based survey on machinery fault prediction
[25] and have also built a number of anomaly detection
systems for vehicles, smart homes, cyber-physical systems,
etc. These systems utilize both non-neural network methods
and various deep learning approaches [26]–[30]. For example,
in [26], we presented an alert system based on HMM, a
stochastic model that follows the Markov principle, to detect
anomalous states of real data acquired from an operating
vehicle. This research looked at the speed, load, engine coolant
temperature, and other physical sensor values of vehicles made
by different automotive manufacturers.

Kang et al. [31] also proposed a method to detect anomalies
in the brake operating unit (BOU) of subway trains using a
type of LSTM auto-encoder. The authors of [32] propose a
pattern recognition technique for detecting anomalies in transit
bus braking systems. This technique employs many sensor
data points, such as vehicle speed, transmission gear ratios,
acceleration pedal position, and the brake switch, to detect
irregularities in brake systems. Bussey et al. [33] present a
case study on the detection of anomalies involving low oil
pressure in commercial vehicle data. The authors studied a
number of data-driven models that were based on heuristics to
describe the relationship between three main engine channels:
oil pressure, oil temperature, and engine speed.

III. DATASET DESCRIPTION

The Vehicle Performance, Reliability, and Operations (Ve-
PRO) program is a collaboration between the United States
(U.S.) Army Corps of Engineers and Mississippi State Univer-
sity (MSU). The VePRO dataset contains operational data from
a fleet of vehicles, including time series sensor measurements,
detected faults, and maintenance reports. Each vehicle in the
dataset possesses a minimum of 106 sensor channels. The
multi-channel sensor data was collected daily over a period of
21 months between 2012 and 2014. The dataset is scheduled
to be released publicly after detailed anonymization.

A subset of data with 15 sensor channels and one additional
time channel UTC 1Hz is selected for our anomaly detection
problem as per the recommendation of a group of mechanical
engineers working on the same dataset. The selected 15 sensor
channels belonging to the four main FWGs of a vehicle are
the basis for the data analysis, model training, and studies
performed in this paper. UTC 1Hz sensor channel records
the date and timestamp for every observation of data. It is
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Fig. 3: A graphical representation of the various FWG in a vehicle, including the engine, transmission, fuel, and brake, as well
as the sensor channels for each of these FWG [18].

collected at a frequency of 1 sample per second, starting at
the timestamp value when the engine is switched on.

The selected vehicular sensor channels can be visualized in
Figure 3 and a summary of these channels is provided in Table
I. These channels specifically deal with certain ECUs installed
in different vehicular FWGs, such as engine, transmission,
fuel, and brake. Figure 4 illustrates raw observations for a
window of 25 minutes on 2014-Jan-30. Next, we describe each
of the selected FWGs and associated sensor channels in detail.
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Fig. 4: Snapshot of VePro Dataset raw observations for a
period of 25 minutes on 2014-Jan-30.

A. Engine FWG and Sensor Channels

The engine FWG converts energy from combustion to
mechanical work. It includes the following sensor channels:

1) EngCoolantTemp (Engine Coolant Temperature): The
EngCoolantTemp sensor channel measures the temperature of
the engine’s liquid coolant. The sensor operates by sensing the
temperature emitted by the thermostat or the coolant itself. The

vehicle’s computer will use this information to keep the engine
at the optimal temperature.

2) PctEngLoad (Percent Engine Load): The engine load
determines the demand placed on a motor’s ability to generate
power. When the engine load increases, the engine speed
decreases. To compensate for this decrease in engine speed,
additional fuel is injected into the engine. PctEngLoad sensor
channel records fractional power of an engine compared to its
maximum manufacturer’s design capacity at various engine
conditions, such as a vehicle in motion or a vehicle at idle.

3) EngPctTorq (Engine Percent Torque): Torque is com-
monly referred to as ‘twisting or turning force’. In the context
of automobiles, it measures the rotational force applied by the
piston to the crankshaft of the engine. The EngPctTorq sensor
channel is the calculated output torque of the engine. The data
is recorded as a percentage of net engine torque [34].

4) BoostPres (Turbo Boost Pressure): The BoostPres sen-
sor channel indicates the air pressure information at any given
moment. It provides information regarding air pressure and
air-to-fuel ratios for regulating engine performance. The ECU
then uses boost and air density information in the vehicle’s
intake manifold to determine how much fuel is needed in the
car’s combustion chamber so that the air-fuel mixture is at its
best.

5) AccelPedalPos (Accelerator Pedal Position): The Ac-
celPedalPos sensor channel captures information about the
acceleration, deceleration, and steady-state condition of a
vehicle. It monitors the accelerator pedal’s position and relays
that information to the ECU. The computer opens the throttle
body to increase the flow of fuel to the engine when the
pedal is pushed forward. On the other hand, when the pedal
is released, the throttle body is closed, and the flow of fuel is
reduced.

6) IntManfTemp (Intake Manifold Temperature): The Int-
ManfTemp sensor channel indicates the temperature of the air
inside the intake manifold. A low sensor reading indicates
that incoming air is highly dense, while a high sensor reading
indicates that the incoming air is extremely thin. To balance
the proper air-to-fuel ratio, the Powertrain Control Modules



FWG Sensor Channel Full name Unit Description
Time UTC 1HZ 1 Hz Data Seconds Time series data from the 1 Hz channels.

EngCoolantTemp Engine Coolant
Temperature

Degree Fahrenheit (°F) Captures how heavy the engine is working and correlates well
with the fuel rate.

PctEngLoad Percentage Engine
Load

Percent (%) Amount of load required for the engine to perform driving.

Engine

EngPctTorq Engine Percentage
Torque

Percent (%) The calculated output torque of the engine.

BoostPres Turbo Boost Pres-
sure

Pound per square inch
(psi)

Indicates the air pressure information at any given moment.

AccelPedalPos Acclerator Pedal
Position

Percent (%) Captures acceleration, deceleration, and steady state condition.

IntManfTemp Intake Manifold
Temperature

Degree Fahrenheit (°F) Indicates the temperature of the air inside the intake manifold.

VehSpeedEng Vehicle Speed Miles Per Hour (m/s) Speed of vehicle - major contributor to the fuel consumption.
TransOilTemp Transmission Oil

Temperature
Degree Fahrenheit (°F) Captures temperature in all operating condition.

Transmission

TrSelGr Transmission
Selected Gear

Unitless Represents which transmission gear the vehicle is currently in.

TransTorqConv
LockupEngaged

Transmission
Torque Converter
Lockup Engaged

Base 10 Integer Num-
ber

Captures whether or not the torque converter lockup is engaged.

TrOutShaftSp Transmission Out-
put Shaft Speed

Revolutions Per Minute
(rpm)

Calculates the transmission gear ratio when in use.

FuelRate Fuel Rate Gallons (U.S.) Per
Hour (gph)

The fuel rate is essentially how quickly the vehicle is burning
fuel.

Fuel
InstFuelEco Instantaneous Fuel

Economy
Gallons (U.S.) Per
Hour (gph)

Captures current fuel economy at current vehicle velocity.

InjCtlPres Injector Control
Pressure

Pound per square inch
(psi)

Can be used as a health indicator of the injectors.

Brake BrakeSwitch Brake Switch Base 10 Integer Num-
ber

Captures the position of break pedal.

TABLE I: A brief overview of the various vehicular FWGs included in the study, along with a description of the associated
sensor channels.

(PCM) increase the amount of fuel to the engine in the event
of a low-temperature reading, whereas the PCM reduces the
amount of fuel to the engine in the event of a high-temperature
reading.

B. Transmission FWG and Channels

The transmission FWG controls and transfers power from
the engine to the driveshaft. The following sensor channels are
associated with this FWG:

1) VehSpeedEng (Vehicle Speed): The VehSpeedEng sensor
channel represents the speed of a vehicle at a given time.
The PCM manipulates numerous electrical subsystems in a
vehicle using the VehSpeedEng frequency signal, including
fuel injection, ignition, cruise control operation, torque, and
clutch lock-up. On the other hand, transmissions rely on
vehicle speed data to optimize shift strategy, and it is a
significant determinant of fuel usage.

2) TransOilTemp (Transmission Oil Temperature): The
TransOilTemp sensor channel captures the temperature of the
transmission fluid under all operating conditions. It measures
transmission fluid temperature by transmitting a voltage signal
proportional to fluid temperature to the ECU; i.e., the lower
the voltage, the higher the temperature.

3) TrSelGr (Transmission Selected Gear): The TrSelGr
sensor channel represents what transmission gear the vehicle

is currently in. The gear ratio values set a torque limit on the
engine output for a certain range of transmission gears.

4) TransTorqConvLockupEngaged (Transmission Torque
Converter Lockup Engaged): The TransTorqConvLockupEn-
gaged sensor channel indicates whether or not the torque
converter lockup is engaged. It is represented in binary form,
i.e., 0 for disengaged and 1 for engaged. The transmission
lockup torque converter has a clutch. The engagement of this
clutch locks the engine to the input shaft of the transmission,
resulting in a direct 1:1 drive ratio. It is used to enhance fuel
consumption efficiency.

5) TrOutShaftSp (Transmission Output Shaft Speed):
TrOutShaftSp sensor channel is used to calculate the trans-
mission gear ratio when in use. It detects the rotational speed
of the output shaft, which is derived from the output shaft
tone wheel.The Transmission Electronic Control Unit (TECU)
looks at the speeds of the input shaft, the output shaft, and the
main shaft to figure out the gear ratios of the main case, the
auxiliary case, and the whole transmission.

C. Fuel FWG and Channels

The fuel FWG is responsible for the fuel material needed to
produce heat when ignited with oxygen. This FWG includes
the following sensor channels:
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1) FuelRate (Fuel Rate): The FuelRate sensor channel
essentially captures how quickly the vehicle is burning fuel.
It measures the amount of fuel a vehicle consumes to go a
specific distance [35].

2) InstFuelEco (Instantaneous Fuel Economy): The Inst-
FuelEco sensor channel represents current fuel economy at
current vehicle velocity.

3) InjCtlPres (Injector Control Pressure): The InjCtlPres
sensor channel is the health indicator of the injectors. It detects
the pressure of the fuel entering the injectors. It checks the
pressure of the fuel going into the injectors and sends that
information to the computer so that it can make the changes
needed for the best performance and efficiency.

D. Brake FWG and Channel

The brake FWG is responsible with inhibiting motion by
absorbing energy. The position of the brake pedal is captured
by the BrakeSwitch sensor channel. The brake switch’s sensor
measures this position. Its principal purpose is to release the
converter clutch during deceleration.

IV. SYSTEM ARCHITECTURE & METHODOLOGY

For a vehicle to work normally, it is important that all of its
Functional Working Groups (FWG) work properly. When one
of the vehicle’s FWG fails, the vehicle’s performance deteri-
orates. Examples of FWGs include engine, fuel, cooling, air
compressor, electrical, transmission, axle, suspension, brake,
wheel, and tire related channels. For this study, four FWGs:
engine, transmission, fuel, and brakes, have been included for
modeling and evaluation (Figure 3).

The architecture of our system, shown in Figure 5, is divided
into three phases: data preprocessing, the prediction phase,
and the anomaly detection phase. We developed our anomaly
detection methodology utilizing this phased approach. In the
rest of this section, we describe each phase and expand on our
methods.

A. Data Preprocessing

In the first phase of our architecture, the multi-channel data
stream is preprocessed before the predictor phase. The dataset

used in this study has 106 sensor channels with 955,856
observations. We selected 15 suitable sensor channels based
on the advice of mechanical engineers working on the same
data. These have been described in Section III. Figure 4
shows raw data observations for these sensor channels during
a window of 25 minutes collected on 30-Jan-2014. To process
the data, we removed null values and redundant observations
from the dataset. Next, we normalized the data using the
min-max scaling. The dataset is further processed using a
sliding window approach and conditioned to meet the input
requirements for the next phase (See Figure 6 as an example).
At the end of this phase, for a given time window, the
processed data will be formatted as a sequence containing a
certain number of observations per channel.

stride

(s)

Window 1

Window 2

window size

(w)

Fig. 6: Sliding window example. A window is comprised of
w = 20 observations. Consecutive windows can be separated
by utilizing a stride value.

B. Predictor Phase

In the second phase, the predictor performs time series
forecasting. TCN is utilized as the predictor model due to
its ability to abstract time series data and its use of flexible
receptive fields [10]. In addition, these models are compu-
tationally efficient and possess representational capability to
achieve robust and superior prediction performance [11]. In



our model, time series forecasting is defined as predicting the
next value from an input sequence of observations.

A sequence-to-sequence (Seq2Seq) learning approach is
used due to the temporal nature of the dataset. The processed
data is restructured as sequences, i.e., series of contiguous ob-
servations. In order to generate sequences, a sliding window is
used on the processed data. Figure 6, illustrates an example of
the sliding window approach. The size of the window (w) is the
number of observations to consider as a sequence. In order to
avoid interpolation and to ensure that sequences are composed
of contiguous observations, the time elapsed (et) between the
first and last observation in a window (endpoints) is calculated.
The expected data rate (dr) for this dataset is 1 Hertz (Hz).
Due to dropped packets in streaming data, an additional delta
time (dt) is added when considering sequences. For example,
consider a sequence of 10 observations with a 1 Hz data rate
that has an elapsed time of 12 seconds. This sequence would
be considered valid if dt is set to 2. In other words, a sequence
is valid if: et ≤ (w/dr + dt) seconds. All other sequences
are removed since they contain non-contiguous observations.
Non-contiguous observations can be due to gaps in the data
when the vehicle is idle or not in use. A fixed stride is also
used to control the amount of overlap between windows. The
final processed dataset is a three-dimensional array of the form
N ×M × P , where N is the number of instances, M is the
length of the sequence, and P is the number of channels.
For our experiments, the restructured dataset has 15 sensor
channels, each with w = 20 observations.

The restructured data is split into two parts: training and
testing. For this study, we used 70%–30% random splitting
criteria for training and testing. Due to the random split,
training and testing datasets contain sequences throughout the
21 month period between 2012 and 2014. Each sequence is
broken into two sub-sequences. The first M − 1 observations
are used as the input sequence, and the last one is used as
the target output. The predictor is a sequential model with an
temporal convolutional layer and a dense layer. The temporal
convolutional layer has the following hyperparameters: 64
filters; kernel size of 3; causal padding; single residual block
stack; ReLU activation function; and dilations of 1, 2, 4,
8, 16, and 32. The size of the receptive field is 505 (See
Section II-A for details). The dense layer has 1 × P units
and uses a linear activation function. A 10% validation split
is used on the training data to ensure that the model does
not overfit. All the abovementioned hyperparameters were
determined experimentally during optimization.

C. Detector Phase

In the final phase, we perform anomaly detection. The
objective of this phase is to determine whether or not a FWG
is functioning normally. The predicted observation, calculated
in the previous phase, is compared to the actual observation.
In general, if the prediction error exceeds a threshold, then the
system estimates an abnormal observation.

The anomaly detection technique used in this paper is out-
lined in the Algorithm 1. Once the predictor has been trained,

Algorithm 1 Training and Testing a TCN based Anomaly
Detection System
Inputs:
data multivariate time series observations
tcnhp TCN hyperparameters
Outputs:
Model trained temporal convolutional network model
µpred training prediction error mean
Σpred training prediction error covariance
T anomaly threshold
CM confusion matrix
Variables:
X model input, y model target, ŷ model prediction, fa actual
anomaly label, fp predicted anomaly label, trn training data,
tst test data, ζ prediction error, MD Mahalanobis distance

1: Xtrn, ytrn, Xtst, ytst, fatst = split dataset(data)
2: Model← build model(tcnhp, X trn, y trn)
3: ŷtrn = predict(Model,Xtrn)
4: ζtrn = ytrni

− ŷtrni

5: µpred = mean(ζtrn)
6: Σpred = cov(ζtrn)

7: ŷtst = predict(Model, Xtst)
8: ζtst = ytst − ŷtst
9: Select T

10: MD =
√

(ζtst − µpred)T Σ−1
pred (ζtst − µpred)

11: if MD > T then
12: fptst = Anomaly
13: else
14: fptst = Normal
15: end if
16: CM = confusion matrix(fptst, fatst)

the training dataset is used to calculate the estimated prediction
error. The estimated (training) prediction error is assumed to
follow a multivariate Gaussian distribution. It is important to
note that the training data may contain a very small number
(α) of abnormal instances due to sensor measurement noise.
Another assumption is made that the vehicle operates under
normal conditions for a large number (β) of training instances
(i.e., β >> α). The Mahalanobis distance is used to determine
how closely the test prediction error matches the estimated
distribution.

Anomalies are inserted in 20% of the test dataset. Then,
the predictor is used to make predictions on the test dataset.
As stated before, the Mahalanobis distance is used as a
metric to detect anomalies. Finally, the performance of the
anomaly detection system is evaluated using receiver operating
characteristic (ROC) curve and area under the curve (AUC) 8.
The MD threshold is derived from the ROC curve by using the
geometric mean of sensitivity and specificity. The Confusion
Matrix III and detection accuracy can be formulated using a
MD threshold.



TC FuelRate AccelPedalPos TrSelGr Result
1 ⇔ ⇔ ⇔ FALSE
2 ⇔ ⇓ ⇓ TRUE
3 ⇔ ⇑ ⇓ TRUE
4 ⇑ ⇑ ⇑ FALSE
5 ⇑ ⇓ ⇓ TRUE
6 ⇓ ⇑ ⇑ TRUE
7 ⇓ ⇓ ⇓ FALSE

(a) Scenario 1

TC FuelRate IntManfTemp Result
1 ⇔ ⇔ FALSE
2 ⇔ ⇑ TRUE
3 ⇔ ⇓ TRUE
4 ⇑ ⇓ FALSE
5 ⇓ ⇑ TRUE
6 ⇑ ⇑ TRUE
7 ⇓ ⇓ TRUE

(b) Scenario 2

TC FuelRate InjCtlPres Result
1 ⇔ ⇔ FALSE
2 ⇔ ⇑ TRUE
3 ⇔ ⇓ TRUE
4 ⇑ ⇓ TRUE
5 ⇓ ⇑ TRUE
6 ⇑ ⇑ FALSE
7 ⇓ ⇓ FALSE

(c) Scenario 3

TABLE II: ⇔ represent normal condition, ⇑ represent rise and ⇓ represent fall. TC refers to test cases for a scenario. Scenario
1 illustrates the normal and abnormal relationships between the FuelRate, AccelPedalPos, and TrSelGr channels. The second
scenario presents the relationship between FuelRate and IntManfTemp in normal and abnormal conditions. Scenario 3 illustrates
the normal and abnormal relationship between FuelRate and InjCtrlPres.
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(a) Synthetic anomalies inserted into test data.
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(b) TCN predictions on test data.

Channels

EngCoolantTemp

PctEngLoad

EngPctTorq

BoostPres

AccelPedalPos

IntManfTemp

VehSpeedEng

TransOilTemp

TrSelGr

TransTorqConvLockupEngaged

TrOutShaftSp

FuelRate

InstFuelEco

InjCtlPres

BrakeSwitch

Modified Observations

Fig. 7: Plot (a) illustrates a snapshot of synthetic anomalies mixed into the test data for a time period of 54 seconds on
2014-Apr-30. Scenario 2, Test Case 2 involves an increase in IntManfTemp and an unchanged FuelRate. Modifications are
bounded within -1.0 and 1.0. Black square markers denote modified observations. Plot (b) shows TCN predictions on the test
data.

V. EVALUATION AND RESULTS

To evaluate our system, we must ensure that the anomaly
detection model is robust enough to predict both normal and
abnormal states for FWGs. This means that when the sensor
channels have normal readings, the model must not raise a flag.
Conversely, if there is any abnormal data collected from the
sensor channels, then the model should raise an alert. To test
the system’s ability to find sensor channels in states that are not
normal, we mix in some synthetic data with real data to create
a number of test scenarios. Next, we describe these anomalous
text scenarios. These were also created in consultation with
mechanical engineers working on the same dataset.

A. Anomalous Test Scenarios

To evaluate the vehicle’s fuel system, we must consider
three types of information: (1) performance sensor channels
such as FuelRate; (2) sensor channels that affects fuel rate
such as AccelPedalPos, VehSpeedEng, PctEngLoad, and Eng-
PctTorq; and (3) fuel rate associated sensor channels such as
InjCtlPres, IntManfTemp, and TrSelGr. The detailed descrip-
tion of these channels can be found in Section III and Table I.
On the basis of this information, we develop three scenarios
containing 21 test conditions, as shown in Table II . Our model

should identify these anomalies accurately. For example, the
model should not predict the first test case in Table IIa as an
anomaly, whereas it should accurately predict the second case
as an anomaly.

1) Scenario 1: When the AccelPedalPos is pushed, the
ECU opens the throttle body to increase the flow of fuel to the
engine and closes it when the pedal is released. Ideally, with
rapid acceleration, the TrSelGr should be higher. Using this
scenario, we construct seven test cases as depicted in Table
IIa.

2) Scenario 2: In the normal operating conditions, if the
IntManfTemp sensor channel experiences a low reading, then
it is considered that the air coming to the intake manifold is
highly dense, and if the reading is high, the air is considered
to be thin. To balance things, more fuel is injected into the
engine when the internal manifold temperature is low, and fuel
flow is reduced when the manifold temperature is high. Using
this scenario, we generate the seven test cases as shown in
Table IIb.

3) Scenario 3: In the case of the InjCtlPres sensor channel,
when the pressure is increased in the injectors, it causes the
valve to open wide, leading to an increase in fuel flow into the
engine. Based on this assumption, the test conditions shown



in Table IIc are formulated.

B. Insertion of Anomalous Observations to Test Dataset

Using the abovementioned test scenarios, anomalous obser-
vations are inserted into the testing data. Figure 7 illustrates
an example of inserting synthetic anomalies into the test data
and predictions made by the TCN model. This is done by
assigning 20% of testing instances an anomaly scenario (type)
at random. The assigned scenario dictates the particular sensor
channels and the direction of modification. If an instance
is chosen to be anomalous, then the target observation is
modified based of the assigned scenario. The magnitude of
the modification is also chosen at random from the set (1,
1.5). Note that modified values are bounded between -1 and
1.

C. Results

Before discussing the results, we define performance metrics
that we used in the context of our anomaly detection system.
We classify a sensor channel reading as a true positive (TP)
only if the model detects an abnormal sensor channel reading
as an anomaly, and a true negative (TN) when a normal
channel sensor reading is detected as normal. When the model
detects a normal sensor channel reading as an anomaly, it is
defined as a false positive (FP), whereas an actual abnormal
sensor channel reading which is not detected is a false neg-
ative (FN). Using these definitions, we evaluate the proposed
method based on two performance metrics:

1) Detection Accuracy: Quantifies the detection system’s
ability to correctly identify an anomaly, as defined below:

Detection accuracy =
TP + TN

TP + FP + TN + FN
(2)

2) Receiver Operating Characteristic (ROC) curve with area
under the curve (AUC): Measures the performance of the
proposed model as the area under the curve in a plot
between the true positive rate (TPR) and false positive
rate (FPR):

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(3)

The predictor TCN model was trained using validation-
based early stopping. The overall result of the anomaly de-
tection system is shown using the ROC curve (see Figure 8).
The area under the curve (AUC) of the system is 0.982. Using
a MD threshold 9.61, 91% of true anomalies were detected.
The proposed system has an detection accuracy of 0.96 (See
Table III).

Predicted
Normal Anomaly

A
ct

ua
l

Normal 6942 (97%) 221 (3%)

Anomaly 158 (9%) 1632 (91%)

TABLE III: Confusion matrix. A Mahalanobis distance thresh-
old of 9.61 is used to detect anomalies.
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Fig. 8: ROC Curve on test dataset.

The composition of anomalous instances per scenario was:
518 from Scenario 1, 707 from Scenario 2, and 565 from
Scenario 3. In total, there were 1790 anomalous instances.
The following is the breakdown of missed anomalies by the
system: 49 missed in Scenario 1, 3 missed in Scenario 2,
and 106 missed in Scenario 3. This suggests that the system
performs better when testing with channels from multiple
functional working groups. Additionally, by using the TCN
model prediction, the system can further isolate the anomaly
to a specific channel and FWG (see Figure 7b). Overall, the
system successfully identified vehicular anomalies and states
well outside normal operating conditions (e.g., potentially
unsafe states).

VI. CONCLUSION & FUTURE WORK

In this paper, we introduce a comprehensive anomaly detec-
tion system for vehicles utilizing multiple Functional Working
Groups (FWGs). FWGs provide information to the anomaly
detection system in the form of multisensor time series data.
The anomaly detection model was developed using the Vehicle
Performance, Reliability and Operations (VePRO) dataset,
which contains usage data from a fleet of U.S. Department
of Defense vehicles.

To detect anomalies, a multi-phased approach is employed
with a Temporal Convolution Network (TCN) used as a kernel
to learn the underlying relationships between sensor channels.
The TCN model was trained using the VePRO data, which con-
tains normal operating conditions. The model performs time
series forecasting by operating on a multi-channel sequence
for the current time window and outputs a prediction for the
next observation. The final anomaly determination is made by
comparing the prediction with the actual observation. Through
a series of targeted scenarios and tests, the system is able
to isolate abnormal behavior to a specific FWG. The results
of this study show that our system successfully identifies
vehicular anomalies and unsafe states.

In the future, a logical next step is to expand on the
forecasting model to consider long sequences using RNN-
based LSTM methods. Given the architectural differences
between LSTM and TCN methods, it would be interesting to
compare the predictive and anomaly detection capabilities of
these two algorithms. In addition, we would like to investigate



the performance of hybrid approaches, such as ConvLSTM
[36], for anomaly detection in vehicular operational datasets.
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